PREVIOUS YEARS SOLVED PAPERS

MECHANICAL ENGINEERING

2001-2012
Shop Online From
www.nodia.co.in

Exclusive Sales Counter \& BO:
 NODIA \& COMPANY

55, Suryalok Complex, Gunfoundry, Abids, Hyderabad - 500001.
Phone: 040-64582577

No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author.

Previous Year Solved Papers

GATE

Mechanical Engineering

First June 2012

Copyright © 2012 by Publishers

Information contained in this book has been obtained by author, from sources believes to be reliable. However, neither Nodia \& Company nor its author guarantee the accuracy or completeness of any information herein, and neither Nodia \& Company nor its author shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that Nodia \& Company and its author are supplying

ISBN : 9788192276250

MRP 340.00

NODIA \& COMPANY

B-8, Dhanshree Tower - Ist, Central Spine, Vidyadhar Nagar, Jaipur - 302023
Ph: 0141-2101150.
www.nodia.co.in
email : enquiry@nodia.co.in

AVAILABLE NOW

GATE MCQ

MECHANICAL ENGINEERING

In 3 Volume

Download Sample Chapter and Purcahse Online from www.nodia.co.in

GATE ENGINEERING MATHEMATICS

MRP 400.00

FEATURES:

- Includes Every Problem From Previous GATE Paper of Every Branch.
- Extremely Useful for Exam Oriented Preparation in Short Time.
- Every Problem has full Solution.

> CONTENTS
UNIT 1 LINEAR ALGEBRA 1
1.1 Matrix Algebra 3
1.2 Systems of Linear Equations 41
1.3 Eigenvalues and Eigenvectors 61
UNIT 2 CALCULUS 87
2.1 Limit, Continuity and Differentiability 89
2.2 Maxima and Minima 112
2.3 Mean Value Theorems 136
2.4 Partial Derivatives 151
2.5 Definite Integral 173
2.6 Directional Derivatives 212
UNIT 3 DIFFERENTIAL EQUATIONS 233
3.1 First Order Differential Equation 235
3.2 Higher Order Differential Equations 264
3.3 Initial and boundary Value Problems 292
3.4 Partial Differential Equation 310
UNIT 4 COMPLEX VARIABLES 319
4.1 Analytic Functions 321
4.2 Cauchy's Integral Theorem 344
4.3 Taylor's and Laurent' series 360
UNIT 5 PROBABILITY AND STATISTICS 379
5.1 Probability 381
5.2 Statistics 402
5.3 Correlation and Regression Analysis 422
UNIT 6 NUMERICAL METHODS 433
6.1 Solutions of non-linear Algebraic Equations 435
6.2 Integration by Trapezoidal and Simpson's Rule 456
6.3 Single and Multi-step Methods for Differential Equations 466
Answer Key

SYLLABUS

ENGINEERING MATHEMATICS

Linear Algebra:

Matrix algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus:

Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative,Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems.

Differential equations:

First order equations (linear and nonlinear), Higher order linear differential equationswith constant coefficients, Cauchy's and Euler's equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

Complex variables:

Analytic functions, Cauchy's integral theorem, Taylor and Laurent series.
Probability and Statistics:
Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.

Numerical Methods:

Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simpson's rule, single and multi-step methods for differential equations.

APPLIED MECHANICS AND DESIGN

Engineering Mechanics:

Free body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion, including impulse and momentum (linear and angular) and energy formulations; impact.

Strength of Materials:

Stress and strain, stress-strain relationship and elastic constants, Mohr's circle for plane stress and plane strain, thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler's theory of columns; strain energy methods; thermal stresses.

Theory of Machines:

Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of slider-crank mechanism; gear trains; flywheels.

Vibrations:

Free and forced vibration of single degree of freedom systems; effect of damping; vibration isolation; resonance, critical speeds of shafts.

Design:

Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints, shafts, spur gears, rolling and sliding contact bearings, brakes and clutches.

FLUID MECHANICS AND THERMAL SCIENCES

Fluid Mechanics:

Fluid properties; fluid statics, manometry, buoyancy; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc.

Heat-Transfer:

Modes of heat transfer; one dimensional heat conduction, resistance concept, electrical analogy, unsteady heat conduction, fins; dimensionless parameters in free and forced convective heat transfer, various correlations for heat transfer in flow over flat plates and through pipes; thermal boundary layer; effect of turbulence; radiative heat transfer, black and grey surfaces, shape factors, network analysis; heat exchanger performance, LMTD and NTU methods.

Thermodynamics:

Zeroth, First and Second laws of thermodynamics; thermodynamic system and processes; Carnot cycle. irreversibility and availability; behaviour of ideal and real gases, properties of pure substances, calculation of work and heat in ideal processes; analysis of thermodynamic cycles related to energy conversion.

Applications:

Power Engineering: Steam Tables, Rankine, Brayton cycles with regeneration and reheat. I.C. Engines: air-standard Otto, Diesel cycles. Refrigeration and air-conditioning: Vapour refrigeration cycle, heat pumps, gas refrigeration, Reverse Brayton cycle; moist air: psychrometric chart, basic psychrometric processes. Turbomachinery: Peltonwheel,Francis and Kaplan turbines-impulse and reaction principles, velocity diagrams.

MANUFACTURING AND INDUSTRIAL ENGINEERING

Engineering Materials :

Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials.

Metal Casting:

Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

Forming:

Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy.

Joining:

Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

Machining and Machine Tool Operations:

Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures

Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning.

Inventory Control:

Deterministic and probabilistic models; safety stock inventory control systems.

Operations Research:

Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

GENERAL APTITUDE (GA)

Verbal Ability:

English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.

Numerical Ability:

Numerical computation, numerical estimation, numerical reasoning and data interpretation.

CONTENTS

UNIT 1 ENGINEERING MATHEMATICS $1-70$
UNIT 2 ENGINEERING MECHANICS 71-100
UNIT 3 STRENGTH OF MATERIALS 101-154
UNIT 4 THEORY OF MACHINES 155-212
UNIT 5 MACHINE DESIGN 213-246
UNIT 6 FLUID MECHANICS 247-302
UNIT 7 HEAT TRANSFER 303-342
UNIT 8 THERMODYNAMICS 343-406
UNIT 9 REFRIGERATION \& AIR-CONDITIONING 407-426
UNIT 10 MANUFACTURING ENGINEERING 427-510
UNIT 11 INDUSTRIAL ENGINEERING 511-564
UNIT 12 GENERAL APTITUDE 565-580

CHAPTER 1

ENGINEERING MATHEMATICS

YEAR 2012
ONE MARK
MCQ 1.1 The area enclosed between the straight line $y=x$ and the parabola $y=x^{2}$ in the $x-y$ plane is
(A) $1 / 6$
(B) $1 / 4$
(C) $1 / 3$
(D) $1 / 2$

MCQ 1.2 Consider the function $f(x)=|x|$ in the interval $-1 \leq x \leq 1$. At the point $x=0, f(x)$ is
(A) continuous and differentiable
(B) non-continuous and differentiable
(C) continuous and non-differentiable
(D) neither continuous nor differentiable

MCQ 1.3 $\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)$ is
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

MCQ 1.4 At $x=0$, the function $f(x)=x^{3}+1$ has
(A) a maximum value
(B) a minimum value
(C) a singularity
(D) a point of inflection

MCQ 1.5 For the spherical surface $x^{2}+y^{2}+z^{2}=1$, the unit outward normal vector at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is given by
(A) $\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}$
(B) $\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j}$
(C) \mathbf{k}
(D) $\frac{1}{\sqrt{3}} \mathbf{i}+\frac{1}{\sqrt{3}} \mathbf{j}+\frac{1}{\sqrt{3}} \mathbf{k}$

MCQ 1.6 The inverse Laplace transform of the function $F(s)=\frac{1}{s(s+1)}$ is given by
(A) $f(t)=\sin t$
(B) $f(t)=e^{-t} \sin t$
(C) $f(t)=e^{-t}$
(D) $f(t)=1-e^{-t}$

MCQ 1.7 For the matrix $\mathbf{A}=\left[\begin{array}{ll}5 & 3 \\ 1 & 3\end{array}\right]$, ONE of the normalized eigen vectors given as
(A) $\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$
(B) $\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}$
(C) $\binom{\frac{3}{\sqrt{10}}}{\frac{-1}{\sqrt{10}}}$
(D) $\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}$

MCQ 1.8 A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. The probability that the selected set contains one red ball and two black balls is
(A) $1 / 20$
(B) $1 / 12$
(C) $3 / 10$
(D) $1 / 2$

MCQ 1.9 Consider the differential equation $x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)-4 y=0$ with the boundary conditions of $y(0)=0$ and $y(1)=1$. The complete solution of the differential equation is
(A) x^{2}
(B) $\sin \left(\frac{\pi x}{2}\right)$
(C) $\mathrm{e}^{\mathrm{x}} \sin \left(\frac{\pi x}{2}\right)$
(D) $\mathrm{e}^{-\mathrm{x}} \sin \left(\frac{\pi \mathrm{x}}{2}\right)$

MCQ 1.10

$$
\begin{array}{r}
x+2 y+z=4 \\
2 x+y+2 z=5 \\
x-y+z=1
\end{array}
$$

The system of algebraic equations given above has
(A) a unique solution of $x=1, y=1$ and $z=1$.
(B) only the two solutions of $(x=1, y=1, z=1)$ and $(x=2, y=1, z=0)$
(C) infinite number of solutions
(D) no feasible solution

MCQ 1.11 A series expansion for the function $\sin \theta$ is
(A) $1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots$
(B) $\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\ldots$
(C) $1+\theta+\frac{\theta^{2}}{2!}+\frac{\theta^{3}}{3!}+\ldots$
(D) $\theta+\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots$

MCQ 1.12 What is $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$ equal to ?
(A) θ
(B) $\sin \theta$
(C) 0
(D) 1

MCQ 1.13 Eigen values of a real symmetric matrix are always
(A) positive
(B) negative
(C) real
(D) complex

MCQ 1.14 The product of two complex numbers $1+i$ and $2-5 i$ is
(A) $7-3 i$
(B) $3-4 i$
(C) $-3-4 i$
(D) $7+3 i$

MCQ 1.15 If $f(x)$ is an even function and a is a positive real number, then $\int_{-a}^{a} f(x) d x$ equals
(A) 0
(B) a
(C) 2 a
(D) $2 \int_{0}^{a} f(x) d x$

YEAR 2011
TWO MARKS
MCQ 1.16 The integral $\int_{1}^{3} \frac{1}{x} d x$, when evaluated by using Simpson's $1 / 3$ rule on two equal sub-intervals each of length 1 , equals
(A) 1.000
(B) 1.098
(C) 1.111
(D) 1.120

MCQ 1.17 Consider the differential equation $\frac{d y}{d x}=\left(1+y^{2}\right) x$. The general solution with constant c is
(A) $y=\tan \frac{x^{2}}{2}+\tan c$
(B) $y=\tan ^{2}\left(\frac{x}{2}+c\right)$
(C) $y=\tan ^{2}\left(\frac{x}{2}\right)+c$
(D) $y=\tan \left(\frac{x^{2}}{2}+c\right)$

MCQ 1.18 An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting at least one head is
(A) $\frac{1}{32}$
(B) $\frac{13}{32}$
(C) $\frac{16}{32}$
(D) $\frac{31}{32}$

MCQ 1.19 Consider the following system of equations

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =0 \\
x_{1}+x_{2} & =0
\end{aligned}
$$

This system has
(A) a unique solution
(B) no solution
(C) infinite number of solutions
(D) five solutions

YEAR 2010
ONE MARK
MCQ 1.20 The parabolic arc $y=\sqrt{x}, 1 \leq x \leq 2$ is revolved around the x-axis. The volume of the solid of revolution is
(A) $\pi / 4$
(B) $\pi / 2$
(C) $3 \pi / 4$
(D) $3 \pi / 2$

MCQ 1.21 The Blasius equation, $\frac{d^{3} f}{d \eta^{3}}+\frac{f}{2} \frac{d^{2} f}{d \eta^{2}}=0$, is a
(A) second order nonlinear ordinary differential equation
(B) third order nonlinear ordinary differential equation
(C) third order linear ordinary differential equation
(D) mixed order nonlinear ordinary differential equation

MCQ 1.22 The value of the integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is
(A) $-\pi$
(B) $-\pi / 2$
(C) $\pi / 2$
(D) π

MCQ 1.23 The modulus of the complex number $\left(\frac{3+4 i}{1-2 i}\right)$ is
(A) 5
(B) $\sqrt{5}$
(C) $1 / \sqrt{5}$
(D) $1 / 5$

MCQ 1.24 The function $y=\mid 2-3 x$
(A) is continuous $\forall x \in R$ and differentiable $\forall x \in R$
(B) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x=3 / 2$
(C) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x=2 / 3$
(D) is continuous $\forall x \in R$ except $x=3$ and differentiable $\forall x \in R$

MCQ 1.25 One of the eigen vectors of the matrix $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ is
(A) $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(B) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{l}4 \\ 1\end{array}\right]$
(D) $\left[\begin{array}{r}1 \\ -1\end{array}\right]$

MCQ 1.26 The Laplace transform of a function $f(t)$ is $\frac{1}{s^{2}(s+1)}$. The function $f(t)$ is
(A) $\mathrm{t}-1+\mathrm{e}^{-\mathrm{t}}$
(B) $\mathrm{t}+1+\mathrm{e}^{-\mathrm{t}}$
(C) $-1+\mathrm{e}^{-\mathrm{t}}$
(D) $2 t+e^{t}$

MCQ 1.27 A box contains 2 washers, 3 nuts and 4 bolts. Items are drawn from the box at random one at a time without replacement. The probability of drawing 2 washers first followed by 3 nuts and subsequently the 4 bolts is
(A) $2 / 315$
(B) $1 / 630$
(C) $1 / 1260$
(D) $1 / 2520$

MCQ 1.28 Torque exerted on a flywheel over a cycle is listed in the table. Flywheel energy (in J per unit cycle) using Simpson's rule is

Angle (Degree)	0	60°	120°	180°	240°	300°	360°
Torque (N-m)	0	1066	-323	0	323	-355	0

(A) 542
(B) 993
(C) 1444
(D) 1986

YEAR 2009

ONE MARK
MCQ 1.29 For a matrix $[M]=\left[\begin{array}{rr}3 / 5 & 4 / 5 \\ x & 3 / 5\end{array}\right]$, the transpose of the matrix is equal to the inverse of the matrix, $[M]^{\top}=[M]^{-1}$. The value of x is given by
(A) $-\frac{4}{5}$
(B) $-\frac{3}{5}$
(C) $\frac{3}{5}$
(D) $\frac{4}{5}$

MCQ 1.30 The divergence of the vector field $3 x z \mathbf{i}+2 x y \mathbf{j}-y^{2} \mathbf{k}$ at a point $(1,1,1)$ is equal to
(A) 7
(B) 4
(C) 3
(D) 0

MCQ 1.31 The inverse Laplace transform of $1 /\left(s^{2}+s\right)$ is
(A) $1+\mathrm{e}^{\mathrm{t}}$
(B) $1-\mathrm{e}^{\mathrm{t}}$
(C) $1-\mathrm{e}^{-\mathrm{t}}$
(D) $1+\mathrm{e}^{-\mathrm{t}}$

MCQ 1.32 If three coins are tossed simultaneously, the probability of getting at least one head is
(A) $1 / 8$
(B) $3 / 8$
(C) $1 / 2$
(D) $7 / 8$

MCQ 1.33 An analytic function of a complex variable $z=x+i y$ is expressed as $f(z)=u(x, y)+i v(x, y)$ where $i=\sqrt{-1}$. If $u=x y$, the expression for v should be
(A) $\frac{(x+y)^{2}}{2}+k$
(B) $\frac{x^{2}-y^{2}}{2}+k$
(C) $\frac{y^{2}-x^{2}}{2}+k$
(D) $\frac{(x-y)^{2}}{2}+k$

MCQ 1.34 The solution of $x \frac{d y}{d x}+y=x^{4}$ with the condition $y(1)=\frac{6}{5}$ is
(A) $y=\frac{x^{4}}{5}+\frac{1}{x}$
(B) $y=\frac{4 x^{4}}{5}+\frac{4}{5 x}$
(C) $y=\frac{x^{4}}{5}+1$
(D) $y=\frac{x^{5}}{5}+1$

MCQ 1.35 A path $A B$ in the form of one quarter of a circle of unit radius is shown in the figure. Integration of $(x+y)^{2}$ on path $A B$ traversed in a counterclockwise sense is

(A) $\frac{\pi}{2}-1$
(B) $\frac{\pi}{2}+1$
(C) $\frac{\pi}{2}$
(D) 1

MCQ 1.36 The distance between the origin and the point nearest to it on the surface $z^{2}=1+x y$ is
(A) 1
(B) $\frac{\sqrt{3}}{2}$
(C) $\sqrt{3}$
(D) 2

MCQ 1.37 The area enclosed between the curves $y^{2}=4 x$ and $x^{2}=4 y$ is
(A) $\frac{16}{3}$
(B) 8
(C) $\frac{32}{3}$
(D) 16

MCQ 1.38 The standard deviation of a uniformly distributed random variable between 0 and 1 is
(A) $\frac{1}{\sqrt{12}}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{5}{\sqrt{12}}$
(D) $\frac{7}{\sqrt{12}}$

YEAR 2008 ONE MARK

MCQ 1.39 In the Taylor series expansion of e^{x} about $\mathrm{x}=2$, the coefficient of $(\mathrm{x}-2)^{4}$ is
(A) $1 / 4$!
(B) $2^{4} / 4$!
(C) $\mathrm{e}^{2} / 4$!
(D) $e^{4} / 4$!

MCQ 1.40 Given that $\ddot{x}+3 x=0$, and $x(0)=1, \dot{x}(0)=0$, what is $x(1)$?
(A) -0.99
(B) -0.16
(C) 0.16
(D) 0.99

MCQ 1.41 The value of $\lim _{x \rightarrow 8} \frac{x^{1 / 3}-2}{(x-8)}$
(A) $\frac{1}{16}$
(B) $\frac{1}{12}$
(C) $\frac{1}{8}$
(D) $\frac{1}{4}$

MCQ 1.42 A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
(A) $\frac{1}{4}$
(B) $\frac{3}{8}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$

MCQ 1.43 The matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 0 & 6 \\ 1 & 1 & p\end{array}\right]$ has one eigen value equal to 3 . The sum of the other two eigen value is
(A) p
(B) $p-1$
(C) $p-2$
(D) $\mathrm{p}-3$

MCQ 1.44 The divergence of the vector field $(x-y) \mathbf{i}+(y-x) \mathbf{j}+(x+y+z) \mathbf{k}$ is
(A) 0
(B) 1
(C) 2
(D) 3

YEAR 2008
TWO MARKS
MCQ 1.45 Consider the shaded triangular region P shown in the figure. W hat is $\iint_{p} x y d x d y$?

(A) $\frac{1}{6}$
(B) $\frac{2}{9}$
(C) $\frac{7}{16}$
(D) 1

MCQ 1.46 The directional derivative of the scalar function $f(x, y, z)=x^{2}+2 y^{2}+z$ at the point $P=(1,1,2)$ in the direction of the vector $\mathbf{a}=3 \mathbf{i}-4 \mathbf{j}$ is
(A) -4
(B) -2
(C) -1
(D) 1

MCQ 1.47 For what value of a, if any will the following system of equation in x, y and z have a solution?

$$
\begin{aligned}
& 2 x+3 y=4 \\
& x+y+z=4 \\
& 3 x+2 y-z=a
\end{aligned}
$$

(A) Any real number
(B) 0
(C) 1
(D) There is no such value

MCQ 1.48 W hich of the following integrals is unbounded ?
(A) $\int_{0}^{\pi / 4} \tan x d x$
(B) $\int_{0}^{\infty} \frac{1}{x^{2}+1} d x$
(C) $\int_{0}^{\infty} x e^{-x} d x$
(D) $\int_{0}^{1} \frac{1}{1-x} d x$

MCQ 1.49 The integral $\oint f(z) d z$ evaluated around the unit circle on the complex plane
for $f(z)=\frac{\cos z}{z}$ is
(A) $2 \pi i$
(B) $4 \pi i$
(C) $-2 \pi \mathrm{i}$
(D) 0

MCQ $1.50 \quad$ The length of the curve $y=\frac{2}{3} x^{3 / 2}$ between $x=0$ and $x=1$ is
(A) 0.27
(B) 0.67
(C) 1
(D) 1.22

MCQ 1.51 The eigen vector of the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$ are written in the form $\left[\begin{array}{l}1 \\ a\end{array}\right]$ and $\left[\begin{array}{l}1 \\ b\end{array}\right]$.
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2

MCQ 1.52 Let $f=y^{x}$. What is $\frac{\partial^{2} f}{\partial x \partial y}$ at $x=2, y=1$?
(A) 0
(B) $\ln 2$
(C) 1
(D) $\frac{1}{\ln 2}$

MCQ $\mathbf{1 . 5 3}$ It is given that $y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=0, y(1)=0$. W hat is $y(0.5)$?
(A) 0
(B) 0.37
(C) 0.62
(D) 1.13

YEAR 2007

ONE MARK
MCQ 1.54 The minimum value of function $y=x^{2}$ in the interval $[1,5]$ is
(A) 0
(B) 1
(C) 25
(D) undefined

MCQ 1.55 If a square matrix A is real and symmetric, then the eigen values
(A) are always real
(B) are always real and positive
(C) are always real and non-negative
(D) occur in complex conjugate pairs

MCQ 1.56 If $\varphi(\mathrm{x}, \mathrm{y})$ and $\psi(\mathrm{x}, \mathrm{y})$ are functions with continuous second derivatives, then $\varphi(\mathrm{x}, \mathrm{y})+\mathrm{i} \psi(\mathrm{x}, \mathrm{y})$ can be expressed as an analytic function of $\mathrm{x}+\mathrm{i} \psi(\mathrm{i}=\sqrt{-1})$, when
(A) $\frac{\partial \varphi}{\partial x}=-\frac{\partial \psi}{\partial x}, \frac{\partial \varphi}{\partial y}=\frac{\partial \psi}{\partial y}$
(B) $\frac{\partial \varphi}{\partial y}=-\frac{\partial \psi}{\partial x}, \frac{\partial \varphi}{\partial x}=\frac{\partial \psi}{\partial y}$
(C) $\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}}=\frac{\partial^{2} \psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \psi}{\partial \mathrm{y}^{2}}=1$
(D) $\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y}=0$

MCQ 1.57 The partial differential equation $\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}}+\frac{\partial \varphi}{\partial \mathrm{x}}+\frac{\partial \varphi}{\partial \mathrm{y}}=0$ has
(A) degree 1 order 2
(B) degree 1 order 1
(C) degree 2 order 1
(D) degree 2 order 2

YEAR 2007
TWO MARKS
MCQ 1.58 If $y=x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}}}$, then $y(2)=$
(A) 4 or 1
(B) 4 only
(C) 1 only
(D) undefined

MCQ 1.59 The area of a triangle formed by the tips of vectors \bar{a}, \bar{b} and \bar{c} is
(A) $\frac{1}{2}(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{c})$
(B) $\left.\frac{1}{2} \right\rvert\,(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}-\mathbf{c})$
(C) $\left.\frac{1}{2} \right\rvert\, \mathbf{a} \times \mathbf{b} \times \mathbf{c}$
(D) $\frac{1}{2}(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

MCQ 1.60 The solution of $\frac{d y}{d x}=y^{2}$ with initial value $y(0)=1$ bounded in the interval
(A) $-\infty \leq x \leq \infty$
(B) $-\infty \leq x \leq 1$
(C) $x<1, x>1$
(D) $-2 \leq x \leq 2$

MCQ 1.61 If $F(s)$ is the Laplace transform of function $f(t)$, then Laplace transform of $\int_{0}^{t} f(\tau) d \tau$ is
(A) $\frac{1}{\mathrm{~s}} \mathrm{~F}(\mathrm{~s})$
(B) $\frac{1}{5} F(s)-f(0)$
(C) $s F(s)-f(0)$
(D) $\int F(s) d s$

MCQ 1.62 A calculator has accuracy up to 8 digits after decimal place. The value of $\int_{0}^{2 \pi} \sin x d x$
when evaluated using the calculator by trapezoidal method with 8 equal intervals, to 5 significant digits is
(A) 0.00000
(B) 1.0000
(C) 0.00500
(D) 0.00025

MCQ 1.63 Let X and Y be two independent random variables. Which one of the relations between expectation (E), variance (Var) and covariance (Cov) given below is FALSE ?
(A) $E(X Y)=E(X) E(Y)$
(B) $\operatorname{Cov}(X, Y)=0$
(C) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
(D) $E\left(X^{2} Y{ }^{2}\right)=(E(X))^{2}(E(Y))^{2}$

MCQ $1.64 \quad \lim _{x \rightarrow 0} \frac{e^{x}-\left(1+x+\frac{x^{2}}{2}\right)}{x^{3}}=$
(A) 0
(B) $1 / 6$
(C) $1 / 3$
(D) 1
$\begin{array}{ll}\text { MCQ } 1.65 & \text { The number of linearly independent eigen vectors of }\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] \text { is } \\ \begin{array}{ll}\text { (A) } 0 & \text { (B) } 1\end{array}\end{array}$
(C) 2
(D) infinite

YEAR 2006

ONE MARK
MCQ 1.66 M atch the items in column I and II.

