There are three modes of heat transfer: conduction, convection, and radiation.

BASIC HEAT TRANSFER RATE EQUATIONS

Conduction

Fourier's Law of Conduction

- $\dot{Q} = -kA\frac{dT}{dx}$, where
- \dot{Q} = rate of heat transfer (W)
- $k = \text{the thermal conductivity } [W/(m \cdot K)]$
- A = the surface area perpendicular to direction of heat transfer (m^2)

Convection

Newton's Law of Cooling

$$\dot{Q} = hA(T_w - T_\infty)$$
, where

- h = the convection heat transfer coefficient of the fluid $[W/(m^2 \cdot K)]$
- A = the convection surface area (m²)
- T_w = the wall surface temperature (K)
- $T_{\infty}^{''}$ = the bulk fluid temperature (K)

Radiation

The radiation emitted by a body is given by

 $\dot{O} = \varepsilon \sigma A T^4$, where

 ε = the emissivity of the body

 σ = the Stefan-Boltzmann constant

 $= 5.67 \times 10^{-8} \text{ W/(m^2 \cdot K^4)}$

A = the body surface area (m²)

T = the absolute temperature (K)

CONDUCTION

Conduction Through a Plane Wall

$$\dot{Q} = \frac{-kA(T_2 - T_1)}{L}$$
, where

A = wall surface area normal to heat flow (m²)

L = wall thickness (m)

- T_1 = temperature of one surface of the wall (K) T_2 = temperature of the other surface of the wall (K)

Conduction Through a Cylindrical Wall

Cylinder (Length = L)

$$\dot{Q} = \frac{2\pi kL(T_1 - T_2)}{\ln\left(\frac{r_2}{r_1}\right)}$$

Critical Insulation Radius

Thermal Resistance (R)

$$\dot{Q} = \frac{\Delta T}{R_{total}}$$

Resistances in series are added: $R_{total} = \Sigma R$, where

Plane Wall Conduction Resistance (K/W): $R = \frac{L}{kd}$, where L = wall thickness

Cylindrical Wall Conduction Resistance (K/W): $R = \frac{\ln(\frac{r_2}{r_1})}{2\pi k I}$, where where L = cylinder length

Convection Resistance (K/W) : $R = \frac{1}{hA}$

Composite Plane Wall

To evaluate Surface or Intermediate Temperatures:

$$\dot{Q} = \frac{T_1 - T_2}{R_A} = \frac{T_2 - T_3}{R_B}$$

Steady Conduction with Internal Energy Generation

The equation for one-dimensional steady conduction is

$$\frac{d^2T}{dx^2} + \frac{Q_{gen}}{k} = 0, \text{ where }$$

 \dot{Q}_{gen} = the heat generation rate per unit volume (W/m³)

For a Plane Wall

$$T(x) = \frac{\dot{Q}_{gen}L^2}{2k} \left(1 - \frac{x^2}{L^2}\right) + \left(\frac{T_{s2} - T_{s1}}{2}\right) \left(\frac{x}{L}\right) + \left(\frac{T_{s1} - T_{s2}}{2}\right)$$
$$\dot{Q}_1^{"} + \dot{Q}_2^{"} = 2\dot{Q}_{gen}L, \text{ where}$$

 $\dot{Q}^{"}$ = the rate of heat transfer per area (heat flux) (W/m²)

 $\dot{Q}_1^{"} = k \left(\frac{dT}{dx}\right)_{-L}$ and $\dot{Q}_2^{"} = k \left(\frac{dT}{dx}\right)_{L}$

For a Long Circular Cylinder

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) + \frac{Q_{gen}}{k} = 0$$
$$T(r) = \frac{\dot{Q}_{gen}r_0^2}{4k}\left(1 - \frac{r^2}{r_0^2}\right) + T_s$$
$$\dot{Q}' = \pi r_0^2 \dot{Q}_{gen}, \text{ where}$$

 \dot{Q}' = the heat transfer rate from the cylinder per unit length of the cylinder (W/m)