Column I

P. Gauss-Seidel method
Q. Forward Newton-Gauss method
R. Runge-K utta method
S. Trapezoidal Rule
(A) P-1, Q-4, R-3, S-2
(C) P-1. Q-3, R-2, S-4

Column II

1. Interpolation
2. Non-linear differential equations
3. Numerical integration
4. Linear algebraic equations
(B) P-1, Q-4, R-2, S-3
(D) P-4, Q-1, R-2, S-3

MCQ 1.67 The solution of the differential equation $\frac{d y}{d x}+2 x y=e^{-x^{2}}$ with $y(0)=1$ is
(A) $(1+x) e^{+x^{2}}$
(B) $(1+x) e^{-x^{2}}$
(C) $(1-x) e^{+x^{2}}$
(D) $(1-x) e^{-x^{2}}$

MCQ 1.68 Let x denote a real number. Find out the INCORRECT statement.
(A) $S=\{x: x>3\}$ represents the set of all real numbers greater than 3
(B) $S=\left\{x: x^{2}<0\right\}$ represents the empty set.
(C) $S=\{x: x \in A$ and $x \in B\}$ represents the union of set A and set B.
(D) $S=\{x: a<x<b\}$ represents the set of all real numbers between a and b, where a and b are real numbers.

MCQ 1.69 A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective?
(A) $\frac{1}{5}$
(B) $\frac{1}{25}$
(C) $\frac{20}{99}$
(D) $\frac{19}{495}$

MCQ 1.70 Eigen values of a matrix $S=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ are 5 and 1 . W hat are the eigen values of the matrix $S^{2}=S S$?
(A) 1 and 25
(B) 6 and 4
(C) 5 and 1
(D) 2 and 10

MCQ 1.71 Equation of the line normal to function $f(x)=(x-8)^{2 / 3}+1$ at $P(0,5)$ is
(A) $y=3 x-5$
(B) $y=3 x+5$
(C) $3 y=x+15$
(D) $3 y=x-15$

MCQ 1.72 Assuming $\mathrm{i}=\sqrt{-1}$ and t is a real number, $\int_{0}^{\pi / 3} \mathrm{e}^{\mathrm{it}} \mathrm{dt}$ is
(A) $\frac{\sqrt{3}}{2}+i \frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}-i \frac{1}{2}$
(C) $\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$
(D) $\frac{1}{2}+\mathrm{i}\left(1-\frac{\sqrt{3}}{2}\right)$

MCQ 1.73 If $f(x)=\frac{2 x^{2}-7 x+3}{5 x^{2}-12 x-9}$, then $\lim _{x \rightarrow 3} f(x)$ will be
(A) $-1 / 3$
(B) $5 / 18$
(C) 0
(D) $2 / 5$

MCQ 1.74 Match the items in column I and II.

Column I

P. Singular matrix
Q. Non-square matrix
R. Real symmetric
S. Orthogonal matrix
(A) P-3, Q-1, R-4, S-2
(B) $P-2, Q-3, R-4, S-1$
(C) $\mathrm{P}-3, \mathrm{Q}-2, \mathrm{R}-5, \mathrm{~S}-4$
(D) $P-3, Q-4, R-2, S-1$

Column II

1. Determinant is not defined
2. Determinant is always one
3. Determinant is zero
4. E igenvalues are always real
5. Eigenvalues are not defined

MCQ 1.75 For $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=3 e^{2 x}$, the particular integral is
(A) $\frac{1}{15} e^{2 x}$
(B) $\frac{1}{5} e^{2 x}$
(C) $3 e^{2 x}$
(D) $\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-3 \mathrm{x}}$

MCQ 1.76 Multiplication of matrices E and F is G. matrices E and G are

$$
E=\left[\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

W hat is the matrix F ?
(A) $\left[\begin{array}{rrr}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{rrr}\cos \theta & \cos \theta & 0 \\ -\cos \theta & \sin \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{rrr}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{rrr}\sin \theta & -\cos \theta & 0 \\ \cos \theta & \sin \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

MCQ 1.77 Consider the continuous random variable with probability density function

$$
\begin{aligned}
\mathrm{f}(\mathrm{t}) & =1+\mathrm{t} \text { for }-1 \leq \mathrm{t} \leq 0 \\
& =1-\mathrm{t} \text { for } 0 \leq \mathrm{t} \leq 1
\end{aligned}
$$

The standard deviation of the random variable is
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{1}{\sqrt{6}}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$

YEAR 2005
ONE MARK
MCQ 1.78 Stokes theorem connects
(A) a line integral and a surface integral
(B) a surface integral and a volume integral
(C) a line integral and a volume integral
(D) gradient of a function and its surface integral

MCQ 1.79 A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is
(A) 0.0036
(B) 0.1937
(C) 0.2234
(D) 0.3874

MCQ $1.80 \quad \int_{-a}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$ is equal to
(A) $2 \int_{0}^{a} \sin ^{6} x d x$
(B) $2 \int_{0}^{a} \sin ^{7} x d x$
(C) $2 \int_{0}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$
(D) zero

MCQ 1.81 A is a 3×4 real matrix and $A x=b$ is an inconsistent system of equations. The highest possible rank of A is
(A) 1
(B) 2
(C) 3
(D) 4

MCQ 1.82 Changingtheorder oftheintegration inthedoubleintegrall $=\int_{0}^{8} \int_{\frac{x}{4}}^{2} f(x, y) d y d x$ leads to $I=\int_{r}^{s} \int_{p}^{a} f(x, y) d x d y$ What is q ?
(A) $4 y$
(B) $16 y^{2}$
(C) x
(D) 8

YEAR 2005
TWO MARKS
MCQ 1.83 Which one of the following is an eigen vector of the matrix
$\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 1\end{array}\right]$
(A) $\left[\begin{array}{r}-2 \\ 0 \\ 0\end{array}\right]$
(B) $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
(C) $\left[\begin{array}{r}1 \\ 0 \\ 0 \\ -2\end{array}\right]$
(D) $\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 1\end{array}\right]$

MCQ 1.84 With a 1 unit change in b, what is the change in x in the solution of the system of equations $x+y=2,1.01 x+0.99 y=b$?
(A) zero
(B) 2 units
(C) 50 units
(D) 100 units

MCQ $\mathbf{1 . 8 5}$ By a change of variable $x(u, v)=u v, y(u, v)=v / u$ is double integral, the integrand $f(x, y)$ changes to $f(u v, v / u) \phi(u, v)$. Then, $\phi(u, v)$ is
(A) $2 \mathrm{v} / \mathrm{u}$
(B) $2 u v$
(C) v^{2}
(D) 1

MCQ 1.86 The right circular cone of largest volume that can be enclosed by a sphere of 1 m radius has a height of
(A) $1 / 3 \mathrm{~m}$
(B) $2 / 3 \mathrm{~m}$
(C) $\frac{2 \sqrt{2}}{3} \mathrm{~m}$
(D) $4 / 3 \mathrm{~m}$

MCQ 1.87 If $x^{2} \frac{d y}{d x}+2 x y=\frac{2 \ln (x)}{x}$ and $y(1)=0$, then what is $y(e)$?
(A) e
(B) 1
(C) $1 / e$
(D) $1 / \mathrm{e}^{2}$

MCQ 1.8 The line integral $\int \mathbf{V} \cdot d \mathbf{r}$ of the vector $\mathbf{V} \cdot(\mathbf{r})=2 x y z \mathbf{i}+x^{2} z \mathbf{j}+x^{2} y \mathbf{k}$ from the origin to the point $\mathrm{P}(1,1,1)$
(A) is 1
(B) is zero
(C) is - 1
(D) cannot be determined without specifying the path

MCQ 1.89 Starting from $x_{0}=1$, one step of Newton-Raphson method in solving the equation $x^{3}+3 x-7=0$ gives the next value (x_{1}) as
(A) $x_{1}=0.5$
(B) $x_{1}=1.406$
(C) $x_{1}=1.5$
(D) $x_{1}=2$

MCQ $\mathbf{1 . 9 0}$ A single die is thrown twice. W hat is the probability that the sum is neither 8 nor 9 ?
(A) $1 / 9$
(B) $5 / 36$
(C) $1 / 4$
(D) $3 / 4$

- Common Data For Q. 91 and 92

The complete solution of the ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0 \text { is } y=c_{1} e^{-x}+c_{2} e^{-3 x}
$$

MCQ 1.91 Then p and q are
(A) $p=3, q=3$
(B) $p=3, q=4$
(C) $p=4, q=3$
(D) $p=4, q=4$

MCQ 1.92 Which of the following is a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0
$$

(A) $e^{-3 x}$
(B) $\mathrm{xe}^{-\mathrm{x}}$
(C) $x e^{-2 x}$
(D) $x^{2} e^{-2 x}$

YEAR 2004
MCQ 1.93 If $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$, then $\frac{d y}{d x}$ will be equal to
(A) $\sin \left(\frac{\theta}{2}\right)$
(B) $\cos \left(\frac{\theta}{2}\right)$
(C) $\tan \left(\frac{\theta}{2}\right)$
(D) $\cot \left(\frac{\theta}{2}\right)$

MCQ 1.94 The angle between two unit-magnitude coplanar vectors $P(0.866,0.500,0)$ and $Q(0.259,0.966,0)$ will be
(A) 0°
(B) 30°
(C) 45°
(D) 60°

MCQ 1.95 The sum of the eigen values of the matrix given below is $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
(A) 5
(B) 7
(C) 9
(D) 18

YEAR 2004
TWO MARKS
MCQ 1.96 From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if first card in NOT replaced ?
(A) $\frac{1}{26}$
(B) $\frac{1}{52}$
(C) $\frac{1}{169}$
(D) $\frac{1}{221}$

MCQ 1.97 A delayed unit step function is defined asU $(t-a)=\left\{\begin{array}{l}0, \text { for } t<a \\ 1, \text { for } t \geq a\end{array}\right.$ Its Lansform is \quad aplace
(B) $\frac{e^{-a s}}{s}$
(C) $\frac{e^{a s}}{s}$
(D) $\frac{e^{a s}}{a}$

MCQ 1.98 The values of a function $f(x)$ are tabulated below

x	$f(x)$
0	1
1	2
2	1
3	10

Using Newton's forward difference formula, the cubic polynomial that can be fitted to the above data, is
(A) $2 x^{3}+7 x^{2}-6 x+2$
(B) $2 x^{3}-7 x^{2}+6 x-2$
(C) $x^{3}-7 x^{2}-6 x^{2}+1$
(D) $2 x^{3}-7 x^{2}+6 x+1$

MCQ $\mathbf{1 . 9 9}$ The volume of an object expressed in spherical co-ordinates is given by

$$
\mathrm{V}=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} \mathrm{r}^{2} \sin \phi \mathrm{drd} \phi \mathrm{~d} \theta
$$

The value of the integral is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{4}$

MCQ 1.100 For which value of x will the matrix given below become singular ?

$$
=\left[\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right]
$$

(A) 4
(B) 6
(C) 8
(D) 12

YEAR 2003
ONE MARK
MCQ $1.101 \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$ is equal to
(A) 0
(B) ∞
(C) 1
(D) -1

MCQ 1.102 The accuracy of Simpson's rule quadrature for a step size h is
(A) $0\left(h^{2}\right)$
(B) $0\left(h^{3}\right)$
(C) $0\left(\mathrm{~h}^{4}\right)$
(D) $0\left(h^{5}\right)$

MCQ 1.103 For the matrix $\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]$ the eigen values are
(A) 3 and -3
(B) -3 and -5
(C) 3 and 5
(D) 5 and 0

YEAR 2003
TWO MARKS
MCQ 1.104 Consider the system of simultaneous equations

$$
\begin{array}{r}
x+2 y+z=6 \\
2 x+y+2 z=6 \\
x+y+z=5
\end{array}
$$

This system has
(A) unique solution
(B) infinite number of solutions
(C) no solution
(D) exactly two solutions

MCQ 1.105 The area enclosed between the parabola $y=x^{2}$ and the straight line $y=x$ is
(A) $1 / 8$
(B) $1 / 6$
(C) $1 / 3$
(D) $1 / 2$

MCQ 1.106 The solution of the differential equation $\frac{d y}{d x}+y^{2}=0$ is
(A) $y=\frac{1}{x+c}$
(B) $y=\frac{-x^{3}}{3}+c$
(C) Ce^{x}
(D) unsolvable as equation is non-
linear

MCQ 1.107 The vector field is $\mathbf{F}=\mathrm{xi}-\mathrm{yj}$ (where \mathbf{i} and \mathbf{j} are unit vector) is
(A) divergence free, but not irrotational
(B) irrotational, but not divergence free
(C) divergence free and irrotational
(D) neither divergence free nor irrational

MCQ 1.108 Laplace transform of the function $\sin \omega t$ is
(A) $\frac{\mathrm{S}}{\mathrm{S}^{2}+\omega^{2}}$
(B) $\frac{\omega}{\mathrm{s}^{2}+\omega^{2}}$
(C) $\frac{\mathrm{s}}{\mathrm{s}^{2}-\omega^{2}}$
(D) $\frac{\omega}{s^{2}-\omega^{2}}$

MCQ 1.109 A box contains 5 black and 5 red balls. Two balls are randomly picked one after another form the box, without replacement. The probability for balls being red is
(A) $1 / 90$
(B) $1 / 2$
(C) $19 / 90$
(D) $2 / 9$

YEAR 2002
ONE MARK
MCQ 1.110 Two dice are thrown. What is the probability that the sum of the numbers on the two dice is eight?
(A) $\frac{5}{36}$
(B) $\frac{5}{18}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$

MCQ 1.111 W hich of the following functions is not differentiable in the domain $[-1,1]$?
(A) $f(x)=x^{2}$
(B) $f(x)=x-1$
(C) $f(x)=2$
(D) $f(x)=$ maximum $(x,-x)$

MCQ 1.112 A regression model is used to express a variable Y as a function of another variable X. This implies that
(A) there is a causal relationship between Y and X
(B) a value of X may be used to estimate a value of Y
(C) values of X exactly determine values of Y
(D) there is no causal relationship between Y and X

YEAR 2002
TWO MARKS
MCQ 1.113 The following set of equations has

$$
\begin{array}{r}
3 x+2 y+z=4 \\
x-y+z=2 \\
-2 x+2 z=5
\end{array}
$$

(A) no solution
(B) a unique solution
(C) multiple solutions
(D) an inconsistency

MCQ 1.114 The function $f(x, y)=2 x^{2}+2 x y-y^{3}$ has
(A) only one stationary point at $(0,0)$
(B) two stationary points at $(0,0)$ and $\left(\frac{1}{6}, \frac{-1}{3}\right)$
(C) two stationary points at $(0,0)$ and $(1,-1)$
(D) no stationary point

MCQ 1.115 M anish has to travel from A to D changing buses at stops B and C enroute. The maximum waiting time at either stop can be 8 min each but any time of waiting up to 8 min is equally, likely at both places. He can afford up to 13 min of total waiting time if he is to arrive at D on time. W hat is the probability that M anish will arrive late at D ?
(A) $\frac{8}{13}$
(B) $\frac{13}{64}$
(C) $\frac{119}{128}$
(D) $\frac{9}{128}$

YEAR 2001

ONE MARK

MCQ 1.116 The divergence of vector $\mathbf{i}=\mathbf{x i}+\mathbf{y} \mathbf{j}+\mathbf{z} \mathbf{k}$ is
(A) $\mathbf{i}+\mathbf{j}+\mathbf{k}$
(B) 3
(C) 0
(D) 1

MCQ 1.117 Consider the system of equations given below

$$
\begin{array}{r}
x+y=2 \\
2 x+2 y=5
\end{array}
$$

This system has
(A) one solution
(B) no solution
(C) infinite solutions
(D) four solutions

MCQ 1.118 W hat is the derivative of $f(x)=|x|$ at $x=0$?
(A) 1
(B) -1
(C) 0
(D) Does not exist

MCQ 1.119 The Gauss divergence theorem relates certain
(A) surface integrals to volume integrals
(B) surface integrals to line integrals
(C) vector quantities to other vector quantities
(D) line integrals to volume integrals

YEAR 2001
TWO MARKS
MCQ 1.120 The minimum point of the function $f(x)=\left(\frac{x^{3}}{3}\right)-x$ is at
(A) $x=1$
(B) $x=-1$
(C) $x=0$
(D) $x=\frac{1}{\sqrt{3}}$

MCQ 1.121 The rank of a 3×3 matrix $C(=A B)$, found by multiplying a non-zero column matrix A of size 3×1 and a non-zero row matrix B of size 1×3, is
(A) 0
(B) 1
(C) 2
(D) 3

MCQ 1.122 An unbiased coin is tossed three times. The probability that the head turns up in exactly two cases is
(A) $\frac{1}{9}$
(B) $\frac{1}{8}$
(C) $\frac{2}{3}$
(D) $\frac{3}{8}$

SOLUTION

sol 1.1 Option (A) is correct.

For \quad| y | $=x$ straight line and |
| ---: | :--- |
| y | $=x^{2}$ parabola, curve is as given. The shaded | region is the area, which is bounded by the both curves (common area).

We solve given equation as follows to gett the intersection points :
In $y=x^{2}$ putting $y=x$ we have $x=x^{2}$ or

$$
x^{2}-x=0 \Rightarrow x(x-1)=0 \Rightarrow x=0,1
$$

Then from $y=x$, for $\quad x=0 \Rightarrow y=0$ and $x=1 \Rightarrow y=1$
Curve $y=x^{2}$ and $y=x$ intersects at point $(0,0)$ and $(1,1)$
So, the area bounded by both the curves is

$$
\begin{aligned}
A & =\int_{x=0}^{x=1} \int_{y=x}^{y=x^{2}} d y d x=\int_{x=0}^{x=1} d x \int_{y=x}^{y=x^{2}} d y=\int_{x=0}^{x=1} d x[y]_{x}^{x^{2}}=\int_{x=0}^{x=1}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}=\frac{1}{6} \text { unit }^{2} \quad \text { A rea is never negative }
\end{aligned}
$$

SOL 1.2 Option (C) is correct.
Given $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ (in $-1 \leq \mathrm{x} \leq 1)$
For this function the plot is as given below.

At $x=0$, function is continuous but not differentiable because.
For

$$
\begin{aligned}
x & >0 \text { and } x<0 \\
f^{\prime}(x) & =1 \text { and } f^{\prime}(x)=-1 \\
\lim _{x \rightarrow 0^{+}} f^{\prime}(x) & =1 \text { and } \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=-1
\end{aligned}
$$

R.H.S $\lim =1$ and L.H.S $\lim =-1$

T herefore it is not differentiable.
sol 1.3 Option (B) is correct.
Let

$$
y=\lim _{x \rightarrow 0} \frac{(1-\cos x)}{x^{2}}
$$

It forms $\left[\frac{0}{0}\right]$ condition. Hence by L-Hospital rule

$$
y=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(1-\cos x)}{\frac{d}{d x}\left(x^{2}\right)}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}
$$

Still these gives $\left[\frac{0}{0}\right]$ condition, so again applying L-Hospital rule

$$
y=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x)}{2 \times \frac{d}{d x}(x)}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{\cos 0}{2}=\frac{1}{2}
$$

SOL 1.4 Option (D) is correct.
We have $\quad f(x)=x^{3}+1$
$f^{\prime}(x)=3 x^{2}+0$
Putting $f^{\prime}(x)$ equal to zero

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
3 x^{2}+0 & =0 \Rightarrow x=0
\end{aligned}
$$

Now $\quad f^{\prime \prime}(x)=6 x$
At $x=0, \quad f^{\prime \prime}(0)=6 \times 0=0 \quad$ Hence $x=0$ is the point of inflection.

SOL 1.5 Option (A) is correct.
Given: $\quad x^{2}+y^{2}+z^{2}=1$
This is a equation of sphere with radius $r=1$

The unit normal vector at point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is $\mathbf{O A}$
Hence $\quad \mathbf{O A}=\left(\frac{1}{\sqrt{2}}-0\right) \mathbf{i}+\left(\frac{1}{\sqrt{2}}-0\right) \mathbf{j}+(0-0) \mathbf{k}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}$
sol 1.6 Option (D) is correct.
First using the partial fraction :

$$
\begin{aligned}
F(s) & =\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}=\frac{A(s+1)+B s}{s(s+1)} \\
\frac{1}{s(s+1)} & =\frac{(A+B) s}{s(s+1)}+\frac{A}{s(s+1)}
\end{aligned}
$$

Comparing the coefficients both the sides,

$$
(A+B)=0 \text { and } A=1, B=-1
$$

So $\quad \frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}$
$\mathrm{F}(\mathrm{t})=\mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s})]$
$=L^{-1}\left[\frac{1}{S(S+1)}\right]=L^{-1}\left[\frac{1}{S}-\frac{1}{S+1}\right]=L^{-1}\left[\frac{1}{S}\right]-L^{-1}\left[\frac{1}{S+1}\right]$

$$
=1-\mathrm{e}^{-\mathrm{t}}
$$

sol 1.7 Option (B) is correct.
Given

$$
\mathbf{A}=\left[\begin{array}{ll}
5 & 3 \\
1 & 3
\end{array}\right]
$$

For finding eigen values, we write the characteristic equation as

$$
\begin{aligned}
& \left.\begin{aligned}
\mid \mathbf{A}-\lambda \mathbf{I}
\end{aligned} \right\rvert\,=0 \\
& \lambda^{2}-8 \lambda+12=0 \Rightarrow \lambda=2,6
\end{aligned}
$$

Now from characteristic equation for eigen vector.

$$
[\mathbf{A}-\lambda \mathbf{I}]\{x\}=[0]
$$

For $\lambda=2$

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
5-2 & 3 \\
1 & 3-2
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \Rightarrow \quad\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& X_{1}+X_{2}=0 \quad \Rightarrow X_{1}=-X_{2} \\
& \text { So } \quad \text { eigen vector }=\left\{\begin{array}{r}
1 \\
-1
\end{array}\right\} \\
& \text { M agnitude of eigen vector }=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2}
\end{aligned}
$$

$$
\text { Normalized eigen vector }=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]
$$

sol 1.8 Option (D) is correct.
Given: No. of Red balls $=4$
No. of Black ball $=6$
3 balls are selected randomly one after another, without replacement.
1 red and 2 black balls are will be selected as following

Manners	Probability for these sequence
R B B	$\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}=\frac{1}{6}$
B R B	$\frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}=\frac{1}{6}$
B B R	$\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}=\frac{1}{6}$

Hence Total probability of selecting 1 red and 2 black ball is

$$
P=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}
$$

sol 1.9 Option (A) is correct.
We have $\quad x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-4 y=0$
Let $x=e^{2}$ then $z=\log x$

$$
\frac{d z}{d x}=\frac{1}{x}
$$

So, we get

$$
\frac{d y}{d x}=\left(\frac{d y}{d z}\right)\left(\frac{d z}{d x}\right)=\frac{1}{x} \frac{d y}{d z}
$$

$$
x \frac{d y}{d x}=D y \quad \text { where } \frac{d}{d z}=D
$$

A gain

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{1}{x} \frac{d y}{d z}\right)=\frac{-1}{x^{2}} \frac{d y}{d z}+\frac{1}{x} \frac{d}{d z}\left(\frac{d y}{d z}\right) \frac{d z}{d x} \\
& =\frac{-1}{x^{2}} \frac{d y}{d z}+\frac{1}{x} \frac{d^{2} y}{d z^{2}} \frac{d z}{d x}=\frac{1}{x^{2}}\left(\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}\right) \\
\frac{x^{2} d^{2} y}{d x^{2}} & =\left(D^{2}-D\right) y=D(D-1) y
\end{aligned}
$$

Now substitute in equation (i)

$$
\begin{aligned}
{[D(D-1)+D-4] y } & =0 \\
\left(D^{2}-4\right) y & =0 \Rightarrow D= \pm 2
\end{aligned}
$$

So the required solution is

$$
\begin{aligned}
y & =C_{1} x^{2}+C_{2} x^{-2} \\
y(0) & =0, \text { equation (ii) gives } \\
0 & =C_{1} \times 0+C_{2} \\
C_{2} & =0
\end{aligned}
$$

And from $\mathrm{y}(1)=1$, equation (ii) gives

$$
\begin{aligned}
1 & =C_{1}+C_{2} \\
C_{1} & =1
\end{aligned}
$$

Substitute $\mathrm{C}_{1} \& \mathrm{C}_{2}$ in equation (ii), the required solution be

$$
y=x^{2}
$$

sol 1.10 Option (C) is correct.
For given equation matrix form is as follows

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & -1 & 1
\end{array}\right], \mathbf{B}=\left[\begin{array}{l}
4 \\
5 \\
1
\end{array}\right]
$$

The augmented matrix is

This gives rank of $\mathbf{A}, \rho(\mathrm{A})=2$ and Rank of $[\mathbf{A}: \mathbf{B}]=\rho[\mathbf{A}: \mathbf{B}]=2$
W hich is less than the number of unknowns (3)

$$
\rho[\mathbf{A}]=\rho[\mathbf{A}: \mathbf{B}]=2<3
$$

Hence, this gives infinite No. of solutions.
sol 1.11 Option (B) is correct.

$$
\sin \theta=\theta-\frac{\theta^{3}}{\underline{3}}+\frac{\theta^{5}}{\underline{5}}-\frac{\theta^{7}}{\boxed{7}}+\ldots \ldots .
$$

sol 1.12 Option (D) is correct.

Let

$$
\begin{aligned}
y & =\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{d}{d \theta}(\sin \theta)}{\frac{d}{d \theta}(\theta)}=\lim _{\theta \rightarrow 0} \frac{\cos \theta}{1} \quad \text { Applying L-Hospital rule } \\
& =\frac{\cos 0}{1}=1
\end{aligned}
$$

sol 1.13 Option (C) is correct
Let a square matrix

$$
A=\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right]
$$

We know that the characteristic equation for the eigen values is given by

$$
\begin{array}{rl}
|A-\lambda I| & =0 \\
\mid x-\lambda \quad y \\
y & x-\lambda
\end{array} \left\lvert\,=0 \quad \begin{aligned}
\mid x-\lambda)^{2}-y^{2} & =0 \\
(x-\lambda)^{2} & =y^{2} \\
x-\lambda & = \pm y \Rightarrow \lambda=x \pm y
\end{aligned}\right.
$$

So, eigen values are real if matrix is real and symmetric.

SOL 1.14 Option (A) is correct.
Let, $z_{1}=(1+i), z_{2}=(2-5 i)$

$$
\begin{aligned}
z & =z_{1} \times z_{2}=(1+i)(2-5 i) \\
& =2-5 i+2 i-5 i^{2}=2-3 i+5=7-3 i \quad i^{2}=-1
\end{aligned}
$$

sol 1.15 Option (D) is correct.
For a function, whose limits bounded between - a to a and a is a positive real number. The solution is given by

$$
\int_{-a}^{a} f(x) d x= \begin{cases}2 \int_{0}^{a} f(x) d x ; & f(x) \text { is even } \\ 0 & ; \\ f(x) \text { is odd }\end{cases}
$$

sol 1.16 Option (C) is correct.
Let,

$$
\mathrm{f}(\mathrm{x})=\int_{1}^{3} \frac{1}{\mathrm{x}} \mathrm{dx}
$$

From this function we get $a=1, b=3$ and $n=3-1=2$
So, $\quad h=\frac{b-a}{n}=\frac{3-1}{2}=1$
We make the table from the given function $y=f(x)=\frac{1}{x}$ as follows :

\mathbf{x}	$\mathbf{f}(\mathbf{x})=\mathbf{y}=\frac{\mathbf{1}}{\mathbf{x}}$
$x=1$	$y_{1}=\frac{1}{1}=1$
$x=2$	$y_{2}=\frac{1}{2}=0.5$
$x=3$	$y_{3}=\frac{1}{3}=0.333$

Applying the Simpson's $1 / 3^{\text {rd }}$ formula

$$
\begin{aligned}
\int_{1}^{3} \frac{1}{\mathrm{x}} \mathrm{dx} & =\frac{\mathrm{h}}{3}\left[\left(\mathrm{y}_{1}+\mathrm{y}_{3}\right)+4 \mathrm{y}_{2}\right]=\frac{1}{3}[(1+0.333)+4 \times 0.5] \\
& =\frac{1}{3}[1.333+2]=\frac{3.333}{3}=1.111
\end{aligned}
$$

sol 1.17 Option (D) is correct.
Given: $\quad \frac{d y}{d x}=\left(1+y^{2}\right) x$

$$
\frac{d y}{\left(1+y^{2}\right)}=x d x
$$

Integrating both the sides, we get

$$
\begin{aligned}
\int \frac{d y}{1+y^{2}} & =\int x d x \\
\tan ^{-1} y & =\frac{x^{2}}{2}+c \Rightarrow y=\tan \left(\frac{x^{2}}{2}+c\right)
\end{aligned}
$$

sol 1.18 Option (D) is correct.
The probability of getting head $\mathrm{p}=\frac{1}{2}$
And the probability of getting tail $\mathrm{q}=1-\frac{1}{2}=\frac{1}{2}$
The probability of getting at least one head is

$$
\begin{aligned}
P(x \geq 1) & =1-{ }^{5} C_{0}(p)^{5}(q)^{0}=1-1 \times\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{0} \\
& =1-\frac{1}{2^{5}}=\frac{31}{32}
\end{aligned}
$$

SOL 1.19 Option (C) is correct.
Given system of equations are,

$$
\begin{align*}
2 x_{1}+x_{2}+x_{3} & =0 \tag{i}\\
x_{2}-x_{3} & =0 \tag{ii}\\
x_{1}+x_{2} & =0 \tag{iii}
\end{align*}
$$

Adding the equation (i) and (ii) we have

$$
\begin{align*}
2 x_{1}+2 x_{2} & =0 \\
x_{1}+x_{2} & =0 \tag{iv}
\end{align*}
$$

We see that the equation (iii) and (iv) is same and they will meet at infinite points. Hence this system of equations have infinite number of solutions.

SOL 1.20 Option (D) is correct.
The volume of a solid generated by revolution about x-axis bounded by the function $f(x)$ and limits between a to b is given by

$$
\mathrm{V}=\int_{a}^{b} \pi \mathrm{y}^{2} \mathrm{dx}
$$

Given

$$
y=\sqrt{x} \text { and } a=1, b=2
$$

Therefore,

$$
\mathrm{V}=\int_{1}^{2} \pi(\sqrt{\mathrm{x}})^{2} \mathrm{dx}=\pi \int_{1}^{2} \mathrm{xdx}=\pi\left[\frac{\mathrm{x}^{2}}{2}\right]_{1}^{2}=\pi\left[\frac{4}{2}-\frac{1}{2}\right]=\frac{3 \pi}{2}
$$

soL 1.21 Option (B) is correct.
Given: $\quad \frac{d^{3} f}{d \eta^{3}}+\frac{f}{2} \frac{d^{2} f}{d \eta^{2}}=0$
Order is determined by the order of the highest derivation present in it. So, It is third order equation but it is a nonlinear equation because in linear equation, the product of f with $d^{2} f / d \eta^{2}$ is not allow.
Therefore, it is a third order non-linear ordinary differential equation.
sol 1.22 Option (D) is correct.

$$
\text { Let } \quad \begin{aligned}
I & =\int_{-\infty}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}} \\
& =\left[\tan ^{-1} \mathrm{x}\right]_{-\infty}^{\infty}=\left[\tan ^{-1}(+\infty)-\tan ^{-1}(-\infty)\right] \\
& =\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi \quad \tan ^{-1}(-\theta)=-\tan ^{-1}(\theta)
\end{aligned}
$$

soL 1.23 Option (B) is correct.
Let, $\quad z=\frac{3+4 i}{1-2 i}$
Divide and multiply z by the conjugate of $(1-2 i)$ to convert it in the form of $a+b i$ we have

$$
\begin{aligned}
z & =\frac{3+4 i}{1-2 i} \times \frac{1+2 i}{1+2 i}=\frac{(3+4 i)(1+2 i)}{(1)^{2}-(2 i)^{2}} \\
& =\frac{3+10 i+8 i^{2}}{1-4 i^{2}}=\frac{3+10 i-8}{1-(-4)} \\
& =\frac{-5+10 i}{5}=-1+2 i \\
|z| & =\sqrt{(-1)^{2}+(2)^{2}}=\sqrt{5} \quad|a+i b|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

sol 1.24 Option (C) is correct.

$$
y=f(x)= \begin{cases}2-3 x & \text { if } x<\frac{2}{3} \\ 0 & \text { if } x=\frac{2}{3} \\ -(2-3 x) & \text { if } x>\frac{2}{3}\end{cases}
$$

Checking the continuity of the function.
At $x=\frac{2}{3}, \quad \operatorname{Lf}(x)=\lim _{h \rightarrow 0} f\left(\frac{2}{3}-h\right)=\lim _{h \rightarrow 0} 2-3\left(\frac{2}{3}-h\right)$

$$
=\lim _{h \rightarrow 0} 2-2+3 h=0
$$

and

$$
\begin{aligned}
R f(x) & =\lim _{h \rightarrow 0} f\left(\frac{2}{3}+h\right)=\lim _{h \rightarrow 0} 3\left(\frac{2}{3}+h\right)-2 \\
& =\lim _{h \rightarrow 0} 2+3 h-2=0
\end{aligned}
$$

Since

$$
L \lim _{h \rightarrow 0} f(x)=R \lim _{h \rightarrow 0} f(x)
$$

So, function is continuous $\forall x \in R$ Now checking the differentiability :

$$
\begin{aligned}
L f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f\left(\frac{2}{3}-h\right)-f\left(\frac{2}{3}\right)}{-h}=\lim _{h \rightarrow 0} \frac{2-3\left(\frac{2}{3}-h\right)-0}{-h} \\
& =\lim _{h \rightarrow 0} \frac{2-2+3 h}{-h}=\lim _{h \rightarrow 0} \frac{3 h}{-h}=-3 \\
R f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f\left(\frac{2}{3}+h\right)-f\left(\frac{2}{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3\left(\frac{2}{3}+h\right)-2-0}{h}=\lim _{h \rightarrow 0} \frac{2+3 h-2}{h}=3
\end{aligned}
$$

and

Since

$$
L f^{\prime}\left(\frac{2}{3}\right) \neq R f^{\prime}\left(\frac{2}{3}\right), f(x) \text { is not differentiable at } x=\frac{2}{3} \text {. }
$$

sol 1.25 Option (A) is correct.
Let,

$$
A=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]
$$

A nd λ_{1} and λ_{2} are the eigen values of the matrix A.
The characteristic equation is written as

$$
|A-\lambda I|=0
$$

$$
\begin{align*}
& \left|\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right|=0 \\
& \left|\begin{array}{rr}
2-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=0 \tag{i}\\
& (2-\lambda)(3-\lambda)-2=0 \\
& \lambda^{2}-5 \lambda+4=0 \Rightarrow \lambda=1 \& 4
\end{align*}
$$

Putting $\lambda=1$ in equation (i),

$$
\begin{array}{rlr}
{\left[\begin{array}{rr}
2-1 & 2 \\
1 & 3-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] & \text { where }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { is eigen vector } \\
{\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
x_{1}+2 x_{2} & =0 \text { or } x_{1}+2 x_{2}=0 \\
x_{2} & =K \\
x_{1}+2 K & =0 \Rightarrow x_{1}=-2 K
\end{array}
$$

Let
Then
So, the eigen vector is

$$
\left[\begin{array}{r}
-2 K \\
K
\end{array}\right] \text { or }\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

Since option $A\left[\begin{array}{r}2 \\ -1\end{array}\right]$ is in the same ratio of x_{1} and x_{2}. Therefore option (A) is an eigen vector.

SOL 1.26 Option (A) is correct.
$f(t)$ is the inverse Laplace
So,

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left[\frac{1}{s^{2}(s+1)}\right] \\
\frac{1}{s^{2}(s+1)} & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+1} \\
& =\frac{A s(1+s)+B(s+1)+C s^{2}}{s^{2}(s+1)} \\
& =\frac{s^{2}(A+C)+s(A+B)+B}{s^{2}(s+1)}
\end{aligned}
$$

Compare the coefficients of s^{2}, s and constant terms and we get

$$
A+C=0 ; A+B=0 \text { and } B=1
$$

Solving above equation, we get $A=-1, B=1$ and $C=1$
Thus

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left[-\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{s+1}\right] \\
& =-1+t+e^{-t}=t-1+e^{-t}
\end{aligned} \quad \mathcal{L}^{-1}\left[\frac{1}{s+a}\right]=e^{-a t}
$$

SOL 1.27 Option (C) is correct.
The box contains :
Number of washers $=2$
Number of nuts $=3$
Number of bolts $=4$

$$
\text { Total objects }=2+3+4=9
$$

First two washers are drawn from the box which contain 9 items. So the probability of drawing 2 washers is,

$$
P_{1}=\frac{{ }^{2} C_{2}}{{ }^{9} C_{2}}=\frac{1}{\frac{9!}{7!2!}}=\frac{7!2!}{9 \times 8 \times 7!}=\frac{2}{9 \times 8}=\frac{1}{36} \quad \quad{ }^{n} C_{n}=1
$$

A fter this box contains only 7 objects and then 3 nuts drawn from it. So the probability of drawing 3 nuts from the remaining objects is,

$$
P_{2}=\frac{{ }^{3} C_{3}}{{ }^{\mathrm{C}} \mathrm{C}_{3}}=\frac{1}{\frac{7!}{4!3!}}=\frac{4!3!}{7 \times 6 \times 5 \times 4!}=\frac{1}{35}
$$

After this box contain only 4 objects, probability of drawing 4 bolts from the box,

$$
P_{3}=\frac{{ }^{4} C_{4}}{{ }^{4} C_{4}}=\frac{1}{1}=1
$$

Therefore the required probability is,

$$
P=P_{1} P_{2} P_{3}=\frac{1}{36} \times \frac{1}{35} \times 1=\frac{1}{1260}
$$

sol 1.28 Option (B) is correct.
Given :

$$
\begin{aligned}
& \mathrm{h}=60^{\circ}-0=60^{\circ} \\
& \mathrm{h}=60 \times \frac{\pi}{180}=\frac{\pi}{3}=1.047 \text { radians }
\end{aligned}
$$

From the table, we have
$y_{0}=0, y_{1}=1066, y_{2}=-323, y_{3}=0, y_{4}=323, y_{5}=-355$ and $y_{6}=0$ From the Simpson's 1/3rd rule the flywheel Energy is,

$$
E=\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{4}\right)\right]
$$

Substitute the values, we get

$$
\begin{aligned}
E & =\frac{1.047}{3}[(0+0)+4(1066+0-355)+2(-323+323)] \\
& =\frac{1.047}{3}[4 \times 711+2(0)]=993 \mathrm{Nm} \text { rad }(\mathrm{J} \text { oules/ cycle })
\end{aligned}
$$

sol 1.29 Option (A) is correct.
Given : $\quad M=\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ X & \frac{3}{5}\end{array}\right]$
And

$$
[M]^{\top}=[M]^{-1}
$$

We know that when $[\mathrm{A}]^{T}=[\mathrm{A}]^{-1}$ then it is called orthogonal matrix.

$$
[M]^{\top}=\frac{1}{[M]}
$$

$$
[\mathrm{M}]^{\top}[\mathrm{M}]=1
$$

Substitute the values of M and M^{\top}, we get

$$
\begin{array}{r}
{\left[\begin{array}{cc}
\frac{3}{5} & x \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right] \downarrow\left[\begin{array}{ll}
\frac{3}{5} & \frac{4}{5} \\
x & \frac{3}{5}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
\left(\frac{3}{5} \times \frac{3}{5}\right)+x^{2} & \left(\frac{3}{5} \times \frac{4}{5}\right)+\frac{3}{5} x \\
\left(\frac{4}{5} \times \frac{3}{5}\right)+\frac{3}{5} \times & \left(\frac{4}{5} \times \frac{4}{5}\right)+\left(\frac{3}{5} \times \frac{3}{5}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
\frac{9}{25}+x^{2} & \frac{12}{25}+\frac{3}{5} x \\
\frac{12}{25}+\frac{3}{5} x & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{array}
$$

Comparing both sides a_{12} element,

$$
\frac{12}{25}+\frac{3}{5} x=0 \rightarrow x=-\frac{12}{25} \times \frac{5}{3}=-\frac{4}{5}
$$

sol 1.30 Option (C) is correct.
Let, $\quad \mathbf{V}=3 x z \mathbf{i}+2 x y \mathbf{j}-y^{2} \mathbf{k}$
We know divergence vector field of \mathbf{V} is given by $(\nabla \cdot \mathbf{V})$
So,

$$
\begin{aligned}
& \nabla \cdot \mathbf{V}=\left(\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right) \cdot\left(3 x z \mathbf{i}+2 x y \mathbf{j}-y z^{2} \mathbf{k}\right) \\
& \nabla \cdot \mathbf{V}=3 z+2 x-2 y z
\end{aligned}
$$

At point $P(1,1,1)$
$(\nabla \cdot \mathbf{V})_{P(1,1,1)}=3 \times 1+2 \times 1-2 \times 1 \times 1=3$
sol 1.31 Option (C) is correct.
Let

$$
f(s)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+s}\right]
$$

First, take the function $\frac{1}{s^{2}+s}$ and break it by the partial fraction,

$$
\frac{1}{s^{2}+s}=\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{(s+1)} \quad\left\{\begin{array}{l}
\text { Solve by } \\
\frac{1}{(s+1)}=\frac{A}{s}+\frac{B}{s+1}
\end{array}\right\}
$$

So, $\quad \mathcal{L}^{-1}\left(\frac{1}{s^{2}+s}\right)=\mathcal{L}^{-1}\left[\frac{1}{s}-\frac{1}{(s+1)}\right]=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]=1-e^{-t}$
SOL 1.32 Option (D) is correct.
Total number of cases $=2^{3}=8$
\& Possible cases when coins are tossed simultaneously.