<u>Transient Conduction Using the Lumped Capacitance</u> <u>Method</u>

The lumped capacitance method is valid if

Biot number, Bi =
$$\frac{hV}{kA_s} \ll 1$$
, where

- h = the convection heat transfer coefficient of the fluid [W/(m²•K)]
- V = the volume of the body (m³)
- $k = \text{thermal conductivity of the body } [W/(m \cdot K)]$
- A_s = the surface area of the body (m²)

Constant Fluid Temperature

If the temperature may be considered uniform within the body at any time, the heat transfer rate at the body surface is given by

$$\dot{Q} = hA_s(T - T_\infty) = -\rho V(c_P) \left(\frac{dT}{dt}\right)$$
, where

T =the body temperature (K)

 T_{∞} = the fluid temperature (K)

 ρ = the density of the body (kg/m³)

 c_P = the heat capacity of the body [J/(kg•K)]

t = time (s)

The temperature variation of the body with time is

$$T - T_{\infty} = (T_i - T_{\infty})e^{-\beta t}, \text{ where}$$

$$\beta = \frac{hA_s}{\rho V c_P} \qquad \text{where } \beta = \frac{1}{\tau} \text{ and}$$

$$\tau = \text{time constant } (s)$$

The total heat transferred (Q_{total}) up to time t is

$$Q_{total} = \rho V c_P (T_i - T)$$
, where

 T_i = initial body temperature (K)

Variable Fluid Temperature

If the ambient fluid temperature varies periodically according to the equation

$$T_{\infty} = T_{\infty, mean} + \frac{1}{2} (T_{\infty, \max} - T_{\infty, \min}) \cos(\omega t)$$

The temperature of the body, after initial transients have died away, is

$$T = \frac{\beta \left[\frac{1}{2} \left(T_{\infty, \max} - T_{\infty, \min} \right) \right]}{\sqrt{\omega^2 + \beta^2}} \cos \left[\omega t - \tan^{-1} \left(\frac{\omega}{\beta} \right) \right] + T_{\infty, mean}$$

Fins

For a straight fin with uniform cross section (assuming negligible heat transfer from tip),

$$\dot{Q} = \sqrt{hPkA_c} (T_b - T_\infty) \tanh(mL_c)$$
, where

- = the convection heat transfer coefficient of the fluid h $[W/(m^2 \cdot K)]$
- Р = perimeter of exposed fin cross section (m)
- k = fin thermal conductivity $[W/(m \cdot K)]$
- $A_c = \text{fin cross-sectional area } (\text{m}^2)$
- T_b = temperature at base of fin (K) T_{∞} = fluid temperature (K)

$$m = \sqrt{\frac{hP}{kA_c}}$$

$$L_c = L + \frac{A_c}{P}, \text{ corrected length of fin (m)}$$

Rectangular Fin

Pin Fin

CONVECTION

Terms

- D = diameter(m)
- ħ = average convection heat transfer coefficient of the fluid $[W/(m^2 \cdot K)]$

$$L = \text{length}(m)$$

Nu = average Nusselt number

Pr = Prandtl number =
$$\frac{c_P!}{k}$$

= mean velocity of fluid (m/s) u_m

- u_{∞} = free stream velocity of fluid (m/s)
- μ = dynamic viscosity of fluid [kg/(s•m)]
- ρ = density of fluid (kg/m³)

External Flow

In all cases, evaluate fluid properties at average temperature between that of the body and that of the flowing fluid.

Flat Plate of Length L in Parallel Flow

$$\begin{aligned} \operatorname{Re}_{L} &= \frac{\rho u_{\infty} L}{\mu} \\ \overline{Nu}_{L} &= \frac{\overline{h}L}{k} = 0.6640 \operatorname{Re}_{L}^{1/2} \operatorname{Pr}^{1/3} \qquad \left(\operatorname{Re}_{L} < 10^{5}\right) \\ \overline{Nu}_{L} &= \frac{\overline{h}L}{k} = 0.0366 \operatorname{Re}_{L}^{0.8} \operatorname{Pr}^{1/3} \qquad \left(\operatorname{Re}_{L} > 10^{5}\right) \end{aligned}$$

Cylinder of Diameter D in Cross Flow

$$\operatorname{Re}_{D} = \frac{\rho u_{\infty} D}{\mu}$$
$$\overline{Nu}_{D} = \frac{\overline{h}D}{k} = C \operatorname{Re}_{D}^{n} \operatorname{Pr}^{1/3}, \text{ where}$$