H	H	H
H	H	T
H	T	H
T	H	H
H	T	T
T	H	T
T	T	H
T	T	T

From these cases we can see that out of total 8 cases 7 cases contain at least one head. So, the probability of come at least one head is $=\frac{7}{8}$
sol 1.33 Option (C) is correct.
Given: $\quad z=x+i y$ is a analytic function

$$
\begin{align*}
f(z) & =u(x, y)+i v(x, y) \\
u & =x y \tag{i}
\end{align*}
$$

A nalytic function satisfies the Cauchy-Riemann equation.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

So from equation (i),

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=y \quad \Rightarrow \quad \frac{\partial v}{\partial y}=y \\
& \frac{\partial u}{\partial y}=x \quad \Rightarrow \quad \frac{\partial v}{\partial x}=-x
\end{aligned}
$$

Let $v(x, y)$ be the conjugate function of $u(x, y)$

$$
d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=(-x) d x+(y) d y
$$

Integrating both the sides,

$$
\begin{aligned}
\int d v & =-\int x d x+\int y d y \\
v & =-\frac{x^{2}}{2}+\frac{y^{2}}{2}+k=\frac{1}{2}\left(y^{2}-x^{2}\right)+k
\end{aligned}
$$

sol 1.34 Option (A) is correct.
Given $\quad x \frac{d y}{d x}+y=x^{4}$

$$
\begin{equation*}
\frac{d y}{d x}+\left(\frac{1}{x}\right) y=x^{3} \tag{i}
\end{equation*}
$$

It is a single order differential equation. Compare this with $\frac{d y}{d x}+P y=Q$ and we get

$$
\mathrm{P}=\frac{1}{\mathrm{X}} \quad \mathrm{Q}=\mathrm{x}^{3}
$$

Its solution will be

$$
\begin{aligned}
\mathrm{y}(\text { I.F. }) & =\int \mathrm{Q}(\text { I.F. }) \mathrm{dx}+C \\
\text { I.F. } & =\mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\int \frac{1}{\mathrm{x}} \mathrm{dx}}=\mathrm{e}^{\log _{\mathrm{e}} \mathrm{x}}=\mathrm{x}
\end{aligned}
$$

Complete solution is given by,

$$
\begin{equation*}
y x=\int x^{3} x x d x+C=\int x^{4} d x+C=\frac{x^{5}}{5}+C \tag{ii}
\end{equation*}
$$

and $y(1)=\frac{6}{5}$ at $x=1 \Rightarrow y=\frac{6}{5}$ From equation (ii),

$$
\frac{6}{5} \times 1=\frac{1}{5}+C \Rightarrow C=\frac{6}{5}-\frac{1}{5}=1
$$

Then, from equation (ii), we get

$$
y x=\frac{x^{5}}{5}+1 \Rightarrow y=\frac{x^{4}}{5}+\frac{1}{x}
$$

SOL 1.35 Option (B) is correct.
The equation of circle with unit radius and centre at origin is given by,

$$
x^{2}+y^{2}=1
$$

Finding the integration of $(x+y)^{2}$ on path $A B$ traversed in counter-clockwise sense So using the polar form
Let: $x=\cos \theta, y=\sin \theta$, and $r=1$
So put the value of x and y and limits in first quadrant between 0 to $\pi / 2$.
Hence,

$$
\begin{aligned}
\text { I } & =\int_{0}^{\pi / 2}(\cos \theta+\sin \theta)^{2} d \theta \\
& =\int_{0}^{\pi / 2}\left(\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta\right) \mathrm{d} \theta \\
& =\int_{0}^{\pi / 2}(1+\sin 2 \theta) \mathrm{d} \theta
\end{aligned}
$$

Integrating above equation, we get

$$
=\left[\theta-\frac{\cos 2 \theta}{2}\right]_{0}^{\pi / 2}=\left[\left(\frac{\pi}{2}-\frac{\cos \pi}{2}\right)-\left(0-\frac{\cos 0}{2}\right)\right]
$$

$$
=\left(\frac{\pi}{2}+\frac{1}{2}\right)-\left(-\frac{1}{2}\right)=\frac{\pi}{2}+1
$$

SOL 1.36 Option (A) is correct.
The given equation of surface is

$$
\begin{equation*}
z^{2}=1+x y \tag{i}
\end{equation*}
$$

Let $P(x, y, z)$ be the nearest point on the surface (i), then distance from the origin is

$$
\begin{align*}
d & =\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}} \\
d^{2} & =x^{2}+y^{2}+z^{2} \\
z^{2} & =d^{2}-x^{2}-y^{2} \tag{ii}
\end{align*}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
d^{2}-x^{2}-y^{2} & =1+x y \\
d^{2} & =x^{2}+y^{2}+x y+1
\end{aligned}
$$

Let

$$
\begin{equation*}
f(x, y)=d^{2}=x^{2}+y^{2}+x y+1 \tag{iii}
\end{equation*}
$$

The $f(x, y)$ be the maximum or minimum according to d^{2} maximum or minimum.
Differentiating equation (iii) w.r.t x and y respectively, we get

$$
\frac{\partial f}{\partial x}=2 x+y \text { or } \frac{\partial f}{\partial y}=2 y+x
$$

Applying maxima minima principle and putting $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ equal to zero,

$$
\frac{\partial f}{\partial x}=2 x+y=0 \text { or } \frac{\partial f}{\partial y}=2 y+x=0
$$

Solving these equations, we get $x=0, y=0$
So, $x=y=0$ is only one stationary point.
Now

$$
\begin{aligned}
p & =\frac{\partial^{2} f}{\partial x^{2}}=2 \\
q & =\frac{\partial^{2} f}{\partial x \partial y}=1 \\
r & =\frac{\partial^{2} f}{\partial y^{2}}=2 \\
p r-q^{2} & =4-1=3>0 \text { and } r \text { is positive. } \\
f(x, y) & =d^{2} \text { is minimum at }(0,0) .
\end{aligned}
$$

or
So,
Hence minimum value of d^{2} at $(0,0)$.

$$
\begin{aligned}
& d^{2}=x^{2}+y^{2}+x y+1=1 \\
& d=1 \text { or } f(x, y)=1
\end{aligned}
$$

So, the nearest point is

$$
\begin{aligned}
& \\
\Rightarrow \quad z^{2} & =1+x y=1+0 \\
z & = \pm 1
\end{aligned}
$$

SOL 1.37 Option (A) is correct.
Given : $y^{2}=4 x$ and $x^{2}=4 y$ draw the curves from the given equations,

The shaded area shows the common area. Now finding the intersection points of the curves.

$$
y^{2}=4 x=4 \sqrt{4 y}=8 \sqrt{y} \quad x=\sqrt{4 y} \text { From second curve }
$$

Squaring both sides

$$
\begin{aligned}
y^{4} & =8 \times 8 \times y \Rightarrow y\left(y^{3}-64\right)=0 \\
y & =4 \& 0
\end{aligned}
$$

Similarly put $y=0$ in curve $x^{2}=4 y$

$$
x^{2}=4 \times 0=0 \Rightarrow x=0
$$

And Put

$$
\begin{aligned}
y & =4 \\
x^{2} & =4 \times 4=16 \quad x=4 \\
x & =4,0
\end{aligned}
$$

So,
Therefore the intersection points of the curves are $(0,0)$ and $(4,4)$.
So the enclosed area is given by

$$
A=\int_{x_{1}}^{x_{2}}\left(y_{1}-y_{2}\right) d x
$$

Put y_{1} and y_{2} from the equation of curves $y^{2}=4 x$ and $x^{2}=4 y$

$$
\begin{aligned}
A & =\int_{0}^{4}\left(\sqrt{4 x}-\frac{x^{2}}{4}\right) d x \\
& =\int_{0}^{4}\left(2 \sqrt{x}-\frac{x^{2}}{4}\right) d x=2 \int_{0}^{4} \sqrt{x} d x-\frac{1}{4} \int_{0}^{4} x^{2} d x
\end{aligned}
$$

Integrating the equation, we get

$$
\begin{aligned}
A & =2\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{4}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4} \\
& =\frac{4}{3} \times 4^{3 / 2}-\frac{1}{4} \times \frac{4^{3}}{3}=\frac{4}{3} \times 8-\frac{16}{3}=\frac{16}{3}
\end{aligned}
$$

SOL 1.38 Option (A) is correct.
The cumulative distribution function

$$
f(x)= \begin{cases}0, & x \leq a \\ \frac{x-a}{b-a}, & a<x<b \\ 0, & x \geq b\end{cases}
$$

and density function

M ean

$$
\begin{aligned}
f(x) & = \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\
0, & a>x, x>b\end{cases} \\
E(x) & =\sum_{x=a}^{b} x f(x)=\frac{a+b}{2} \\
\text { Variance } & =x^{2} f(x)-x^{2}=x^{2} f(x)-[x f(x)]^{2}
\end{aligned}
$$

Substitute the value of $f(x)$

$$
\begin{aligned}
\text { Variance } & =\sum_{x=a}^{b} x^{2} \frac{1}{b-a} d x-\left\{\sum_{x=a}^{b} x \frac{1}{b-a} d x\right\}^{2} \\
& =\left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b}-\left[\left\{\frac{x^{2}}{2(b-a)}\right\}_{a}^{b}\right]^{2} \\
& =\frac{b^{3}-a^{3}}{3(b-a)}-\frac{\left(b^{2}-a^{2}\right)^{2}}{4(b-a)^{2}} \\
& =\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}-\frac{(b+a)^{2}(b-a)^{2}}{4(b-a)^{2}} \\
& =\frac{4\left(b^{2}+a b+a^{2}\right)+3(a+b)^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Standard deviation $=\sqrt{\text { Variance }}=\sqrt{\frac{(b-a)^{2}}{12}}=\frac{(b-a)}{\sqrt{12}}$
Given: $b=1, a=0$
Given : $b=1, a=0$
So, standard deviation $=\frac{1-0}{\sqrt{12}}=\frac{1}{\sqrt{12}}$

SOL 1.39 Option (C) is correct.
Taylor's series expansion of $f(x)$ is given by,

$$
f(x)=f(a)+\frac{(x-a)}{\underline{1}} f^{\prime}(a)+\frac{(x-a)^{2}}{\underline{2}} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{\underline{3}} f^{\prime \prime \prime}(a)+\ldots
$$

Then from this expansion the coefficient of $(x-a)^{4}$ is $\frac{f^{\prime \prime \prime}(a)}{\boxed{4}}$
Given

$$
\begin{aligned}
\mathrm{a} & =2 \\
\mathrm{f}(\mathrm{x}) & =\mathrm{e}^{\mathrm{x}} \\
\mathrm{f}^{\prime}(\mathrm{x}) & =\mathrm{e}^{\mathrm{x}} \\
\mathrm{f}^{\prime \prime}(\mathrm{x}) & =\mathrm{e}^{\mathrm{x}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime \prime \prime}(x) & =e^{x} \\
f^{\prime \prime \prime \prime}(x) & =e^{x}
\end{aligned}
$$

Hence, for $a=2$ the coefficient of $(x-a)^{4}$ is $\frac{e^{2}}{4}$
sol 1.40 Option (D) is correct.
Given: $\quad \ddot{x}+3 x=0$ and $x(0)=1$

$$
\left(D^{2}+3\right) x=0
$$

$D=\frac{d}{d t}$
The auxiliary Equation is written as

$$
\begin{aligned}
\mathrm{m}^{2}+3 & =0 \\
m & = \pm \sqrt{3} i=0 \pm \sqrt{3} i
\end{aligned}
$$

Here the roots are imaginary

$$
m_{1}=0 \text { and } m_{2}=\sqrt{3}
$$

Solution is given by

$$
\begin{align*}
x & =e^{m t}\left(A \cos m_{2} t+B \sin m_{2} t\right) \\
& =e^{0}[A \cos \sqrt{3} t+B \sin \sqrt{3} t] \\
& =[A \cos \sqrt{3} t+B \sin \sqrt{3} t] \tag{i}
\end{align*}
$$

Given: $\quad x(0)=1$ at $t=0, x=1$
Substituting in equation (i),

$$
\begin{aligned}
1 & =[A \cos \sqrt{3}(0)+B \sin \sqrt{3}(0)]=A+0 \\
A & =1
\end{aligned}
$$

Differentiateing equation (i) w.r.t. t,
Given

$$
\begin{align*}
\dot{x} & =\sqrt{3}[-A \sin \sqrt{3} t+B \cos \sqrt{3} t] \tag{ii}\\
\dot{x}(0) & =0 \quad \text { at } t=0, \quad \dot{x}=0
\end{align*}
$$

Substituting in equation (ii), we get

$$
\begin{aligned}
0 & =\sqrt{3}[-A \sin 0+B \cos 0] \\
B & =0
\end{aligned}
$$

Substituting $A \& B$ in equation (i)

$$
\begin{aligned}
x & =\cos \sqrt{3} t \\
x(1) & =\cos \sqrt{3}=0.99
\end{aligned}
$$

sol 1.41 Option (B) is correct.
Let

$$
\begin{array}{rlr}
f(x) & =\lim _{x \rightarrow 8} \frac{x^{1 / 3}-2}{(x-8)} & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 8} \frac{\frac{1}{3} x^{-2 / 3}}{1} \quad \text { Applying L-H ospital rule }
\end{array}
$$

Substitute the limits, we get

$$
f(x)=\frac{1}{3}(8)^{-2 / 3}=\frac{1}{3}\left(2^{3}\right)^{-2 / 3}=\frac{1}{4 \times 3}=\frac{1}{12}
$$

SOL 1.42 Option (A) is correct.
In a coin probability of getting Head

$$
\mathrm{p}=\frac{1}{2}=\frac{\text { No. of P ossible cases }}{\text { No. of T otal cases }}
$$

Probability of getting tail

$$
\mathrm{q}=1-\frac{1}{2}=\frac{1}{2}
$$

So the probability of getting Heads exactly three times, when coin is tossed 4 times is

$$
\begin{aligned}
P & ={ }^{4} C_{3}(p)^{3}(q)^{1}={ }^{4} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{1} \\
& =4 \times \frac{1}{8} \times \frac{1}{2}=\frac{1}{4}
\end{aligned}
$$

sol 1.43 Option (C) is correct.

Let,

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 0 & 6 \\
1 & 1 & p
\end{array}\right]
$$

Let the eigen values of this matrix are $\lambda_{1}, \lambda_{2} \& \lambda_{3}$
Here one values is given so let $\lambda_{1}=3$
We know that
Sum of eigen values of matrix $=$ Sum of the diagonal element of matrix A

$$
\begin{aligned}
\lambda_{1}+\lambda_{2}+\lambda_{3} & =1+0+\mathrm{p} \\
\lambda_{2}+\lambda_{3} & =1+\mathrm{p}-\lambda_{1}=1+\mathrm{p}-3=\mathrm{p}-2
\end{aligned}
$$

SOL 1.44 Option (D) is correct.
We know that the divergence is defined as $\nabla \cdot \mathbf{V}$
Let

$$
\mathbf{V}=(x-y) \mathbf{i}+(y-x) \mathbf{j}+(x+y+z) \mathbf{k}
$$

And

$$
\nabla=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right)
$$

So, $\quad \nabla \cdot \mathbf{V}=\left(\frac{\partial}{\partial \mathrm{x}} \mathbf{i}+\frac{\partial}{\partial \mathrm{y}} \mathbf{j}+\frac{\partial}{\partial \mathrm{z}} \mathbf{k}\right) \cdot[(\mathrm{x}-\mathrm{y}) \mathbf{i}+(\mathrm{y}-\mathrm{x}) \mathbf{j}+(\mathrm{x}+\mathrm{y}+\mathrm{z}) \mathbf{k}]$

$$
=\frac{\partial}{\partial x}(x-y)+\frac{\partial}{\partial y}(y-x)+\frac{\partial}{\partial z}(x+y+z)
$$

$$
=1+1+1=3
$$

SOL 1.45 Option (A) is correct.
Given :

The equation of line in intercept form is given by

$$
\begin{aligned}
\frac{x}{2}+\frac{y}{1} & =1 & \frac{x}{a}+\frac{y}{b}=1 \\
x+2 y=2 & \Rightarrow x=2(1-y) &
\end{aligned}
$$

The limit of x is between 0 to $x=2(1-y)$ and y is 0 to 1 ,
Now $\quad \iint_{p} x y d x d y=\int_{y=0}^{y=1} \int_{x=0}^{2(1-y)} x y d x d y=\int_{y=0}^{y=1}\left[\frac{x^{2}}{2}\right]_{0}^{2(1-y)} y d y$

$$
=\int_{y=0}^{y=1} y\left[\frac{4(1-y)^{2}}{2}-0\right] d y
$$

$$
=\int_{y=0}^{y=1} 2 y\left(1+y^{2}-2 y\right) d y=\int_{y=0}^{y=1} 2\left(y+y^{3}-2 y^{2}\right) d y
$$

A gain Integrating and substituting the limits, we get

$$
\begin{aligned}
\iint_{p} x y d x d y & =2\left[\frac{y^{2}}{2}+\frac{y^{4}}{4}-\frac{2 y^{3}}{3}\right]_{0}^{1}=2\left[\frac{1}{2}+\frac{1}{4}-\frac{2}{3}-0\right] \\
& =2\left[\frac{6+3-8}{12}\right]=\frac{2}{12}=\frac{1}{6}
\end{aligned}
$$

SOL 1.46 Option (B) is correct.
Direction derivative of a function f along a vector \mathbf{P} is given by

$$
\mathbf{a}=\operatorname{grad} \mathrm{f} \cdot \frac{\mathbf{a}}{\mathbf{a} \mid}
$$

where

$$
\begin{aligned}
\operatorname{grad} \mathrm{f} & =\left(\frac{\partial \mathrm{f}}{\partial \mathrm{x}} \mathbf{i}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}} \mathbf{j}+\frac{\partial \mathrm{f}}{\partial \mathrm{z}} \mathbf{k}\right) \\
\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =\mathrm{x}^{2}+2 \mathrm{y}^{2}+\mathrm{z}, \mathbf{a}=3 \mathbf{i}-4 \mathbf{j} \\
\mathbf{a} & =\operatorname{grad}\left(\mathrm{x}^{2}+2 \mathrm{y}^{2}+\mathrm{z}\right) \cdot \frac{3 \mathbf{i}-4 \mathbf{j}}{\sqrt{(3)^{2}+(-4)^{2}}} \\
& =(2 \mathrm{x} \mathbf{i}+4 \mathrm{y} \mathbf{j}+\mathbf{k}) \cdot \frac{(3 \mathbf{i}-4 \mathbf{j})}{\sqrt{25}}=\frac{6 \mathrm{x}-16 \mathrm{y}}{5}
\end{aligned}
$$

At point $P(1,1,2)$ the direction derivative is

$$
\mathbf{a}=\frac{6 \times 1-16 \times 1}{5}=-\frac{10}{5}=-2
$$

SOL 1.47 Option (B) is correct.
Given: $\quad 2 x+3 y=4$

$$
\begin{array}{r}
x+y+z=4 \\
x+2 y-z=a
\end{array}
$$

It is a set of non-homogenous equation, so the augmented matrix of this system is

$$
\begin{array}{rlr}
{[A: B]} & =\left[\begin{array}{rrrlr}
2 & 3 & 0 & : & 4 \\
1 & 1 & 1 & : & 4 \\
1 & 2 & -1 & : & a
\end{array}\right] \\
& \sim\left[\begin{array}{rrrlr}
2 & 3 & 0 & : & 4 \\
0 & -1 & 2 & : & 4 \\
2 & 3 & 0 & : & 4+a
\end{array}\right] \quad R_{3} \rightarrow R_{3}+R_{2}, R_{2} \rightarrow 2 R_{2}-R_{1} \\
& \sim\left[\begin{array}{rrrll}
2 & 3 & 0 & : & 4 \\
0 & -1 & 2 & : & 4 \\
0 & 0 & 0 & : & a
\end{array}\right]
\end{array}
$$

So, for a unique solution of the system of equations, it must have the condition

$$
\rho[\mathrm{A}: \mathrm{B}]=\rho[\mathrm{A}]
$$

So, when putting $\mathrm{a}=0$
We get $\quad \rho[\mathrm{A}: \mathrm{B}]=\rho[\mathrm{A}]$

SOL 1.48 Option (D) is correct.
Here we check all the four options for unbounded condition.
(A)

$$
\begin{aligned}
\int_{0}^{\pi / 4} \tan x d x & =\left[\left.\log |\sec x|\right|_{0} ^{\pi / 4}=\left[\log \left|\sec \frac{\pi}{4}\right|-\log |\sec 0|\right]\right. \\
& =\log \sqrt{2}-\log 1=\log \sqrt{2}
\end{aligned}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\mathrm{x}^{2}+1} \mathrm{dx}=\left[\tan ^{-1} \mathrm{x}\right]_{0}^{\infty}=\tan ^{-1} \infty-\tan ^{-1}(0)=\frac{\pi}{2}-0=\frac{\pi}{2} \tag{B}
\end{equation*}
$$

(C) $\quad \int_{0}^{\infty} x e^{-x} d x$

Let

$$
\begin{aligned}
I & =\int_{0}^{\infty} \mathrm{x}^{-x} d x=x \int_{0}^{\infty} \mathrm{e}^{-x} d x-\int_{0}^{\infty}\left[\frac{d}{d x}(x) \int \mathrm{e}^{-x} d x\right] d x \\
& =\left[-x e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} \mathrm{e}^{-x} d x=\left[-x e^{-x}-e^{-x}\right]_{0}^{\infty}=\left[-e^{-x}(x+1)\right]_{0}^{\infty} \\
& =-[0-1]=1
\end{aligned}
$$

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{1-x} \mathrm{dx}=-\int_{0}^{1} \frac{1}{\mathrm{x}-1} \mathrm{dx}=-[\log (\mathrm{x}-1)]_{0}^{1}-[\log 0-\log (-1)] \tag{D}
\end{equation*}
$$

B oth $\log 0$ and $\log (-1)$ undefined so it is unbounded.

SOL 1.49 Option (A) is correct.
Let $\quad I=\oint f(z) d z$ and $f(z)=\frac{\cos z}{z}$

Then

$$
\begin{equation*}
I=\oint \frac{\cos z}{z} d z=\oint \frac{\cos z}{|z-0|} d z \tag{i}
\end{equation*}
$$

Given that $|z|=1$ for unit circle. From the Cauchy Integral formula

$$
\begin{equation*}
\oint \frac{f(z)}{z-a} d z=2 \pi i f(a) \tag{ii}
\end{equation*}
$$

Compare equation (i) and (ii), we can say that,

$$
a=0 \text { and } f(z)=\cos z
$$

Or,

$$
f(a)=f(0)=\cos 0=1
$$

Now from equation (ii) we get

$$
\oint \frac{f(z)}{z-0} d z=2 \pi i \times 1=2 \pi i \quad a=0
$$

SOL 1.50 Option (D) is correct.
Given

$$
\begin{equation*}
y=\frac{2}{3} x^{3 / 2} \tag{i}
\end{equation*}
$$

We know that the length of curve is given by $\int_{x_{1}}^{x_{2}}\left\{\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}\right\} d x$
Differentiate equation(i) w.r.t. x

$$
\frac{d y}{d x}=\frac{2}{3} \times \frac{3}{2} x^{\frac{3}{2}-1}=x^{1 / 2}=\sqrt{x}
$$

Substitute the limit $x_{1}=0$ to $x_{2}=1$ and $\frac{d y}{d x}$ in equation (ii), we get

$$
\begin{aligned}
\mathcal{L} & =\int_{0}^{1}\left(\sqrt{(\sqrt{x})^{2}+1}\right) d x=\int_{0}^{1} \sqrt{x+1} d x \\
& =\left[\frac{2}{3}(x+1)^{3 / 2}\right]_{0}^{1}=1.22
\end{aligned}
$$

sol 1.51 Option (B) is correct.
Let
$A=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right] \quad \lambda_{1}$ and λ_{2} is the eigen values of the matrix.
For eigen values characteristic matrix is,

$$
\left.\begin{align*}
|A-\lambda I| & =0 \\
\left\lvert\,\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right]\right. & =0 \tag{i}\\
\mid(1-\lambda) & =0 \\
0 & (2-\lambda)
\end{aligned} \right\rvert\,=0 \begin{aligned}
(1-\lambda)(2-\lambda) & =0 \Rightarrow \lambda=1 \& 2
\end{align*}
$$

So, Eigen vector corresponding to the $\lambda=1$ is,

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
a
\end{array}\right] } & =0 \\
2 a+a & =0 \Rightarrow a=0
\end{aligned}
$$

A gain for $\lambda=2$

$$
\begin{aligned}
{\left[\begin{array}{rr}
-1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
b
\end{array}\right] } & =0 \\
-1+2 b & =0 \quad b=\frac{1}{2}
\end{aligned}
$$

Then sum of $\quad a \& b \Rightarrow a+b=0+\frac{1}{2}=\frac{1}{2}$

SOL 1.52 Option (C) is correct.
Given

$$
f(x, y)=y^{x}
$$

First partially differentiate the function w.r.t. y

$$
\frac{\partial f}{\partial y}=x y^{x-1}
$$

A gain differentiate. it w.r.t. x

$$
\frac{\partial^{2} f}{\partial x \partial y}=y^{x-1}(1)+x\left(y^{x-1} \log y\right)=y^{x-1}(x \log y+1)
$$

At : $\quad x=2, y=1$

$$
\frac{\partial^{2} f}{\partial x \partial y}=(1)^{2-1}(2 \log 1+1)=1(2 \times 0+1)=1
$$

SOL 1.53 Option (A) is correct.
Given :

$$
\begin{aligned}
y^{\prime \prime}+2 y^{\prime}+y & =0 \\
\left(D^{2}+2 D+1\right) y & =0 \quad \text { where } D=d / d x
\end{aligned}
$$

The auxiliary equation is

$$
\begin{aligned}
m^{2}+2 m+1 & =0 \\
(m+1)^{2} & =0, m=-1,-1
\end{aligned}
$$

The roots of auxiliary equation are equal and hence the general solution of the given differential equation is,

$$
\begin{equation*}
y=\left(C_{1}+C_{2} x\right) e^{m_{1} x}=\left(C_{1}+C_{2} x\right) e^{-x} \tag{i}
\end{equation*}
$$

Given $y(0)=0$ at $x=0, \quad \Rightarrow y=0$
Substitute in equation (i), we get

$$
\begin{aligned}
& 0=\left(C_{1}+C_{2} \times 0\right) \mathrm{e}^{-0} \\
& 0=C_{1} \times 1 \Rightarrow C_{1}=0
\end{aligned}
$$

A gain $y(1)=0$, at $x=1 \Rightarrow y=0$
Substitute in equation (i), we get

$$
\begin{aligned}
0 & =\left[C_{1}+C_{2} \times(1)\right] \mathrm{e}^{-1}=\left[\mathrm{C}_{1}+\mathrm{C}_{2}\right] \frac{1}{\mathrm{e}} \\
\mathrm{C}_{1}+\mathrm{C}_{2} & =0 \Rightarrow \mathrm{C}_{2}=0
\end{aligned}
$$

Substitute C_{1} and C_{2} in equation (i), we get

$$
y=(0+0 x) e^{-x}=0
$$

$$
\text { And } \quad y(0.5)=0
$$

SOL 1.54 Option (B) is correct.

$$
\begin{equation*}
\text { Given : } \quad y=x^{2} \tag{i}
\end{equation*}
$$

and interval [1,5]
At $\quad x=1 \quad \Rightarrow y=1$
And at $\quad x=5 \quad y=(5)^{2}=25$
Here the interval is bounded between 1 and 5
So, the minimum value at this interval is 1.
sol 1.55 Option (A) is correct
Let square matrix

$$
A=\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right]
$$

The characteristic equation for the eigen values is given by

$$
\begin{array}{rl}
|\mathrm{A}-\lambda| & =0 \\
\mid \mathrm{x}-\lambda \quad \mathrm{y} \\
\mathrm{y} & \mathrm{x}-\lambda
\end{array} \left\lvert\,=0 \quad \begin{aligned}
& =0 \\
(\mathrm{x}-\lambda)^{2}-\mathrm{y}^{2} & =0 \\
(\mathrm{x}-\lambda)^{2} & =\mathrm{y}^{2} \\
\mathrm{x}-\lambda & = \pm \mathrm{y} \\
\lambda & =\mathrm{x} \pm \mathrm{y}
\end{aligned}\right.
$$

So, eigen values are real if matrix is real and symmetric.

SOL 1.56 Option (B) is correct.
The Cauchy-Reimann equation, the necessary condition for a function $f(z)$ to be analytic is

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=\frac{\partial \psi}{\partial y} \\
& \frac{\partial \varphi}{\partial y}=-\frac{\partial \psi}{\partial x}
\end{aligned}
$$

when $\frac{\partial \varphi}{\partial \mathrm{x}}, \frac{\partial \varphi}{\partial \mathrm{y}}, \frac{\partial \psi}{\partial \mathrm{y}}, \frac{\partial \psi}{\partial \mathrm{x}}$ exist.

SOL 1.57 Option (A) is correct.
Given : $\frac{2^{2} \varphi}{2 x^{2}}+\frac{2^{2} \varphi}{2 y^{2}}+\frac{2 \varphi}{2 \mathrm{x}}+\frac{2 \varphi}{2 \mathrm{y}}=0$
Order is determined by the order of the highest derivative present in it.
Degree is determined by the degree of the highest order derivative present in it after the differential equation is cleared of radicals and fractions.
So, degree $=1$ and order $=2$

SOL 1.58 Option (B) is correct.
Given

$$
\begin{align*}
y & =x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}}} \tag{i}\\
y-x & =\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}}
\end{align*}
$$

Squaring both the sides,

$$
\begin{align*}
(y-x)^{2} & =x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}} \\
(y-x)^{2} & =y \tag{i}\\
y^{2}+x^{2}-2 x y & =y \tag{ii}
\end{align*}
$$

We have to find $y(2)$, put $x=2$ in equation (ii),

$$
\begin{aligned}
y^{2}+4-4 y & =y \\
y^{2}-5 y+4 & =0 \\
(y-4)(y-1) & =0 \\
y & =1,4
\end{aligned}
$$

From Equation (i) we see that
For y(2)
$y=2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots \ldots \infty}}}>2$
Therefore, $\quad y=4$
sol 1.59 Option (B) is correct.

Vector area of $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
A & =\frac{1}{2} \mathbf{B C} \times \mathbf{B A}=\frac{1}{2}(\mathbf{c}-\mathbf{b}) \times(\mathbf{a}-\mathbf{b}) \\
& =\frac{1}{2}[\mathbf{c} \times \mathbf{a}-\mathbf{c} \times \mathbf{b}-\mathbf{b} \times \mathbf{a}+\mathbf{b} \times \mathbf{b}] \\
& =\frac{1}{2}[\mathbf{c} \times \mathbf{a}+\mathbf{b} \times \mathbf{c}+\mathbf{a} \times \mathbf{b}] \\
& \mathbf{b} \times \mathbf{b}=0 \text { and } \mathbf{c} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{c}) \\
& =\frac{1}{2}[(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}-\mathbf{c})]
\end{aligned}
$$

sol 1.60 Option (C) is correct.
Given: $\quad \frac{d y}{d x}=y^{2}$ or $\frac{d y}{y^{2}}=d x$
Integrating both the sides

$$
\begin{align*}
\int \frac{d y}{y^{2}} & =\int d x \\
-\frac{1}{y} & =x+C \tag{i}
\end{align*}
$$

Given $y(0)=1$ at $\quad x=0 \quad \Rightarrow y=1$
P ut in equation (i) for the value of C

$$
-\frac{1}{1}=0+C \quad \Rightarrow C=-1
$$

From equation (i),

$$
\begin{aligned}
-\frac{1}{y} & =x-1 \\
y & =-\frac{1}{x-1}
\end{aligned}
$$

For this value of $y, x-1 \neq 0$ or $x \neq 1$
And $\quad x<1$ or $x>1$
sol 1.61 Option (A) is correct.
Let $\quad \phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{t}) \mathrm{dt}$ and $\phi(0)=0$ then $\phi^{\prime}(\mathrm{t})=\mathrm{f}(\mathrm{t})$
We know the formula of Laplace transforms of $\phi^{\prime}(\mathrm{t})$ is

$$
\begin{aligned}
\mathrm{L}\left[\phi^{\prime}(\mathrm{t})\right] & =\mathrm{sL}[\phi(\mathrm{t})]-\phi(0)=\mathrm{sL}[\phi(\mathrm{t})] & \phi(0)=0 \\
\mathrm{~L}[\phi(\mathrm{t})] & =\frac{1}{\mathrm{~s}} \mathrm{~L}\left[\phi^{\prime}(\mathrm{t})\right] &
\end{aligned}
$$

Substitute the values of $\phi(\mathrm{t})$ and $\phi^{\prime}(\mathrm{t})$, we get

$$
\begin{aligned}
\mathrm{L}\left[\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right] & =\frac{1}{\mathrm{~S}} \mathrm{~L}[\mathrm{f}(\mathrm{t})] \\
\text { or } & \mathrm{L}\left[\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]
\end{aligned}=\frac{1}{\mathrm{~s}} \mathrm{~F}(\mathrm{~s})
$$

sol 1.62 Option (A) is correct.
From the Trapezoidal M ethod

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right) \ldots . .2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \tag{i}\\
\text { Interval } h & =\frac{2 \pi-0}{8}=\frac{\pi}{4}
\end{align*}
$$

Find $\int_{0}^{2 \pi} \sin x d x$ Here $f(x)=\sin x$
Table for the interval of $\pi / 4$ is as follows

Angle θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$	0	0.707	1	0.707	0	-0.707	-1	-0.707	0

Now from equation(i),

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin x d x & =\frac{\pi}{8}[0+2(0.707+1+0.707+0-0.707-1-0.0707+0)] \\
& =\frac{\pi}{8} \times 0=0
\end{aligned}
$$

sol 1.63 Option (D) is correct.
The X and Y be two independent random variables.
So,

$$
\begin{equation*}
E(X Y)=E(X) E(Y) \tag{i}
\end{equation*}
$$

\& covariance is defined as

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =E(X) E(Y)-E(X) E(Y) \\
& =0
\end{aligned}
$$

From eqn. (i)

For two independent random variables

$$
\begin{aligned}
& \operatorname{Var}(X+Y)
\end{aligned}=\operatorname{Var}(X)+\operatorname{Var}(Y),
$$

So, option (D) is incorrect.

SOL 1.64 Option (B) is correct.

$$
\text { Let, } \begin{aligned}
f(x) & =\lim _{x \rightarrow 0} \frac{e^{x}-\left(1+x+\frac{x^{2}}{2}\right)}{x^{3}} & & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{3 x^{2}} & & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-1}{6 x} & & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{6}=\frac{e^{0}}{6}=\frac{1}{6} & &
\end{aligned}
$$

SOL 1.65 Option (B) is correct.
Let,

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Let λ is the eigen value of the given matrix then characteristic matrix is

$$
\begin{aligned}
&|A-\lambda| \mid=0 \quad \text { Here I }=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\text { I dentity matrix } \\
&\left|\begin{array}{rr}
\mid-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right|=0 \\
&(2-\lambda)^{2}=0 \\
& \lambda=2,2
\end{aligned}
$$

So, only one eigen vector.

SOL 1.66 Option (D) is correct.

Column I

P. Gauss-Seidel method
Q. Forward Newton-G auss method
R. Runge-K utta method
S. Trapezoidal Rule
4. Linear algebraic equation

1. Interpolation
2. Non-linear differential equation
3. Numerical integration

So, correct pairs are, P-4, Q-1, R-2, S-3
soL 1.67 Option (B) is correct.
Given: $\quad \frac{d y}{d x}+2 x y=e^{-x^{2}}$ and $y(0)=1$
It is the first order linear differential equation so its solution is

$$
y(I . F .)=\int Q(I . F .) d x+C
$$

compare with
I.F. $=\mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\int 2 \mathrm{xdx}}$

$$
=\mathrm{e}^{2 \int \mathrm{xdx}}=\mathrm{e}^{2 \times \frac{\mathrm{x}^{2}}{2}}=\mathrm{e}^{\mathrm{x}^{2}}
$$

$$
\frac{d y}{d x}+P(y)=Q
$$

The complete solution is,

$$
\begin{aligned}
y e^{x^{2}} & =\int e^{-x^{2}} \times e^{x^{2}} d x+C \\
& =\int d x+C=x+C \\
y & =\frac{x+c}{e^{x^{2}}}
\end{aligned}
$$

$$
y(0)=1
$$

At

$$
x=0 \Rightarrow y=1
$$

Substitute in equation (i), we get

$$
1=\frac{C}{1} \Rightarrow C=1
$$

Then

$$
y=\frac{x+1}{e^{x^{2}}}=(x+1) e^{-x^{2}}
$$

sol 1.68 Option (C) is correct.
The incorrect statement is, $S=\{x: x \in A$ and $x \in B\}$ represents the union of setA and set B.
The above symbol (\in) denotes intersection of set A and set B. Therefore this statement is incorrect.
soL 1.69 Option (D) is correct.
Total number of items $=100$

Number of defective items $=20$
Number of N on-defective items $=80$
Then the probability that both items are defective, when 2 items are selected at random is,

$$
P=\frac{{ }^{2} C_{2}{ }^{80} C_{0}}{{ }^{100} C_{2}}=\frac{\frac{20!}{18!2!}}{\frac{100!}{98!2!}}=\frac{\frac{20 \times 19}{2}}{\frac{100 \times 99}{2}}=\frac{19}{495}
$$

Alternate M ethod :

Here two items are selected without replacement.
Probability of first item being defective is

$$
P_{1}=\frac{20}{100}=\frac{1}{5}
$$

A fter drawing one defective item from box, there are 19 defective items in the 99 remaining items.
Probability that second item is defective,

$$
P_{2}=\frac{19}{899}
$$

then probability that both are defective

$$
P=P_{1} \times P_{2}=\frac{1}{5} \times \frac{19}{99}=\frac{19}{495}
$$

sol 1.70 Option (A) is correct.
Given :

$$
S=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

Eigen values of this matrix is 5 and 1 . We can say $\lambda_{1}=1 \quad \lambda_{2}=5$
Then the eigen value of the matrix

$$
\mathrm{S}^{2}=\mathrm{S} S \text { is } \lambda_{1}^{2}, \lambda_{2}^{2}
$$

Because. if $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots$. are the eigen values of A, then eigen value of A^{m} are $\lambda_{1}^{m}, \lambda_{2}^{m}, \lambda_{3}^{m} \ldots$.
Hence matrix S^{2} has eigen values $(1)^{2}$ and $(5)^{2} \Rightarrow 1$ and 25
sol 1.71 Option (B) is correct.
Given $\quad f(x)=(x-8)^{2 / 3}+1$
The equation of line normal to the function is

$$
\begin{equation*}
\left(y-y_{1}\right)=m_{2}\left(x-x_{1}\right) \tag{i}
\end{equation*}
$$

Slope of tangent at point $(0,5)$ is

$$
\begin{aligned}
& m_{1}=f^{\prime}(x)=\left[\frac{2}{3}(x-8)^{-1 / 3}\right]_{(0,5)} \\
& m_{1}=f^{\prime}(x)=\frac{2}{3}(-8)^{-1 / 3}=-\frac{2}{3}\left(2^{3}\right)^{-\frac{1}{3}}=-\frac{1}{3}
\end{aligned}
$$

We know the slope of two perpendicular curves is -1 .

$$
\begin{aligned}
m_{1} m_{2} & =-1 \\
m_{2} & =-\frac{1}{m_{1}}=\frac{-1}{-1 / 3}=3
\end{aligned}
$$

The equation of line, from equation (i) is

$$
\begin{aligned}
(y-5) & =3(x-0) \\
y & =3 x+5
\end{aligned}
$$

SOL 1.72 Option (A) is correct.
Let

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\int_{0}^{\pi / 3} \mathrm{e}^{\mathrm{it}} \mathrm{dt}=\left[\frac{\mathrm{e}^{\mathrm{it}}}{\mathrm{i}}\right]_{0}^{\pi / 3} \Rightarrow \frac{\mathrm{e}^{\mathrm{i} \pi / 3}}{\mathrm{i}}-\frac{\mathrm{e}^{0}}{\mathrm{i}} \\
& =\frac{1}{\mathrm{i}}\left[\mathrm{e}^{\frac{\pi}{3}}-1\right]=\frac{1}{\mathrm{i}}\left[\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}-1\right] \\
& =\frac{1}{\mathrm{i}}\left[\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}-1\right]=\frac{1}{\mathrm{i}}\left[-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}\right] \\
& =\frac{1}{\mathrm{i}} \times \frac{\mathrm{i}}{\mathrm{i}}\left[-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}\right]=-\mathrm{i}\left[-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}\right] \quad \mathrm{i}^{2}=-1 \\
& =\mathrm{i}\left[\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}\right]=\frac{1}{2} \mathrm{i}-\frac{\sqrt{3}}{2} \mathrm{i}^{2}=\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}
\end{aligned}
$$

sol 1.73 Option (B) is correct.
Given

$$
f(x)=\frac{2 x^{2}-7 x+3}{5 x^{2}-12 x-9}
$$

Then

$$
\begin{array}{rlr}
\lim _{x \rightarrow 3} f(x) & =\lim _{x \rightarrow 3} \frac{2 x^{2}-7 x+3}{5 x^{2}-12 x-9} \\
& =\lim _{x \rightarrow 3} \frac{4 x-7}{10 x-12} \quad \text { Applying L - Hospital rule }
\end{array}
$$

Substitute the limit, we get

$$
\lim _{x \rightarrow 3} f(x)=\frac{4 \times 3-7}{10 \times 3-12}=\frac{12-7}{30-12}=\frac{5}{18}
$$

sol 1.74 Option (A) is correct.
(P) Singular M atrix \rightarrow Determinant is zero $|A|=0$
(Q) Non-square matrix \rightarrow A $\mathrm{m} \times \mathrm{n}$ matrix for which $\mathrm{m} \neq \mathrm{n}$, is called nonsquare matrix. Its determinant is not defined
(R) R eal Symmetric M atrix \rightarrow Eigen values are always real.
(S) Orthogonal Matrix \rightarrow A square matrix A is said to be orthogonal if $A A^{\top}=1$
Its determinant is always one.
sol 1.75 Option (B) is correct.

Given: $\quad \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=3 e^{2 x}$

$$
\left[D^{2}+4 D+3\right] y=3 e^{2 x}
$$

The auxiliary Equation is,

$$
\frac{d}{d x}=D
$$

$$
\begin{aligned}
\mathrm{m}^{2}+4 \mathrm{~m}+3 & =0 \Rightarrow \mathrm{~m}=-1,-3 \\
\text { C.F. } & =\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-3 x}
\end{aligned}
$$

Then

$$
\text { P.I. }=\frac{3 e^{2 x}}{D^{2}+4 D+3}=\frac{3 e^{2 x}}{(D+1)(D+3)} \quad \text { Put } D=2
$$

$$
=\frac{3 e^{2 x}}{(2+1)(2+3)}=\frac{3 e^{2 x}}{3 \times 5}=\frac{e^{2 x}}{5}
$$

sol 1.76 Option (C) is correct.
Given $\quad \mathrm{EF}=\mathrm{G} \quad$ where $\mathrm{G}=\mathrm{I}=$ I dentity matrix

$$
\left[\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \times F=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We know that the multiplication of a matrix and its inverse be a identity matrix

$$
{A A^{-1}}^{-1}
$$

So, we can say that F is the inverse matrix of E

$$
\begin{aligned}
\mathrm{F}= & \mathrm{E}^{-1}=\frac{[\mathrm{adj} . \mathrm{E}]}{|\mathrm{E}|} \\
& \operatorname{adjE}=\left[\begin{array}{rrr}
\cos \theta & -(\sin \theta) & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
|\mathrm{E}| & =[\cos \theta \times(\cos \theta-0)]-[(-\sin \theta) \times(\sin \theta-0)]+0 \\
& =\cos ^{2} \theta+\sin ^{2} \theta=1 \\
\text { Hence, } \quad \mathrm{F} & =\frac{[\operatorname{adj} . \mathrm{E}]}{|\mathrm{E}|}=\left[\begin{array}{rrr}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

soL 1.77 Option (B) is correct.
The probability density function is,

$$
f(t)= \begin{cases}1+t & \text { for }-1 \leq t \leq 0 \\ 1-t & \text { for } 0 \leq t \leq 1\end{cases}
$$

For standard deviation first we have to find the mean and variance of the function.

$$
\begin{aligned}
\text { M ean }(t) & =\int_{-1}^{\infty} \mathrm{tf}(\mathrm{t}) \mathrm{dt}=\int_{-1}^{0} \mathrm{t}(1+\mathrm{t}) \mathrm{dt}+\int_{0}^{1} \mathrm{t}(1-\mathrm{t}) \mathrm{dt} \\
& =\int_{-1}^{0}\left(\mathrm{t}+\mathrm{t}^{2}\right) \mathrm{dt}+\int_{0}^{1}\left(\mathrm{t}-\mathrm{t}^{2}\right) \mathrm{dt}
\end{aligned}
$$

$$
=\left[\frac{\mathrm{t}^{2}}{2}+\frac{\mathrm{t}^{3}}{3}\right]_{-1}^{0}+\left[\frac{\mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{3}}{3}\right]_{0}^{1}=\left[-\frac{1}{2}+\frac{1}{3}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]=0
$$

And variance $\left(\sigma^{2}\right)=\int_{-\infty}^{\infty}(t-t)^{2} f(t) d t$ $\mathrm{t}=0$

$$
=\int_{-1}^{0} t^{2}(1+t) d t+\int_{0}^{1} t^{2}(1-t) d t
$$

$$
=\int_{-1}^{0}\left(t^{2}+t^{3}\right) d t+\int_{0}^{1}\left(t^{2}-t^{3}\right) d t
$$

$$
=\left[\frac{t^{3}}{3}+\frac{t^{4}}{4}\right]_{-1}^{0}+\left[\frac{t^{3}}{3}-\frac{t^{4}}{4}\right]_{0}^{1}
$$

$$
=-\left[-\frac{1}{3}+\frac{1}{4}\right]+\left[\frac{1}{3}-\frac{1}{4}-0\right]=\frac{1}{12}+\frac{1}{12}=\frac{1}{6}
$$

Now, standard deviation

$$
\sqrt{\left(\sigma^{2}\right)} s=\sqrt{\frac{1}{6}}=\frac{1}{\sqrt{6}}
$$

sol 1.78 Option (A) is correct.
The Stokes theorem is,

$$
\oint_{C} \mathbf{F} \cdot \mathrm{dr}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n d S}=\iint_{S}(\operatorname{Cur|} \mathbf{F}) \cdot \mathrm{dS}
$$

Here we can see that the line integral $\oint \mathbf{F} \cdot d r$ and surface integral $\iint_{5}(\operatorname{Curl} \mathbf{F}) \cdot d s$ is related to the stokes theorem.

SOL 1.79 Option (B) is correct.
Let, $\quad P=$ defective items

$$
\mathrm{Q}=\text { non-defective items }
$$

10% items are defective, then probability of defective items

$$
P=0.1
$$

Probability of non-defective item

$$
\mathrm{Q}=1-0.1=0.9
$$

The Probability that exactly 2 of the chosen items are defective is

$$
\begin{aligned}
& ={ }^{10} \mathrm{C}_{2}(\mathrm{P})^{2}(Q)^{8}=\frac{10!}{8!2!}(0.1)^{2}(0.9)^{8} \\
& =45 \times(0.1)^{2} \times(0.9)^{8}=0.1937
\end{aligned}
$$

SOL 1.80 Option (A) is correct.
Let $\quad f(x)=\int_{-a}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$

$$
=\int_{-a}^{a} \sin ^{6} x d x+\int_{-a}^{a} \sin ^{7} x d x
$$

We know that

$$
\int_{-a}^{a} f(x) d x= \begin{cases}0 & \text { when } f(-x)=-f(x) ; \text { odd function } \\ 2 \int_{0}^{a} f(x) & \text { when } f(-x)=f(x) ; \text { even function }\end{cases}
$$

Now, here $\sin ^{6} x$ is an even function and $\sin ^{7} x$ is an odd function. Then,

$$
f(x)=2 \int_{0}^{a} \sin ^{6} x d x+0=2 \int_{0}^{a} \sin ^{6} x d x
$$

sol 1.81 Option (C) is correct.
We know, from the Echelon form the rank of any matrix is equal to the Number of non zero rows.
Here order of matrix is 3×4, then, we can say that the Highest possible rank of this matrix is 3 .