Re _D	С	п
1 - 4	0.989	0.330
4 - 40	0.911	0.385
40 - 4,000	0.683	0.466
4,000 - 40,000	0.193	0.618
40,000 - 250,000	0.0266	0.805

Flow Over a Sphere of Diameter, D

$$\overline{Nu}_D = \frac{\overline{h}D}{k} = 2.0 + 0.60 \operatorname{Re}_D^{1/2} \operatorname{Pr}^{1/3},$$

$$(1 < \text{Re}_D < 70,000; 0.6 < \text{Pr} < 400)$$

Internal Flow

$$\operatorname{Re}_D = \frac{\rho u_m D}{\mu}$$

Laminar Flow in Circular Tubes

For laminar flow ($\text{Re}_D < 2300$), fully developed conditions

 $Nu_D = 3.66$ (constant surface temperature) For laminar flow ($\text{Re}_D < 2300$), combined entry length with constant surface temperature

$$Nu_D = 1.86 \left(\frac{\text{Re}_D \text{Pr}}{\frac{L}{D}}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$
, where

L = length of tube (m)

D =tube diameter (m)

- μ_b = dynamic viscosity of fluid [kg/(s•m)] at bulk temperature of fluid, T_b
- μ_s = dynamic viscosity of fluid [kg/(s•m)] at inside surface temperature of the tube, T_s

Turbulent Flow in Circular Tubes

For turbulent flow ($\text{Re}_D > 10^4$, Pr > 0.7) for either uniform surface temperature or uniform heat flux condition, Sieder-Tate equation offers good approximation:

$$Nu_D = 0.027 \operatorname{Re}_D^{0.8} \operatorname{Pr}^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$

Non-Circular Ducts

In place of the diameter, D, use the equivalent (hydraulic) diameter (D_H) defined as

$$D_H = \frac{4 \times \text{cross} - \text{sectional area}}{\text{wetted perimeter}}$$

<u>Circular Annulus $(D_o > D_i)$ </u>

In place of the diameter, \dot{D} , use the equivalent (hydraulic) diameter (D_H) defined as

 $D_H = D_o - D_i$

Liquid Metals (0.003 < Pr < 0.05)

 $Nu_D = 6.3 + 0.0167 \operatorname{Re}_D^{0.85} \operatorname{Pr}^{0.93}$ (uniform heat flux)

 $Nu_D = 7.0 + 0.025 \operatorname{Re}_D^{0.8} \operatorname{Pr}^{0.8}$ (constant wall temperature)

Condensation of a Pure Vapor

On a Vertical Surface

$$\overline{Nu}_{L} = \frac{\overline{hL}}{k} = 0.943 \left[\frac{\rho_{l}^{2} g h_{fg} L^{3}}{\mu_{l} k_{l} (T_{sat} - T_{s})} \right]^{0.25}, \text{ where}$$

- ρ_I = density of liquid phase of fluid (kg/m³)
- g = gravitational acceleration (9.81 m/s²)

 $h_{f\sigma}$ = latent heat of vaporization [J/kg]

- L =length of surface [m]
- μ_l = dynamic viscosity of liquid phase of fluid [kg/(s•m)]
- k_l = thermal conductivity of liquid phase of fluid [W/(m•K)]
- T_{sat} = saturation temperature of fluid [K]
- T_s = temperature of vertical surface [K]

Note: Evaluate all liquid properties at the average temperature between the saturated temperature, T_{sat} , and the surface temperature, T_s .

Outside Horizontal Tubes

$$\overline{Nu}_D = \frac{\overline{h}D}{k} = 0.729 \left[\frac{\rho_l^2 g h_{fg} D^3}{\mu_l k_l (T_{sat} - T_s)} \right]^{0.25}, \text{ where}$$

D = tube outside diameter (m)

Note: Evaluate all liquid properties at the average temperature between the saturated temperature, T_{sat} , and the surface temperature, T_s .

Natural (Free) Convection

<u>Vertical Flat Plate in Large Body of Stationary Fluid</u> Equation also can apply to vertical cylinder of sufficiently large diameter in large body of stationary fluid.

$$\bar{h} = C\left(\frac{k}{L}\right)Ra_L^n$$
, where

L = the length of the plate (cylinder) in the vertical direction

 $\operatorname{Ra}_{L} = \operatorname{Rayleigh} \operatorname{Number} = \frac{g\beta(T_{s} - T_{\infty})L^{3}}{v^{2}}\operatorname{Pr}$

- T_s = surface temperature (K)
- T_{∞} = fluid temperature (K)

$$B = \text{coefficient of thermal expansion } (1/K)$$

(For an ideal gas: $\beta = \frac{2}{T_s + T_{\infty}}$ with *T* in absolute temperature)

 $v = \text{kinematic viscosity } (m^2/s)$

Range of Ra_L	С	п
$10^4 - 10^9$	0.59	1/4
$10^9 - 10^{13}$	0.10	1/3

Long Horizontal Cylinder in Large Body of Stationary Fluid

$$= C\left(\frac{k}{D}\right) \operatorname{Ra}_{D}^{n}$$
, where

$$\mathrm{Ra}_{D} = \frac{g\beta(T_{s} - T_{\infty})D^{3}}{v^{2}}\mathrm{Pr}$$

Ra _D	С	n
$10^{-3} - 10^{2}$	1.02	0.148
$10^2 - 10^4$	0.850	0.188
$10^4 - 10^7$	0.480	0.250
$10^7 - 10^{12}$	0.125	0.333

Heat Exchangers

A

F

h

The rate of heat transfer in a heat exchanger is

$$\dot{Q} = UAF\Delta T_{lm}$$
, where

- = any convenient reference area (m^2)
- = heat exchanger configuration correction factor (F = 1 if temperature change of one fluid is negligible)
- U = overall heat transfer coefficient based on area A and the log mean temperature difference [W/(m²•K)]

 ΔT_{lm} = log mean temperature difference (K)

Heat Exchangers (cont.)

Overall Heat Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers

$$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{R_{fi}}{A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi kL} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}, \text{ where}$$

(-)

 A_i = inside area of tubes (m²)

- A_o = outside area of tubes (m²)
- D_i = inside diameter of tubes (m)
- D_o = outside diameter of tubes (m)
- h_i = convection heat transfer coefficient for inside of tubes [W/(m²•K)]
- $h_o = \text{convection heat transfer coefficient for outside of tubes} [W/(m^2 \cdot K)]$
- $k = \text{thermal conductivity of tube material } [W/(m \cdot K)]$
- R_{fi} = fouling factor for inside of tube [(m²•K)/W]
- R_{fo} = fouling factor for outside of tube [(m²•K)/W]

Log Mean Temperature Difference (LMTD)

For *counterflow* in tubular heat exchangers

$$\Delta T_{lm} = \frac{(T_{Ho} - T_{Ci}) - (T_{Hi} - T_{Co})}{\ln\left(\frac{T_{Ho} - T_{Ci}}{T_{Hi} - T_{Co}}\right)}$$

For parallel flow in tubular heat exchangers

$$\Delta T_{lm} = \frac{(T_{Ho} - T_{Co}) - (T_{Hi} - T_{Ci})}{\ln\left(\frac{T_{Ho} - T_{Co}}{T_{Hi} - T_{Ci}}\right)}, \text{ where }$$

 $\Delta T_{lm} = \log \text{ mean temperature difference (K)}$

 T_{Hi} = inlet temperature of the hot fluid (K)

 T_{Ho} = outlet temperature of the hot fluid (K)

 T_{Ci} = inlet temperature of the cold fluid (K)

 T_{Co} = outlet temperature of the cold fluid (K)

Heat Exchanger Effectiveness, E

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{\text{actual heat transfer rate}}{\text{maximum possible heat transfer rate}}$$

$$\varepsilon = \frac{C_H (T_{Hi} - T_{Ho})}{C_{\min} (T_{Hi} - T_{Ci})} \quad \text{or} \quad \varepsilon = \frac{C_C (T_{Co} - T_{Ci})}{C_{\min} (T_{Hi} - T_{Ci})}$$

where

 $C = \dot{m}c_P$ = heat capacity rate (W/K)

$$C_{\min}$$
 = smaller of C_C or C_H

Number of Transfer Units (NTU)

$$NTU = \frac{UA}{C_{\min}}$$

Effectiveness-NTU Relations

$$C_r = \frac{C_{\min}}{C_{\max}}$$
 = heat capacity ratio

For parallel flow concentric tube heat exchanger

$$\varepsilon = \frac{1 - \exp\left[-NTU(1 + C_r)\right]}{1 + C_r}$$
$$NTU = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$$