SOL 1.82 Option (A) is correct.
Given

$$
I=\int_{0}^{8} \int_{\pi / 4}^{2} f(x, y) d y d x
$$

We can draw the graph from the limits of the integration, the limit of y is from $y=\frac{x}{4}$ to $y=2$. For x the limit is $x=0$ to $x=8$

Here we change the order of the integration. The limit of x is 0 to 8 but we have to find the limits in the form of y then $x=0$ to $x=4 y$ and limit of y is 0 to 2
So $\int_{0}^{8} \int_{x / 4}^{2} f(x, y) d y d x=\int_{0}^{2} \int_{0}^{4 y} f(x, y) d x d y=\int_{r}^{s} \int_{p}^{q} f(x, y) d x d y$
Comparing the limits and get
$r=0, s=2, p=0, q=4 y$
sol 1.83 Option (A) is correct.
Let, $\quad A=\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 1\end{array}\right]$
The characteristic equation for eigen values is given by,

$$
\begin{aligned}
|A-\lambda I| & =0 \\
A & =\left|\begin{array}{rrrr}
5-\lambda & 0 & 0 & 0 \\
0 & 5-\lambda & 0 & 0 \\
0 & 0 & 2-\lambda & 1 \\
0 & 0 & 3 & 1-\lambda
\end{array}\right|=0
\end{aligned}
$$

Solving this, we get

$$
\begin{array}{r}
(5-\lambda)(5-\lambda)[(2-\lambda)(1-\lambda)-3]=0 \\
(5-\lambda)^{2}\left[2-3 \lambda+\lambda^{2}-3\right]=0 \\
(5-\lambda)^{2}\left(\lambda^{2}-3 \lambda-1\right)=0
\end{array}
$$

So,

$$
(5-\lambda)^{2}=0 \Rightarrow \lambda=5,5 \text { and } \lambda^{2}-3 \lambda-1=0
$$

$$
\lambda=\frac{-(-3) \pm \sqrt{9+4}}{2}=\frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}
$$

The eigen values are $\lambda=5,5, \frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}$

Let

$$
X_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

be the eigen vector for the eigen value $\lambda=5$
Then,

$$
\begin{aligned}
(A-\lambda I) X_{1} & =0 \\
(A-5 I) X_{1} & =0 \\
{\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -3 & 1 \\
0 & 0 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] } & =0 \\
-3 x_{3}+x_{4} & =0 \\
3 x_{3}-4 x_{4} & =0
\end{aligned}
$$

or

This implies that $x_{3}=0, x_{4}=0$
Let $\quad x_{1}=k_{1}$ and $x_{2}=k_{2}$

So, eigen vector,

$$
X_{1}=\left[\begin{array}{c}
k_{1} \\
k_{2} \\
0 \\
0
\end{array}\right]
$$

where $k_{1}, k_{2} \varepsilon R$

SOL 1.84 Option (C) is correct.
Given: $\quad x+y=2$

$$
\begin{equation*}
1.01 x+0.99 y=b, d b=1 \text { unit } \tag{i}
\end{equation*}
$$

We have to find the change in x in the solution of the system. So reduce y

From the equation (i) and (ii).
Multiply equation (i) by 0.99 and subtract from equation (ii)

$$
\begin{aligned}
1.01 x+0.99 y-(0.99 x+0.99 y) & =b-1.98 \\
1.01 x-0.99 x & =b-1.98 \\
0.02 x & =b-1.98
\end{aligned}
$$

Differentiating both the sides, we get

$$
\begin{aligned}
0.02 \mathrm{dx} & =\mathrm{db} \\
\mathrm{dx} & =\frac{1}{0.02}=50 \text { unit } \quad \mathrm{db}=1
\end{aligned}
$$

SOL 1.85 Option (A) is correct.
Given,

$$
\begin{array}{rlrl}
x(u, v) & =u v & \\
\frac{d x}{d u} & =v, \quad \frac{d x}{d v}=u
\end{array}
$$

And $y(u, v)=\frac{v}{u}$

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{u}}=-\frac{\mathrm{v}}{\mathrm{u}^{2}} \quad \frac{\partial \mathrm{y}}{\partial \mathrm{v}}=\frac{1}{u}
$$

We know that,

$$
\begin{aligned}
& \phi(u, v)=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right] \\
& \phi(u, v)=\left[\begin{array}{cc}
v & \frac{u}{u} \\
\frac{-v}{u^{2}} & \frac{1}{u}
\end{array}\right]=v \times \frac{1}{u}-u \times\left(-\frac{v}{u^{2}}\right)=\frac{v}{u}+\frac{v}{u}=\frac{2 v}{u}
\end{aligned}
$$

SOL 1.86 Option (D) is correct.

Given : R adius of sphere $r=1$
Let, \quad Radius of cone $=R$
Height of the cone $=\mathrm{H}$

Finding the relation between the volume and Height of the cone
From \triangle OBD,

$$
\begin{aligned}
O B^{2} & =O D^{2}+B D^{2} \\
1 & =(H-1)^{2}+R^{2}=H^{2}+1-2 H+R^{2}
\end{aligned}
$$

$$
\mathrm{R}^{2}+\mathrm{H}^{2}-2 \mathrm{H}=0
$$

$$
\begin{equation*}
\mathrm{R}^{2}=2 \mathrm{H}-\mathrm{H}^{2} \tag{i}
\end{equation*}
$$

Volume of the cone, $\quad \mathrm{V}=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}$
Substitute the value of R^{2} from equation (i), we get

$$
\mathrm{V}=\frac{1}{3} \pi\left(2 \mathrm{H}-\mathrm{H}^{2}\right) \mathrm{H}=\frac{1}{3} \pi\left(2 \mathrm{H}^{2}-\mathrm{H}^{3}\right)
$$

DifferentiateV w.r.t to H

$$
\frac{\mathrm{dV}}{\mathrm{dH}}=\frac{1}{3} \pi\left[4 \mathrm{H}-3 \mathrm{H}^{2}\right]
$$

A gain differentiate $\quad \frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{dH}^{2}}=\frac{1}{3} \pi[4-6 \mathrm{H}]$
For minimum and maximum value, using the principal of minima and maxima.
Put $\frac{d V}{d H}=0$

$$
\begin{aligned}
\frac{1}{3} \pi\left[4 \mathrm{H}-3 \mathrm{H}^{2}\right] & =0 \\
H[4-3 H] & =0 \Rightarrow H=0 \text { and } H=\frac{4}{3}
\end{aligned}
$$

At $\mathrm{H}=\frac{4}{3}, \quad \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{dH}^{2}}=\frac{1}{3} \pi\left[4-6 \times \frac{4}{3}\right]=\frac{1}{3} \pi[4-8]=-\frac{4}{3} \pi<0 \quad$ (M axima)
And at $\mathrm{H}=0, \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{dH}^{2}}=\frac{1}{3} \pi[4-0]=\frac{4}{3} \pi>0$
So, for the largest volume of cone, the value of H should be $4 / 3$

SOL 1.87 Option (D) is correct.
Given: $x^{2} \frac{d y}{d x}+2 x y=\frac{2 \ln (x)}{x}$

$$
\frac{d y}{d x}+\frac{2 y}{x}=\frac{2 \ln (x)}{x^{3}}
$$

Comparing this equation with the differential equation $\frac{d y}{d x}+P(y)=Q$ we have $P=\frac{2}{x}$ and $Q=\frac{2 \ln (x)}{x^{3}}$
The integrating factor is,

$$
\begin{gathered}
\text { I.F }=\mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\int \frac{2}{\mathrm{x}} \mathrm{dx}} \\
\mathrm{e}^{2 \ln x}=\mathrm{e}^{\ln x^{2}}=\mathrm{x}^{2}
\end{gathered}
$$

Complete solution is written as,

$$
\begin{align*}
y(I . F .) & =\int Q(I . F .) d x+C \\
y\left(x^{2}\right) & =\int \frac{2 \ln x}{x^{3}} \times x^{2} d x+C=2 \int \ln _{\text {(II) }} x \times \underset{\text { (I) }}{\frac{1}{x}} d x+C \tag{i}
\end{align*}
$$

Integrating the value $\int \ln x \times \frac{1}{x} d x$ Separately
Let,

$$
\begin{equation*}
\mathrm{I}=\iint_{\text {(I) }} \ln \times \frac{1}{x} d x \tag{ii}
\end{equation*}
$$

$$
=\ln x \int \frac{1}{x} d x-\int\left\{\frac{d}{d x}(\ln x) \times \int \frac{1}{x} d x\right\} d x
$$

$$
=\ln x \ln x-\underbrace{\int \frac{1}{x} \times \ln x d x}_{1}
$$

From equation(ii)
or $\quad I=\frac{(\ln x)^{2}}{2}$

$$
\begin{equation*}
21=(\ln x)^{2} \tag{iii}
\end{equation*}
$$

Substitute the value from equation (iii) in equation (i),

$$
\begin{align*}
y\left(x^{2}\right) & =\frac{2(\ln x)^{2}}{2}+C \\
x^{2} y & =(\ln x)^{2}+C \tag{iv}
\end{align*}
$$

Given $y(1)=0$, means at $x=1 \quad \Rightarrow y=0$
then

$$
0=(\ln 1)^{2}+C \Rightarrow C=0
$$

So from equation (iv), we get

$$
x^{2} y=(\ln x)^{2}
$$

Now at $x=e, y(e)=\frac{(\ln e)^{2}}{e^{2}}=\frac{1}{e^{2}}$
sol 1.88 Option (A) is correct.
Potential function of $v=x^{2} y z$ at $P(1,1,1)$ is $=1^{2} \times 1 \times 1=1$ and at origin $0(0,0,0)$ is 0 .
Thus the integral of vector function from origin to the point $(1,1,1)$ is

$$
\begin{aligned}
& =\left[x^{2} y z\right]_{P}-\left[x^{2} y z\right]_{0} \\
& =1-0=1
\end{aligned}
$$

SOL 1.89 Option (C) is correct.
Let, $\quad f(x)=x^{3}+3 x-7$
From the Newton R apson's method

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{i}
\end{equation*}
$$

We have to find the value of x_{1}, so put $n=0$ in equation (i),

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
f(x) & =x^{3}+3 x-7 \\
f\left(x_{0}\right) & =1^{3}+3 \times 1-7=1+3-7=-3 \\
f^{\prime}(x) & =3 x^{2}+3 \\
f^{\prime}\left(x_{0}\right) & =3 \times(1)^{2}+3=6 \\
x_{1} & =1-\frac{(-3)}{6}=1+\frac{3}{6}=1+\frac{1}{2}=\frac{3}{2}=1.5
\end{aligned}
$$

Then,

SOL 1.90 Option (D) is correct.
We know a die has 6 faces and 6 numbers so the total number of ways

$$
=6 \times 6=36
$$

A nd total ways in which sum is either 8 or 9 is 9 , i.e.
$(2,6),(3,6)(3,5)(4,4)(4,5)(5,4)(5,3)(6,2)(6,3)$
Total number of tosses when both the 8 or 9 numbers are not come

$$
=36-9=27
$$

Then probability of not coming sum 8 or 9 is, $=\frac{27}{36}=\frac{3}{4}$
sol 1.91 Option (C) is correct.
Given : $\quad \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0$
The solution of this equation is given by,

$$
\begin{equation*}
y=c_{1} e^{m x}+c_{2} e^{n x} \tag{i}
\end{equation*}
$$

Here $m \& n$ are the roots of ordinary differential equation
Given solution is,

$$
\begin{equation*}
y=c_{1} e^{-x}+c_{2} e^{-3 x} \tag{ii}
\end{equation*}
$$

Comparing equation (i) and (ii), we get $m=-1$ and $n=-3$
Sum of roots,

$$
\begin{aligned}
m+n & =-p \\
-1-3 & =-p \Rightarrow p=4
\end{aligned}
$$

and product of roots, $\quad \mathrm{mn}=\mathrm{q}$

$$
(-1)(-3)=q \Rightarrow q=3
$$

sol 1.92 Option (C) is correct.
Given : $\quad \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0$

$$
\left[D^{2}+p D+(q+1)\right] y=0
$$

From the previous question, put $p=4$ and $m=3$

$$
\begin{equation*}
\left[D^{2}+4 D+4\right] y=0 \tag{i}
\end{equation*}
$$

The auxilliary equation of equation (i) is written as

$$
m^{2}+4 m+4=0 \Rightarrow m=-2,-2
$$

Here the roots of auxiliary equation are same then the solution is

$$
y=\left(c_{1}+c_{2} x\right) e^{m x}=x e^{-2 x} \quad\binom{\text { Let } c_{1}=0}{c_{2}=1}
$$

SOL 1.93 Option (C) is correct.
Given: $\quad x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
First differentiate x w.r.t. θ,

$$
\frac{\mathrm{dx}}{\mathrm{~d} \theta}=\mathrm{a}[1+\cos \theta]
$$

And differentiate y w.r.t. θ

We know, $\quad \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{d y / d \theta}{d x / d \theta}$
Substitute the values of $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$

$$
\begin{aligned}
\frac{d y}{d x} & =a \sin \theta \times \frac{1}{a[1+\cos \theta]}=\frac{\sin \theta}{1+\cos \theta}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}} \\
& =\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}=\tan \frac{\theta}{2} \quad \cos \theta+1=2 \cos ^{2} \frac{\theta}{2}
\end{aligned}
$$

sol 1.94 Option (C) is correct.
Given: P (0.866, $0.500,0)$, so we can write

$$
\mathbf{P}=0.866 \mathbf{i}+0.5 \mathbf{j}+0 \mathbf{k}
$$

$Q=(0.259,0.966,0)$, so we can write

$$
\mathbf{Q}=0.259 \mathbf{i}+0.966 \mathbf{j}+0 \mathbf{k}
$$

For the coplanar vectors

$$
\begin{aligned}
\mathbf{P} \cdot \mathbf{Q} & =|\mathbf{P} \| \mathbf{Q}| \cos \theta \\
\cos \theta & =\frac{\mathbf{P} \cdot \mathbf{Q}}{|\mathbf{P} \| \mathbf{Q}|} \\
\mathbf{P} \cdot \mathbf{Q} & =(0.866 \mathbf{i}+0.5 \mathbf{j}+0 \mathbf{k}) \cdot(0.259 \mathbf{i}+0.966 \mathbf{j}+0 \mathbf{k}) \\
& =0.866 \times 0.259+0.5 \times 0.966 \\
\cos \theta & =\frac{0.866 \times 0.259+0.5 \times 0.966}{\sqrt{(0.866)^{2}+(0.5)^{2}}+\sqrt{(0.259)^{2}+(0.966)^{2}}} \\
& =\frac{0.22429+0.483}{\sqrt{0.99} \times \sqrt{1.001}}=\frac{0.70729}{\sqrt{0.99} \times \sqrt{1.001}}=0.707 \\
\theta & =\cos ^{-1}(0.707)=45^{\circ}
\end{aligned}
$$

So,

SOL 1.95 Option (B) is correct.

Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

We know that the sum of the eigen value of a matrix is equal to the sum of the diagonal elements of the matrix
So, the sum of eigen values is,

$$
1+5+1=7
$$

SOL 1.96 Option (D) is correct.
Given : Total number of cards $=52$ and two cards are drawn at random.
Number of kings in playing cards $=4$
So the probability that both cards will be king is given by,

$$
P=\frac{{ }^{4} C_{1}}{{ }^{52} C_{1}} \times \frac{{ }^{3} C_{1}}{{ }^{51} C_{1}}=\frac{4}{52} \times \frac{3}{51}=\frac{1}{221} \quad{ }^{n} C_{r}=\frac{\underline{n}}{r \operatorname{nn}-r}
$$

SOL 1.97 Option (B) is correct.
Given : $\quad U(t-a)= \begin{cases}0, & \text { for } t<a \\ 1, & \text { for } t \geq a\end{cases}$
From the definition of Laplace Transform

$$
\begin{aligned}
\mathcal{L}[F(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
\mathcal{L}[U(t-a)] & =\int_{0}^{\infty} e^{-s t} U(t-a) d t \\
& =\int_{0}^{a} e^{-s t}(0)+\int_{a}^{\infty} e^{-s t}(1) d t=0+\int_{a}^{\infty} e^{-s t} d t \\
\mathcal{L}[U(t-a)] & =\left[\frac{e^{-s t}}{-s}\right]_{a}^{\infty}=0-\left[\frac{e^{-a s}}{-s}\right]=\frac{e^{-a s}}{s}
\end{aligned}
$$

sol 1.98 Option (D) is correct.
First we have to make the table from the given data

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
0	1			
1	2	1	-2	
2	1	-1	10	12
3	10	9		

Take $\mathrm{x}_{0}=0$ and $\mathrm{h}=1$
Then

$$
P=\frac{x-x_{0}}{h}=x
$$

From Newton's forward Formula

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+\frac{P}{1} \Delta f(0)+\frac{P(P-1)}{\frac{2}{1}} \Delta^{2} f(0)+\frac{P(P-1)(P-2)}{\boxed{3}} \Delta^{3} f(0) \\
& =f(0)+x \Delta f(0)+\frac{x(x-1)}{2} \Delta^{2} f(0)+\frac{x(x-1)(x-2)}{6} \Delta^{3} f(0) \\
& =1+x(1)+\frac{x(x-1)}{2}(-2)+\frac{x(x-1)(x-2)}{6}(12) \\
& =1+x-x(x-1)+2 x(x-1)(x-2) \\
f(x) & =2 x^{3}-7 x^{2}+6 x+1
\end{aligned}
$$

Option (A) is correct.
Given: $\quad V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} r^{2} \sin \phi \mathrm{drd} \phi \mathrm{d} \theta$
First integrating the term of r, we get

$$
\mathrm{V}=\int_{0}^{2 \pi} \int_{0}^{\pi / 3}\left[\frac{r^{3}}{3}\right]_{0}^{1} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{3} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta
$$

Integrating the term of ϕ, we have

$$
\begin{aligned}
V & =\frac{1}{3} \int_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 3} \mathrm{~d} \theta \\
& =-\frac{1}{3} \int_{0}^{2 \pi}\left[\cos \frac{\pi}{3}-\cos 0\right] \mathrm{d} \theta=-\frac{1}{3} \int_{0}^{2 \pi}\left[\frac{1}{2}-1\right] \mathrm{d} \theta \\
& =-\frac{1}{3} \int_{0}^{2 \pi}\left(-\frac{1}{2}\right) \mathrm{d} \theta=-\frac{1}{3} \times\left(-\frac{1}{2}\right) \int_{0}^{2 \pi} \mathrm{~d} \theta
\end{aligned}
$$

Now, integrating the term of θ, we have

$$
V=\frac{1}{6}[\theta]_{0}^{2 \pi}=\frac{1}{6}[2 \pi-0]=\frac{\pi}{3}
$$

sol 1.100 Option (A) is correct.
Let,

$$
A=\left[\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right]
$$

For singularity of the matrix $|\mathrm{A}|=0$

$$
\begin{aligned}
\left|\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right| & =0 \\
8[0-2 \times 6]-x[0-24]+0[24-0] & =0 \\
8 \times(-12)+24 x & =0 \\
-96+24 x & =0 \Rightarrow x=\frac{96}{24}=4
\end{aligned}
$$

sol 1.101 Option (A) is correct
Let,

$$
\begin{array}{rlr}
f(x) & =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \times \frac{x}{x} & \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \times x & \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& =(1)^{2} \times 0=0 &
\end{array}
$$

Alternative :

Let

$$
\begin{aligned}
f(x) & =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \\
f(x) & =\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{1} \\
& =\lim _{x \rightarrow 0} \frac{\sin 2 x}{1}=\frac{\sin 0}{1}=0
\end{aligned}
$$

SOL 1.102 Option (D) is correct.
A ccuracy of Simpson's rule quadrature is $0\left(h^{5}\right)$
sol 1.103 Option (C) is correct.
Let,

$$
A=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

The characteristic equation for the eigen value is given by,

$$
\left.\begin{aligned}
|\mathrm{A}-\lambda|
\end{aligned} \right\rvert\,=0 \quad 1=\text { Identity matrix }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \left\lvert\, \begin{aligned}
\left|\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right| & =0 \\
\left|\begin{array}{rr}
4-\lambda & 1 \\
1 & 4-\lambda
\end{array}\right| & =0 \\
(4-\lambda)(4-\lambda)-1 & =0 \\
(4-\lambda)^{2}-1 & =0 \\
\lambda^{2}-8 \lambda+15 & =0
\end{aligned}\right.
$$

Solving above equation, we get

$$
\lambda=5,3
$$

SOL 1.104 Option (C) is correct.
Given :

$$
\begin{array}{r}
x+2 y+z=6 \\
2 x+y+2 z=6 \\
x+y+z=5
\end{array}
$$

Comparing to $\mathrm{A} x=\mathrm{B}$, we get

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right], B=\left[\begin{array}{l}
6 \\
6 \\
5
\end{array}\right]
$$

Write the system of simultaneous equations in the form of Augmented matrix,

$$
\begin{array}{rlrl}
{[A: B]} & =\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
2 & 1 & 2 & : & 6 \\
1 & 1 & 1 & : & 5
\end{array}\right] & R_{2} \rightarrow R_{2}-2 R_{1} \text { and } R_{3} \rightarrow 2 R_{3}-R_{2} \\
& \sim\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
0 & -3 & 0 & : & -6 \\
0 & 1 & 0 & : & 4
\end{array}\right] \quad R_{3} \rightarrow 3 R_{3}+R_{2} \\
& \sim\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
0 & -3 & 0 & : & -6 \\
0 & 0 & 0 & : & 6
\end{array}\right]
\end{array}
$$

It is a echelon form of matrix.
Since $\rho[\mathrm{A}]=2$ and $\rho[\mathrm{A}: \mathrm{B}]=3$

$$
\rho[\mathrm{A}] \neq \rho[\mathrm{A}: \mathrm{B}]
$$

So, the system has no solution and system is inconsistent.
soL 1.105 Option (B) is correct.
Given : $y=x^{2}$ and $y=x$.
The shaded area shows the area, which is bounded by the both curves.

Solving given equation, we get the intersection points as, In $y=x^{2}$ putting $y=x$ we have $x=x^{2}$ or $x^{2}-x=0$ which gives $x=0,1$ Then from $y=x$ we can see that curve $y=x^{2}$ and $y=x$ intersects at point $(0,0)$ and $(1,1)$. So, the area bounded by both the curves is

$$
A=\int_{x=0}^{x=1} \int_{y=x}^{y=x^{2}} d y d x=\int_{x=0}^{x=1} d x \int_{y=x}^{y=x^{2}} d y=\int_{x=0}^{x=1} d x[y]_{x}^{x^{2}}
$$

$$
=\int_{x=0}^{x=1}\left(x^{2}-x\right)=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}=\frac{1}{6} \text { unit }^{2}
$$

Area is never negative

SOL 1.106 Option (A) is correct.

$$
\begin{aligned}
\frac{d y}{d x}+y^{2} & =0 \\
\frac{d y}{d x} & =-y^{2} \\
-\frac{d y}{y^{2}} & =d x
\end{aligned}
$$

Integrating both the sides, we have

$$
\begin{aligned}
-\int \frac{d y}{y^{2}} & =\int d x \\
y^{-1} & =x+c \quad \Rightarrow y=\frac{1}{x+c}
\end{aligned}
$$

SOL 1.107 Option (C) is correct.
Given: $\quad \mathbf{F}=\mathbf{x i}-\mathrm{y} \mathbf{j}$
First Check divergency, for divergence,

$$
\text { Grade } \mathbf{F}=\nabla \cdot \mathbf{F}=\left[\frac{\partial}{\partial \mathrm{x}} \mathbf{i}+\frac{\partial}{\partial \mathrm{y}} \mathbf{j}+\frac{\partial}{\partial \mathrm{z}} \mathbf{k}\right] \cdot[\mathrm{x} \mathbf{i}-\mathrm{y} \mathbf{j}]=1-1=0
$$

So we can say that \mathbf{F} is divergence free.
Now checking the irrationalit; For irritation the curl $\mathbf{F}=0$

$$
\begin{aligned}
\text { Curl } \mathbf{F} & =\nabla \times \mathbf{F}=\left[\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right] \times[x \mathbf{i}-y \mathbf{j}] \\
& =\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & -y & 0
\end{array}\right]=\mathbf{i}[0-0]-\mathbf{j}[0-0]+\mathbf{k}[0-0]=0
\end{aligned}
$$

So, vector field is irrotational. We can say that the vector field is divergence free and irrotational.

SOL 1.108 Option (B) is correct.
Let

$$
f(t)=\sin \omega t
$$

From the definition of Laplace transformation

$$
\begin{aligned}
\mathcal{L}[F(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty} e^{-s t} \sin \omega t d t \\
& =\int_{0}^{\infty} e^{-s t}\left(\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
\sin \omega t & =\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}=\frac{1}{2 i} \int_{0}^{\infty}\left(e^{-s t} e^{i \omega t}-e^{-s t} e^{-i \omega t}\right) d t \\
& =\frac{1}{2 i} \int_{0}^{\infty}\left[e^{(-s+i \omega) t}-e^{-(s+i \omega) t}\right] d t
\end{aligned}
$$

Integrating above equation, we get

$$
\begin{aligned}
\sin \omega t & =\frac{1}{2 i}\left[\frac{\mathrm{e}^{(-s+i \omega) t}}{-\mathrm{s}+\mathrm{i} \omega}-\frac{\mathrm{e}^{-(s+\mathrm{i} \omega) t}}{-(\mathrm{s}+\mathrm{i} \omega)}\right]_{0}^{\infty} \\
& =\frac{1}{2 i}\left[\frac{\mathrm{e}^{(-s+i \omega) t}}{-\mathrm{s}+\mathrm{i} \omega}+\frac{\mathrm{e}^{-(\mathrm{s}+\mathrm{i} \omega) \mathrm{t}}}{(\mathrm{~s}+\mathrm{i} \omega)}\right]_{0}^{\infty}
\end{aligned}
$$

Substitute the limits, we get

$$
\begin{aligned}
\sin \omega t & =\frac{1}{2 i}\left[0+0-\left(\frac{e^{0}}{(-\mathrm{s}+\mathrm{i} \omega)}+\frac{\mathrm{e}^{-0}}{\mathrm{~s}+\mathrm{i} \omega}\right)\right] \\
& =-\frac{1}{2 i}\left[\frac{\mathrm{~s}+\mathrm{i} \omega+\mathrm{i} \omega-\mathrm{s}}{(-\mathrm{s}+\mathrm{i} \omega)(\mathrm{s}+\mathrm{i} \omega)}\right] \\
& =-\frac{1}{2 i} \times \frac{2 i \omega}{(\mathrm{i} \omega)^{2}-\mathrm{s}^{2}}=\frac{-\omega}{-\omega^{2}-\mathrm{s}^{2}}=\frac{\omega}{\omega^{2}+\mathrm{s}^{2}}
\end{aligned}
$$

Alternative :

From the definition of Laplace transformation

$$
\mathcal{L}[F(t)]=\int_{0}^{\infty} \mathrm{e}^{-s t} \sin \omega t d t
$$

We know $\int e^{a t} \sin b t d t=\frac{e^{a t}}{a^{2}+b^{2}}[a \sin b t-b \cos b t] \quad\binom{a=-s$ and }{$b=\omega}$
Then,

$$
\begin{aligned}
\mathcal{L} & {[\sin \omega t]=\left[\frac{\mathrm{e}^{-s t}}{\mathrm{~s}^{2}+\omega^{2}}(-\mathrm{s} \sin \omega t-\omega \cos \omega t)\right]_{0}^{\infty} } \\
& =\left[\frac{\mathrm{e}^{-\infty}}{\mathrm{s}^{2}+\omega^{2}}(-\mathrm{s} \sin \infty-\omega \cos \infty)\right]-\left[\frac{\mathrm{e}^{-0}}{\mathrm{~s}^{2}+\omega^{2}}(-\mathrm{s} \sin 0-\omega \cos 0)\right] \\
& =0-\frac{1}{\mathrm{~s}^{2}+\omega^{2}}[0-\omega]=-\frac{1}{\mathrm{~s}^{2}+\omega^{2}}(-\omega)
\end{aligned}
$$

$$
\mathcal{L}[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}
$$

SOL 1.109 Option (D) is correct.
Given : black balls = 5, Red balls = 5, Total balls=10
Here, two balls are picked from the box randomly one after the other without replacement. So the probability of both the balls are red is

$$
P=\frac{{ }^{5} C_{0} \times{ }^{5} C_{2}}{{ }^{10} C_{2}}=\frac{\frac{5!}{0!\times 5!} \times \frac{5!}{3!2!}}{\frac{10!}{3!2!}}=\frac{1 \times 10}{45}=\frac{10}{45}=\frac{2}{9} \quad{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}}{\frac{\mathrm{r}}{\mathrm{n}-\mathrm{r}}}
$$

Alternate M ethod :

Given : Black balls = 5,

$$
\begin{aligned}
\text { Red balls } & =5 \\
\text { Total balls } & =10
\end{aligned}
$$

The probability of drawing a red bell,

$$
P_{1}=\frac{5}{10}=\frac{1}{2}
$$

If ball is not replaced, then box contains 9 balls.
So, probability of drawing the next red ball from the box.

$$
P_{2}=\frac{4}{9}
$$

Hence, probability for both the balls being red is,

$$
P=P_{1} \times P_{2}=\frac{1}{2} \times \frac{4}{9}=\frac{2}{9}
$$

sol 1.110 Option (A) is correct.
We know that a dice has 6 faces and 6 numbers so the total number of cases (outcomes) $=6 \times 6=36$
And total ways in which sum of the numbers on the dices is eight,
$(2,6)(3,5)(4,4)(5,3)(6,2)$
So, the probability that the sum of the numbers eight is,

$$
p=\frac{5}{36}
$$

sol 1.111 Option (D) is correct.
We have to draw the graph on $x-y$ axis from the given functions.

$$
f(x)=\left\{\begin{array}{rl}
-x & x \leq-1 \\
0 & x=0 \\
x & x \geq 1
\end{array}\right.
$$

It clearly shows that $f(x)$ is differential at $x=-1, x=0$ and $x=1$, i.e. in the domain $[-1,1]$.

So, (a), (b) and (c) are differential and $\mathrm{f}(\mathrm{x}$) is maximum at ($\mathrm{x},-\mathrm{x}$).
soL 1.112 Option (B) is correct.
If the scatter diagram indicates some relationship between two variables X
and Y, then the dots of the scatter diagram will be concentrated round a curve. This curve is called the curve of regression.
Regression analysis is used for estimating the unknown values of one variable corresponding to the known value of another variable.
sol 1.113 Option (B) is correct.
Given: $3 x+2 y+z=4$

$$
\begin{array}{r}
x-y+z=2 \\
-2 x+2 z=5
\end{array}
$$

The Augmented matrix of the given system of equation is

$$
\begin{aligned}
& \qquad[A: B]=\left[\begin{array}{rrrrr}
3 & 2 & 1 & : & 4 \\
1 & -1 & 1 & : & 2 \\
-2 & 0 & 2 & : & 5
\end{array}\right] R_{3} \rightarrow R_{3}+2 R_{2}, R_{2} \rightarrow R_{2}-R_{1} \\
& \\
& \sim\left[\begin{array}{rrrrr}
3 & 2 & 1 & : & 4 \\
-2 & -3 & 0 & : & -2 \\
0 & -2 & 4 & : & 9
\end{array}\right] \\
& \text { Here } \rho[A: B]=\rho[A]=3=n \text { (number of unknown) } \\
& \text { Then the system of equation has a unique solution. }
\end{aligned}
$$

sol 1.114 Option (B) is correct.
Given: $\quad f(x, y)=2 x^{2}+2 x y-y^{3}$
Partially differentiate this function w.r.t x and y,

$$
\frac{\partial f}{\partial x}=4 x+2 y, \quad \frac{\partial f}{\partial y}=2 x-3 y^{2}
$$

For the stationary point of the function, put $\partial \mathrm{f} / \partial \mathrm{x}$ and $\partial \mathrm{f} / \partial \mathrm{y}$ equal to zero.

$$
\begin{equation*}
\frac{\partial f}{\partial x}=4 x+2 y=0 \quad \Rightarrow \quad 2 x+y=0 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial y}=2 x-3 y^{2}=0 \quad \Rightarrow \quad 2 x-3 y^{2}=0 \tag{ii}
\end{equation*}
$$

From equation (i), $y=-2 x$ substitute in equation (ii),

$$
\begin{aligned}
2 x-3(-2 x)^{2} & =0 \\
2 x-3 \times 4 x^{2} & =0 \\
6 x^{2}-x & =0 \Rightarrow x=0, \frac{1}{6}
\end{aligned}
$$

From equation (i),
For $x=0, \quad y=-2 \times(0)=0$
and for $x=\frac{1}{6}, \quad y=-2 \times \frac{1}{6}=-\frac{1}{3}$
So, two stationary point at $(0,0)$ and $\left(\frac{1}{6},-\frac{1}{3}\right)$
sol 1.115 Option (B) is correct.
Sample space $=(1,1),(1,2) \ldots(1,8)$
$(2,1),(2,2) \ldots(2,8)$
$(3,1),(3,2) \ldots(3,8)$
$\vdots \quad \vdots \quad \vdots \quad \vdots$
$(8,1),(8,2) \ldots(8,8)$
Total number of sample space $=8 \times 8=64$
Now, the favourable cases when Manish will arrive late at D

$$
=(6,8),(8,6) \ldots(8,8)
$$

Total number of favourable cases $=13$
So, \quad Probability $=\frac{\text { Total number of favourable cases }}{\text { T otol number of sample space }}$

$$
=\frac{13}{64}
$$

soL 1.116 Option (B) is correct.
Divergence is defined as $\nabla \cdot r$
where

$$
r=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

and

$$
\begin{aligned}
\nabla & =\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k} \\
\nabla \cdot r & =\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \\
\nabla \cdot \boldsymbol{r} & =1+1+1=3
\end{aligned}
$$

So,
soL 1.117 Option (B) is correct.
Given: $\quad x+y=2$

$$
2 x+2 y=5
$$

The A ugmented matrix of the given system of equations is

$$
[A: B]=\left[\begin{array}{llll}
1 & 1 & : & 2 \\
2 & 2 & : & 5
\end{array}\right]
$$

A pplying row operation, $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$

$$
\begin{aligned}
{[A: B] } & =\left[\begin{array}{llll}
1 & 1 & : & 2 \\
0 & 0 & : & 1
\end{array}\right] \\
\rho[A] & =1 \neq \rho[A: B]=2
\end{aligned}
$$

So, the system has no solution.

SOL 1.118 Option (D) is correct.
Given: $\quad f(x)=|x|$

$$
\begin{aligned}
& f(x)=\left\{\begin{aligned}
x & \text { if } x>0 \\
0 & \text { if } x=0 \\
-x & \text { if } x<0
\end{aligned}\right. \\
& L f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{-(-h)}{-h}-0=-1 \\
& R f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h-0}{h}=1 \\
& \text { So, derivative of } f(x) \text { at } x=0 \text { does not exist. }
\end{aligned}
$$

Since $\quad L f^{\prime}(0) \neq R f^{\prime}(0)$
sol 1.119 Option (A) is correct.
The surface integral of the normal component of a vector function F taken around a closed surface S is equal to the integral of the divergence of F taken over the volumeV enclosed by the surface S.
M athematically

$$
\iint_{S} F \cdot \mathbf{n} d S=\iiint_{V} \operatorname{div} \mathbf{F} d v
$$

So, Gauss divergence theorem relates surface integrals to volume integrals.
sol 1.120 Option (A) is correct.
Given :

$$
\begin{aligned}
f(x) & =\frac{x^{3}}{3}-x \\
f^{\prime}(x) & =x^{2}-1 \\
f^{\prime \prime}(x) & =2 x
\end{aligned}
$$

Using the principle of maxima - minima and put $f^{\prime}(x)=0$

$$
x^{2}-1=0 \Rightarrow x= \pm 1
$$

Hence at $x=-1, \quad f^{\prime \prime}(x)=-2<0 \quad$ (M axima)

$$
\text { at } x=1, \quad f^{\prime \prime}(x)=2>0 \quad \text { (M inima) }
$$

So, $f(x)$ is minimum at $x=1$
sol 1.121 Option (B) is correct.

Let

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{~b}_{1} \\
\mathrm{c}_{1}
\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2}
\end{array}\right] \\
& \mathrm{C}=\mathrm{AB}
\end{aligned}
$$

Let

$$
=\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right] \times\left[\begin{array}{lll}
a_{2} & b_{2} & c_{2}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} a_{2} & a_{1} b_{2} & a_{1} c_{2} \\
b_{1} a_{2} & b_{1} b_{2} & b_{1} c_{2} \\
c_{1} a_{2} & c_{1} b_{2} & c_{1} c_{2}
\end{array}\right]
$$

The 3×3 minor of this matrix is zero and all the 2×2 minors are also zero. So the rank of this matrix is 1 .

$$
\rho[\mathrm{C}]=1
$$

SOL 1.122 Option (D) is correct.
In a coin probability of getting head $p=\frac{1}{2}$ and probability of getting tail,

$$
q=1-\frac{1}{2}=\frac{1}{2}
$$

W hen unbiased coin is tossed three times, then total possibilities are
H H H

H H T
H T H
T H H
H T T
T T H
T H T
T T T
From these cases, there are three cases, when head comes exactly two times. So, the probability of getting head exactly two times, when coin is tossed 3 times is,

$$
P={ }^{3} C_{2}(p)^{2}(q)^{1}=3 \times\left(\frac{1}{2}\right)^{2} \times \frac{1}{2}=\frac{3}{8}
$$

CHAPTER 2

ENGINEERING MECHANICS

YEAR 2012

- Common Data For Q. 1 and 2

T wo steel truss members, $A C$ and $B C$, each having cross sectional area of $100 \mathrm{~mm}^{2}$, are subjected to a horizontal force \mathbf{F} as shown in figure. All the joints are hinged.

MCQ 2.1 If $F=1 \mathrm{kN}$, the magnitude of the vertical reaction force developed at the point B in $k N$ is
(A) 0.63
(B) 0.32
(C) 1.26
(D) 1.46

MCQ 2.2 The maximum force \mathbf{F} is $k N$ that can be applied at C such that the axial stress in any of the truss members DOES NOT exceed 100 MPa is
(A) 8.17
(B) 11.15
(C) 14.14
(D) 22.30

YEAR 2011
ONE MARK
MCQ 2.3 The coefficient of restitution of a perfectly plastic impact is
(A) 0
(B) 1
(C) 2
(D) ∞

MCQ 2.4 A stone with mass of 0.1 kg is catapulted as shown in the figure. The total force F_{x} (in N) exerted by the rubber band as a function of distance x (in m) is given by $F_{x}=300 x^{2}$. If the stone is displaced by 0.1 m from the un-stretched position $(x=0)$ of the rubber band, the energy stored in the rubber band is

(A) 0.01 J
(B) 0.1 J
(C) 1 J
(D) 10 J

YEAR 2011
MCQ 2.5 A 1 kg block is resting on a surface with coefficient of friction $\mu=0.1$. A force of 0.8 N is applied to the block as shown in the figure. The friction force is

(A) 0
(B) 0.8 N
(C) 0.98 N
(D) 1.2 N

YEAR 2009
ONE MARK
MCQ 2.6 A block weighing 981 N is resting on a horizontal surface. The coefficient of friction between the block and the horizontal surface is $\mu=0.2$. A vertical cable attached to the block provides partial support as shown. A man can pull horizontally with a force of 100 N . W hat will be the tension, T (in N) in the cable if the man is just able to move the block to the right ?

(A) 176.2
(B) 196.0
(C) 481.0
(D) 981.0

YEAR 2009
TWO MARKS
MCQ 2.7 A uniform rigid rod of mass M and length L is hinged at one end as shown in the adjacent figure. A force P is applied at a distance of $2 \mathrm{~L} / 3$ from the hinge so that the rod swings to the right. The reaction at the hinge is

(A) $-P$
(B) 0
(C) $\mathrm{P} / 3$
(D) $2 P / 3$

YEAR 2008
ONE MARK
MCQ 2.8 A straight rod length $L(t)$, hinged at one end freely extensible at the other end, rotates through an angle $\theta(\mathrm{t})$ about the hinge. At time $\mathrm{t}, \mathrm{L}(\mathrm{t})=1$ $\mathrm{m}, \dot{L}(\mathrm{t})=1 \mathrm{~m} / \mathrm{s}, \theta(\mathrm{t})=\frac{\pi}{4} \mathrm{rad}$ and $\dot{\theta}(\mathrm{t})=1 \mathrm{rad} / \mathrm{s}$. The magnitude of the velocity at the other end of the rod is
(A) $1 \mathrm{~m} / \mathrm{s}$
(B) $\sqrt{2} \mathrm{~m} / \mathrm{s}$
(C) $\sqrt{3} \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$

YEAR 2008
TWO MARKS
MCQ 2.9 A circular disk of radius R rolls without slipping at a velocity V. The magnitude of the velocity at point P (see figure) is

(A) $\sqrt{3} \mathrm{~V}$
(B) $\sqrt{3} \mathrm{~V} / 2$
(C) $\mathrm{V} / 2$
(D) $2 \mathrm{~V} / \sqrt{3}$

MCQ 2.10 Consider a truss PQR loaded at P with a force F as shown in the figure -

The tension in the member $Q R$ is
(A) 0.5 F
(B) 0.63 F
(C) 0.73 F
(D) 0.87 F

YEAR 2007
ONE MARK
MCQ 2.11 During inelastic collision of two particles, which one of the following is conserved?
(A) Total linear momentum only
(B) Total kinetic energy only
(C) Both linear momentum and kinetic energy
(D) Neither linear momentum nor kinetic energy

YEAR 2007
TWO MARKS
MCQ 2.12 A block of mass M is released from point P on a rough inclined plane with inclination angle θ, shown in the figure below. The co-efficient of friction is μ. If $\mu<\tan \theta$, then the time taken by the block to reach another point \mathbf{Q} on the inclined plane, where $\mathrm{PQ}=\mathrm{s}$, is

(A) $\sqrt{\frac{2 \mathrm{~s}}{\mathrm{~g} \cos \theta(\tan \theta-\mu)}}$
(B) $\sqrt{\frac{2 \mathrm{~s}}{\mathrm{~g} \cos \theta(\tan \theta+\mu)}}$
(C)
$\sqrt{\frac{2 s}{g \sin \theta(\tan \theta-\mu)}}$
(D)
$\sqrt{\frac{2 s}{g \sin \theta(\tan \theta+\mu)}}$

YEAR 2006
TWO MARKS
MCQ 2.13 If a system is in equilibrium and the position of the system depends upon many independent variables, the principles of virtual work states that the partial derivatives of its total potential energy with respect to each of the independent variable must be
(A) -1.0
(B) 0
(C) 1.0
(D) ∞

MCQ 2.14 If point A is in equilibrium under the action of the applied forces, the values of tensions $T_{A B}$ and $T_{A C}$ are respectively

(A) 520 N and 300 N
(B) 300 N and 520 N
(C) 450 N and 150 N
(D) 150 N and 450 N

YEAR 2005
ONE MARK
MCQ 2.15 The time variation of the position of a particle in rectilinear motion is given by $x=2 t^{3}+t^{2}+2 t$. If v is the velocity and a is the acceleration of the particle in consistent units, the motion started with
(A) $v=0, a=0$
(B) $v=0, a=2$
(C) $v=2, a=0$
(D) $v=2, a=2$

MCQ 2.16 A simple pendulum of length of 5 m , with a bob of mass 1 kg , is in simple harmonic motion. As it passes through its mean position, the bob has a speed of $5 \mathrm{~m} / \mathrm{s}$. The net force on the bob at the mean position is
(A) zero
(B) 2.5 N
(C) 5 N
(D) 25 N

YEAR 2005

TWO MARKS
MCQ 2.17 Two books of mass 1 kg each are kept on a table, one over the other. The
coefficient of friction on every pair of contacting surfaces is 0.3 . The lower book is pulled with a horizontal force F. The minimum value of F for which slip occurs between the two books is
(A) zero
(B) 1.06 N
(C) 5.74 N
(D) 8.83 N

MCQ 2.18 A shell is fired from a cannon. At the instant the shell is just about to leave the barrel, its velocity relative to the barrel is $3 \mathrm{~m} / \mathrm{s}$, while the barrel is swinging upwards with a constant angular velocity of $2 \mathrm{rad} / \mathrm{s}$. T he magnitude of the absolute velocity of the shell is

(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $4 \mathrm{~m} / \mathrm{s}$
(C) $5 \mathrm{~m} / \mathrm{s}$
(D) $7 \mathrm{~m} / \mathrm{s}$

MCQ 2.19 An elevator (lift) consists of the elevator cage and a counter weight, of mass m each. T he cage and the counterweight are connected by chain that passes over a pulley. The pulley is coupled to a motor. It is desired that the elevator should have a maximum stopping time of t seconds from a peak speed v. If the inertias of the pulley and the chain are neglected, the minimum power that the motor must have is

(A) $\frac{1}{2} m V^{2}$
(B) $\frac{m V^{2}}{2 t}$
(C) $\frac{\mathrm{mV}}{}{ }^{2}$
(D) $\frac{2 m V^{2}}{t}$

MCQ 2.20 A 1 kg mass of clay, moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$, strikes a stationary wheel and sticks to it. The solid wheel has a mass of 20 kg and a radius of

1 m . Assuming that the wheel is set into pure rolling motion, the angular velocity of the wheel immediately after the impact is approximately

(A) zero
(B) $\frac{1}{3} \mathrm{rad} / \mathrm{s}$
(C) $\sqrt{\frac{10}{3}} \mathrm{rad} / \mathrm{s}$
(D) $\frac{10}{3} \mathrm{rad} / \mathrm{s}$

YEAR 2004
MCQ 2.21 The figure shows a pin-jointed plane truss loaded at the point M by hanging a mass of 100 kg . The member LN of the truss is subjected to a load of

(A) 0 Newton
(B) 490 Newtons in compression
(C) 981 Newtons in compression
(D) 981 Newtons in tension

YEAR 2004
TWO MARKS
MCQ 2.22 An ejector mechanism consists of a helical compression spring having a spring constant of $\mathrm{k}=981 \times 10^{3} \mathrm{~N} / \mathrm{m}$. It is pre-compressed by 100 mm from its free state. If it is used to eject a mass of 100 kg held on it, the mass will move up through a distance of

(A) 100 mm
(B) 500 mm
(C) 581 mm
(D) 1000 mm

MCQ 2.23 A rigid body shown in the figure (a) has a mass of 10 kg . It rotates with a uniform angular velocity ' ω '. A balancing mass of 20 kg is attached as shown in figure (b). The percentage increase in mass moment of inertia as a result of this addition is

fig. (a)
fig. (b)
(A) 25%
(B) 50%
(C) 100%
(D) 200%

MCQ 2.24 The figure shows a pair of pin-jointed gripper-tongs holding an object weighting 2000 N . The coefficient of friction (μ) at the gripping surface is 0.1 XX is the line of action of the input force and $Y Y$ is the line of application of gripping force. If the pin-joint is assumed to be frictionless, the magnitude of force F required to hold the weight is

(A) 1000 N
(B) 2000 N
(C) 2500 N
(D) 5000 N

MCQ 2.25 A truss consists of horizontal members (AC,CD, DB and EF) and vertical members (CE and DF) having length I each. The members AE, DE and BF are inclined at 45° to the horizontal. For the uniformly distributed load " p " per unit length on the member EF of the truss shown in figure given below, the force in the member CD is

(A) $\frac{\mathrm{pl}}{2}$
(B) pl
(C) 0
(D) $\frac{2 \mathrm{pl}}{3}$

MCQ 2.26 A bullet of mass " m " travels at a very high velocity v (as shown in the figure) and gets embedded inside the block of mass " M " initially at rest on a rough horizontal floor. The block with the bullet is seen to move a distance " s " along the floor. Assuming μ to be the coefficient of kinetic friction between the block and the floor and " g " the acceleration due to gravity what is the velocity v of the bullet ?