For counterflow concentric tube heat exchanger

$$\varepsilon = \frac{1 - \exp\left[-NTU(1 - C_r)\right]}{1 - C_r \exp\left[-NTU(1 - C_r)\right]} \qquad (C_r < 1)$$

$$\varepsilon = \frac{NTU}{1 + NTU} \qquad (C_r = 1)$$

$$NTU = \frac{1}{C_r - 1} \ln\left(\frac{\varepsilon - 1}{\varepsilon C_r - 1}\right) \qquad (C_r < 1)$$

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1)$$

RADIATION

Types of Bodies

For any body, $\alpha + \rho + \tau = 1$, where

 α = absorptivity (ratio of energy absorbed to incident energy)

- ρ = reflectivity (ratio of energy reflected to incident energy)
- τ = transmissivity (ratio of energy transmitted to incident energy)

<u>Opaque Body</u> For an opaque body: $\alpha + \rho = 1$

Gray Body

A gray body is one for which

$$\alpha = \varepsilon$$
, (0 < α < 1; 0 < ε < 1), where

 ε = the emissivity of the body

For a gray body: $\varepsilon + \rho = 1$

Real bodies are frequently approximated as gray bodies.

Black body

A black body is defined as one which absorbs all energy incident upon it. It also emits radiation at the maximum rate for a body of a particular size at a particular temperature. For such a body

$$\alpha = \epsilon = 1$$

Shape Factor (View Factor, Configuration Factor) Relations

Reciprocity Relations

 $A_i F_{ii} = A_i F_{ii}$, where

$$A_i = \text{surface area} (m^2) \text{ of surface } i$$

 $F_{ij}^{'}$ = shape factor (view factor, configuration factor); fraction of the radiation leaving surface *i* that is intercepted by surface *j*; $0 \le F_{ii} \le 1$

Summation Rule for N Surfaces

$$\sum_{j=1}^{N} F_{ij} = 1$$

Net Energy Exchange by Radiation between Two Bodies Body Small Compared to its Surroundings

$$\dot{Q}_{12} = \varepsilon \sigma A \left(T_1^4 - T_2^4 \right)$$
, where

- \dot{Q}_{12} = the net heat transfer rate from the body (W)
- ϵ = the emissivity of the body
- σ = the Stefan-Boltzmann constant [$\sigma = 5.67 \times 10^{-8} \text{ W/(m^2 \cdot K^4)}$]
- A =the body surface area (m²)
- T_1 = the absolute temperature [K] of the body surface
- T_2 = the absolute temperature [K] of the surroundings

Net Energy Exchange by Radiation between Two Black Bodies

The net energy exchange by radiation between two black bodies that see each other is given by

$$\dot{Q}_{12} = A_1 F_{12} \sigma \left(T_1^4 - T_2^4 \right)$$

<u>Net Energy Exchange by Radiation between Two Diffuse-</u> <u>Gray Surfaces that Form an Enclosure</u>

Generalized Cases

One-Dimensional Geometry with Thin Low-Emissivity Shield Inserted between Two Parallel Plates

$$\dot{Q}_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{13}} + \frac{1 - \varepsilon_{3,1}}{\varepsilon_{3,1} A_3} + \frac{1 - \varepsilon_{3,2}}{\varepsilon_{3,2} A_3} + \frac{1}{A_3 F_{32}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

Reradiating Surface

Reradiating Surfaces are considered to be insulated or adiabatic $(\dot{Q}_R = 0)$.

$$\dot{Q}_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12} + \left[\left(\frac{1}{A_1 F_{1R}}\right) + \left(\frac{1}{A_2 F_{2R}}\right)\right]^{-1}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}{\frac{1}{\varepsilon_2 A_2}}$$