(A) $\frac{\mathrm{M}+\mathrm{m}}{\mathrm{m}} \sqrt{2 \mu \mathrm{gS}}$
(B) $\frac{\mathrm{M}-\mathrm{m}}{\mathrm{m}} \sqrt{2 \mu \mathrm{gS}}$
(C) $\frac{\mu(\mathrm{M}+\mathrm{m})}{\mathrm{m}} \sqrt{2 \mu \mathrm{gs}}$
(D) $\frac{\mathrm{M}}{\mathrm{m}} \sqrt{2 \mu \mathrm{gs}}$

YEAR 2003
TWO MARKS

- Common Data For Q.Data for Q. 27 \& 28 are given below. Solve the problems and choose correct answers.

A reel of mass " m " and radius of gyration " k " is rolling down smoothly from rest with one end of the thread wound on it held in the ceiling as depicated in the figure. Consider the thickness of thread and its mass negligible in comparison with the radius " r " of the hub and the reel mass " m ". Symbol " g " represents the acceleration due to gravity.

MCQ 2.27 The linear acceleration of the reel is
(A) $\frac{g r^{2}}{\left(r^{2}+k^{2}\right)}$
(B) $\frac{g k^{2}}{\left(r^{2}+k^{2}\right)}$
(C) $\frac{g r k}{\left(r^{2}+k^{2}\right)}$
(D) $\frac{m g r^{2}}{\left(r^{2}+k^{2}\right)}$

MCQ 2.28 The tension in the thread is
(A) $\frac{m g r^{2}}{\left(r^{2}+k^{2}\right)}$
(B) $\frac{\text { mgrk }}{\left(r^{2}+k^{2}\right)}$
(C) $\frac{\mathrm{mgk}^{2}}{\left(\mathrm{r}^{2}+\mathrm{k}^{2}\right)}$
(D) $\frac{m g}{\left(r^{2}+k^{2}\right)}$

YEAR 2001
ONE MARK
MCQ 2.29 A particle P is projected from the earth surface at latitude 45° with escape velocity $\mathrm{v}=11.19 \mathrm{~km} / \mathrm{s}$. The velocity direction makes an angle α with the local vertical. The particle will escape the earth's gravitational field

(A) only when $\alpha=0$
(B) only when $\alpha=45^{\circ}$
(C) only when $\alpha=90^{\circ}$
(D) irrespective of the value of α

MCQ 2.30 The area moment of inertia of a square of size 1 unit about its diagonal is
(A) $\frac{1}{3}$
(B) $\frac{1}{4}$
(C) $\frac{1}{12}$
(D) $\frac{1}{6}$

MCQ 2.31 For the loading on truss shown in the figure, the force in member $C D$ is

(A) zero
(B) 1 kN
(C) $\sqrt{2} \mathrm{kN}$
(D) $\frac{1}{\sqrt{2}} \mathrm{kN}$

MCQ 2.32 Bodies 1 and 2 shown in the figure have equal mass m. All surfaces are smooth. The value of force P required to prevent sliding of body 2 on body 1 is

(A) $\mathrm{P}=2 \mathrm{mg}$
(B) $P=\sqrt{2} \mathrm{mg}$
(C) $\mathrm{P}=2 \sqrt{2} \mathrm{mg}$
(D) $P=m g$

MCQ 2.33 M ass M slides in a frictionless slot in the horizontal direction and the bob of mass m is hinged to mass M at C, through a rigid massless rod. This system is released from rest with $\theta=30^{\circ}$. At the instant when $\theta=0^{\circ}$, the velocities of m and M can be determined using the fact that, for the system (i.e., m and M together)

(A) the linear momentum in x and y directions are conserved but the energy is not conserved.
(B) the linear momentum in x and y directions are conserved and the energy is also conserved.
(C) the linear momentum in x direction is conserved and the energy is also conserved.
(D) the linear momentum in y direction is conserved and the energy is also conserved.

SOLUTION

sol 2.1 Option (A) is correct.

From above figure. Three forces are acting on a common point. Hence by Lami's Theorem.

$$
\begin{aligned}
\frac{\mathrm{F}}{\sin \left(105^{\circ}\right)} & =\frac{\mathrm{T}_{2}}{\sin 120^{\circ}}=\frac{\mathrm{T}_{1}}{\sin 135^{\circ}} \\
\Rightarrow \quad \frac{\mathrm{T}_{1}}{\sin 135^{\circ}} & =\frac{\mathrm{F}}{\sin 105^{\circ}}=\frac{1}{\sin 105^{\circ}} \\
\mathrm{T}_{1} & =0.7320 \mathrm{kN}
\end{aligned}
$$

Hence vertical reaction at B,

$$
\mathrm{R}_{\mathrm{NT}_{1}}=\mathrm{T}_{1} \cos 30^{\circ}=0.73205 \times \cos 30^{\circ}=0.634 \mathrm{kN}
$$

SOL 2.2 Option (B) is correct.
From Previous question

$$
\begin{aligned}
\frac{\mathrm{F}}{\sin 105^{\circ}} & =\frac{\mathrm{T}_{2}}{\sin 120^{\circ}} \\
\mathrm{T}_{2} & =\frac{\sin 120^{\circ}}{\sin 135} \times \mathrm{F}=0.8965 \mathrm{~F} \\
\text { and } \quad & \mathrm{T}_{1}
\end{aligned}=(0.73205) \mathrm{F}, \mathrm{~T}_{2}>\mathrm{T}_{1} .
$$

sol 2.3 Option (A) is correct.
From the Newton's Law of collision of Elastic bodies.
Velocity of separation $=e \times$ Velocity of approach

$$
\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{e}\left(\mathrm{U}_{1}-\mathrm{U}_{2}\right)
$$

Where e is a constant of proportionality $\&$ it is called the coefficient of restitution and its value lies between 0 to 1 . The coefficient of restitution of a perfectly plastic impact is zero, because all the K.E. will be absorbed during perfectly plastic impact.

SOL 2.4 Option (B) is correct.
Given: $\quad F_{x}=300 x^{2}, \quad$ Position of x is, $x=0$ to $x=0.1$
The energy stored in the rubber band is equal to work done by the stone.
Hence $\quad d E=F_{x} d x$
Integrating both the sides \& put the value of F \& limits

$$
\begin{aligned}
\int_{0}^{E} d E & =\int_{0}^{0.1} 300 x^{2} d x \\
E & =300\left[\frac{x^{3}}{3}\right]_{0}^{0.1}=300\left[\frac{(0.1)^{3}}{3}\right]=0.1 \mathrm{~J} \text { oule }
\end{aligned}
$$

SOL 2.5 Option (B) is correct.
Given : $\mathrm{m}=1 \mathrm{~kg}, \mu=0.1$; From FBD: $\mathrm{R}_{\mathrm{N}}=\mathrm{mg}$

Now static friction force,

$$
\mathrm{f}_{\mathrm{s}}=\mu \mathrm{R}_{\mathrm{N}}=\mu \mathrm{mg}=0.1 \times 1 \times 9.8=0.98 \mathrm{~N}
$$

A pplied force $F=0.8 \mathrm{~N}$ is less then, the static friction $\mathrm{f}_{\mathrm{s}}=0.98 \mathrm{~N}$

$$
\mathrm{F}<\mathrm{f}_{\mathrm{s}}
$$

So, we can say that the friction developed will equal to the applied force

$$
F=0.8 \mathrm{~N}
$$

sol 2.6 Option (C) is correct.
Given : $\mathrm{W}=981 \mathrm{~N}, \quad \mu=0.2$
F irst of all we have to make a FBD of the block
Here,
$\mathrm{R}_{\mathrm{N}}=$ Normal reaction force

Using the balancing of forces, we have
$\Sigma \mathrm{F}_{\mathrm{x}}=0: \quad \mu \mathrm{R}_{\mathrm{N}}=100 \mathrm{~N}$

$$
\mathrm{R}_{\mathrm{N}}=\frac{100}{\mu}=\frac{100}{0.2}=500 \mathrm{~N}
$$

and $\Sigma \mathrm{F}_{\mathrm{y}}=0$ or downward forces $=$ upward forces

$$
W=T+R_{N} \Rightarrow T=W-R_{N}=981-500=481 N
$$

sol 2.7 Option (B) is correct.

W hen rod swings to the right, linear acceleration a and angular acceleration α comes in action. Centre of gravity (G) acting at the mid-point of the rod. Let R be the reaction at the hinge.
Linear acceleration $\quad a=r . \alpha=\frac{\mathrm{L}}{2} \times \alpha=\frac{2 \mathrm{a}}{\mathrm{L}}$
and about point G, for rotational motion

$$
\begin{align*}
\sum M_{G} & =\mathrm{I}_{\mathrm{G}} \times \alpha \\
\mathrm{R}\left(\frac{\mathrm{~L}}{2}\right)+\mathrm{P}\left(\frac{\mathrm{~L}}{6}\right) & =\frac{\mathrm{ML}^{2}}{12}\left(\frac{2 \mathrm{a}}{\mathrm{~L}}\right) \\
\mathrm{R}+\frac{\mathrm{P}}{3} & =\frac{\mathrm{Ma}}{3} \\
\mathrm{a} & =\frac{3 \mathrm{R}}{\mathrm{M}}+\frac{\mathrm{P}}{\mathrm{M}} \tag{ii}
\end{align*}
$$

From equation (i)

By equilibrium of forces in normal direction to the rod

$$
\begin{aligned}
\sum F_{m}=0: & & P-R & =M a=M\left(\frac{3 R}{M}+\frac{P}{M}\right) \quad \text { From equation (ii) } \\
\Rightarrow & & P-R & =3 R+P
\end{aligned}
$$

sol 2.8 Option (D) is correct.
Let :

$$
\begin{aligned}
\mathrm{V}_{\mathrm{t}} & =\text { angential Velocity } \\
\mathrm{V}_{\mathrm{r}} & =\text { Relative Velocity } \\
\mathrm{V} & =\text { R esultant Velocity }
\end{aligned}
$$

Let rod of length $L(t)$ increases by an amount $\Delta L(t)$.
Given $L(t)=1 \mathrm{~m}, \dot{L}(\mathrm{t})=1 \mathrm{~m} / \mathrm{sec}, \theta(\mathrm{t})=\frac{\pi}{4} \mathrm{rad}, \dot{\theta}(\mathrm{t})=1 \mathrm{rad} / \mathrm{sec}$
Time taken by the rod to turn $\frac{\pi}{4}$ rad is,

$$
\mathrm{t}=\frac{\text { distance }}{\text { velocity }}=\frac{\theta(\mathrm{t})}{\dot{\theta}(\mathrm{t})}=\frac{\pi / 4}{1}=\frac{\pi}{4} \mathrm{sec}
$$

So, increase in length of the rod during this time will be

$$
\Delta L(t)=L(t) \times t=\frac{\pi}{4} \times 1=\frac{\pi}{4} \text { meter }
$$

Rod turn $\frac{\pi}{4}$ radian. So, increased length after $\frac{\pi}{4} \mathrm{sec}$, (New length)

$$
=\left(1+\frac{\pi}{4}\right)=1.785 \mathrm{~m}
$$

Now, tangential velocity,

$$
V_{t}=\mathrm{R} . \omega=1.785 \times 1=1.785 \mathrm{~m} / \mathrm{sec} \quad \omega=\dot{\theta}(\mathrm{t})
$$

Radial velocity,

$$
V_{r}=\dot{L}(t)=1 \mathrm{~m} / \mathrm{sec}
$$

Therefore, the resultant velocity will be

$$
V_{R}=\sqrt{V_{t}^{2}+V_{r}^{2}}=\sqrt{(1.785)^{2}+(1)^{2}}=2.04 \simeq 2 \mathrm{~m} / \mathrm{sec}
$$

SOL 2.9 Option (A) is correct.
W hen disc rolling along a straight path, without slipping. The centre of the wheel 0 moves with some linear velocity and each particle on the wheel rotates with some angular velocity.

Thus, the motion of any particular on the periphery of the wheel is a combination of linear and angular velocity.
Let wheel rotates with angular velocity $=\omega$ rad/ sec.
So,

$$
\begin{equation*}
\omega=\frac{\mathrm{V}}{\mathrm{R}} \tag{i}
\end{equation*}
$$

Velocity at point P is, $\mathrm{V}_{\mathrm{P}}=\omega \times \mathrm{PQ}$
From triangle OPQ

$$
\begin{align*}
P Q & \sqrt{(O Q)^{2}+(O P)^{2}-20 Q \times O P \times \cos (\angle P O Q)} \tag{ii}\\
& =\sqrt{(R)^{2}+(R)^{2}-2 R R \cos 120^{\circ}} \\
& =\sqrt{(R)^{2}+(R)^{2}+(R)^{2}}=\sqrt{3} R \tag{iii}
\end{align*}
$$

From equation (i), (ii) and (iii)

$$
V_{P}=\frac{V}{R} \times \sqrt{3} R=\sqrt{3} V
$$

soL 2.10 Option (B) is correct.
The forces which are acting on the truss $P Q R$ is shown in figure.
We draw a perpendicular from the point P, that intersects $Q R$ at point S.

Let $\quad \mathrm{PS}=\mathrm{QS}=\mathrm{a}$
$R_{Q} \& R_{R}$ are the reactions acting at point $Q \& R$ respectively. Now from the triangle PRS

$$
\tan 30^{\circ}=\frac{P S}{S R} \Rightarrow S R=\frac{P S}{\tan 30^{\circ}}=\frac{a}{\frac{1}{\sqrt{3}}}=\sqrt{3} a=1.73 a
$$

Taking the moment about point R ,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{Q}} \times(\mathrm{a}+1.73 \mathrm{a}) & =\mathrm{F} \times 1.73 \mathrm{a} \\
\mathrm{R}_{\mathrm{Q}} & =\frac{1.73 \mathrm{a}}{2.73 \mathrm{a}}=\frac{1.73 \mathrm{~F}}{2.73}=0.634 \mathrm{~F}
\end{aligned}
$$

From equilibrium of the forces, we have

$$
\begin{aligned}
R_{R}+R_{Q} & =F \\
R_{R} & =F-R_{Q}=F-0.634 F=0.366 F
\end{aligned}
$$

To find tension in $Q R$ we have to use the method of joint at point Q, and $\Sigma F_{y}=0$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{QP}} \sin 45^{\circ} & =\mathrm{R}_{\mathrm{Q}} \\
\mathrm{~F}_{\mathrm{QP}} & =\frac{0.634 \mathrm{~F}}{\frac{1}{\sqrt{2}}}=0.8966 \mathrm{~F}
\end{aligned}
$$

and, $\Sigma F_{x}=0$

$$
\mathrm{F}_{\mathrm{QP}} \cos 45^{\circ}=\mathrm{F}_{\mathrm{QR}} \Rightarrow \mathrm{~F}_{\mathrm{QR}}=0.8966 \mathrm{~F} \times \frac{1}{\sqrt{2}}=0.634 \mathrm{~F} \simeq 0.63 \mathrm{~F}
$$

SOL 2.11 Option (A) is correct.
In both elastic \& in inelastic collision total linear momentum remains conserved. In the inelastic collision loss in kinetic energy occurs because the coefficient of restitution is less than one and loss in kinetic energy is given by the relation,

$$
\Delta K . E .=\frac{m_{1} m_{2}}{2\left(m_{1}+m_{2}\right)}\left(u_{1}-u_{2}\right)^{2}\left(1-e^{2}\right)
$$

SOL 2.12 Option (A) is correct.
First of all we resolve all the force which are acting on the block.

Given :

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{s} \\
\mu & <\tan \theta
\end{aligned}
$$

where $\mathrm{N}=$ Normal fraction force

Now from Newton's second law,

$$
\begin{array}{rlrl}
\mathrm{F} & =\mathrm{ma} & \\
\mathrm{mg} \sin \theta-\mu \mathrm{N} & =\mathrm{ma} & \mathrm{a}=\text { Acceleration of block } \\
\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta & =\mathrm{ma} & \mathrm{~N}=\mathrm{mg} \cos \theta \\
g \sin \theta-\mu \mathrm{g} \cos \theta & =\mathrm{a} & \\
\mathrm{a} & =\mathrm{g} \cos \theta\left[\frac{\sin \theta}{\cos \theta}-\mu\right]=g \cos \theta(\tan \theta-\mu) & \ldots \text { (i) }
\end{array}
$$

From the Newton;s second law of M otion,

$$
\begin{array}{ll}
\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}{ }^{2}=0+\frac{1}{2} \mathrm{~g} \cos \theta(\tan \theta-\mu) \mathrm{t}^{2} & \mathrm{u}=0 \\
\mathrm{t}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{~g} \cos \theta(\tan \theta-\mu)}}
\end{array}
$$

sol 2.13 Option (B) is correct.
If a system of forces acting on a body or system of bodies be in equilibrium and the system has to undergo a small displacement consistent with the geometrical conditions, then the algebraic sum of the virtual works done by all the forces of the system is zero and total potential energy with respect to each of the independent variable must be equal to zero.
sol 2.14 Option (A) is correct.
First we solve this problem from Lami's theorem. Here three forces are given. Now we have to find the angle between these forces

Applying Lami's theorem, we have

$$
\begin{aligned}
\frac{F}{\sin 90^{\circ}} & =\frac{T_{A B}}{\sin 120^{\circ}}=\frac{T_{A C}}{\sin 150^{\circ}} \\
\frac{600}{1} & =\frac{T_{A B}}{\sqrt{3} / 2}=\frac{T_{A C}}{1 / 2} \\
T_{A B} & =600 \times \frac{\sqrt{3}}{2}=300 \sqrt{3} \approx 520 \mathrm{~N} \\
T_{A C} & =\frac{600}{2}=300 \mathrm{~N}
\end{aligned}
$$

Alternative :

Now we using the Resolution of forces.

Resolve the $T_{A B} \& T_{A C}$ in $x \& y$ direction (horizontal \& vertical components) We use the Resolution of forces in $x \& y$ direction
$\Sigma \mathrm{F}_{\mathrm{x}}=0, \quad \mathrm{~T}_{\mathrm{AB}} \cos 60^{\circ}=\mathrm{T}_{\mathrm{AC}} \cos 30^{\circ}$

$$
\begin{equation*}
\frac{T_{A B}}{T_{A C}}=\frac{\sqrt{3}}{2} \times \frac{2}{1}=\sqrt{3} \tag{i}
\end{equation*}
$$

$\Sigma F_{y}=0, \quad T_{A B} \sin 60^{\circ}+T_{A C} \sin 30^{\circ}=600 N$
$\frac{\sqrt{3}}{2} T_{A B}+\frac{1}{2} T_{A C}=600 N$
$\sqrt{3} T_{A B}+T_{A C}=1200 N \quad T_{A C}=\frac{T_{A B}}{\sqrt{3}}$ From equation (i)
Now,

$$
\sqrt{3} T_{A B}+\frac{T_{A B}}{\sqrt{3}}=1200 \mathrm{~N}
$$

$$
4 \mathrm{~T}_{\mathrm{AB}}=1200 \sqrt{3}
$$

$$
\mathrm{T}_{\mathrm{AB}}=\frac{1200 \sqrt{3}}{4}=520 \mathrm{~N}
$$

$$
\mathrm{T}_{\mathrm{AC}}=\frac{\mathrm{T}_{\mathrm{AB}}}{\sqrt{3}}=\frac{520}{\sqrt{3}}=300 \mathrm{~N}
$$

sol 2.15 Option (D) is correct.
Given; $\quad x=2 t^{3}+t^{2}+2 t$
We know that,

$$
\begin{equation*}
v=\frac{d x}{d t}=\frac{d}{d t}\left(2 t^{3}+t^{2}+2 t\right)=6 t^{2}+2 t+2 \tag{i}
\end{equation*}
$$

We have to find the velocity \& acceleration of particle, when motion stared,
So at $t=0, \quad v=2$
A gain differentiate equation (i) w.r.t. t

$$
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=12 t+2
$$

At $t=0$,
$a=2$
sol 2.16 Option (A) is correct.
We have to make the diagram of simple pendulum

Here, We can see easily from the figure that tension in the string is balanced by the weight of the bob and net force at the mean position is always zero.

SOL 2.17 Option (D) is correct.
Given : $\mathrm{m}_{1}=\mathrm{m}_{2}=1 \mathrm{~kg}, \mu=0.3$
The FBD of the system is shown below :

For first book
FBD of book second

For Book (1) $\Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{R}_{\mathrm{N} 1}=\mathrm{mg}$
Then, \quad Friction Force $\mathrm{F}_{\mathrm{N} 1}=\mu \mathrm{R}_{\mathrm{N} 1}=\mu \mathrm{mg}$
From FBD of book second,
$\Sigma F_{x}=0$,

$$
\mathrm{F}=\mu \mathrm{R}_{N 1}+\mu \mathrm{R}_{\mathrm{N} 2}
$$

$\Sigma F_{y}=0$,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{N}_{2}}=\mathrm{R}_{\mathrm{N}_{1}}+\mathrm{mg}=\mathrm{mg}+\mathrm{mg}=2 \mathrm{mg} \tag{ii}
\end{equation*}
$$

For slip occurs between the books when

$$
\begin{aligned}
& \mathrm{F} \geq \mu \mathrm{R}_{\mathrm{N} 1}+\mu \mathrm{R}_{N 2} \geq \mu \mathrm{mg}+\mu \times 2 \mathrm{mg} \\
& \mathrm{~F} \geq \mu(3 \mathrm{mg}) \geq 0.3(3 \times 1 \times 9.8) \geq 8.82
\end{aligned}
$$

It means the value of F is always greater or equal to the 8.82 , for which slip
occurs between two books.
So,
$\mathrm{F}=8.83 \mathrm{~N}$

SOL 2.18 Option (C) is correct.
Given : $\omega=2 \mathrm{rad} / \mathrm{sec}, \mathrm{r}=2 \mathrm{~m}$

Tangential velocity of barrel, $\quad \mathrm{V}_{\mathrm{t}}=\mathrm{r} \omega=2 \times 2=4 \mathrm{~m} / \mathrm{sec}$

$$
\mathbf{V}=\mathrm{V}_{\mathrm{r}} \mathbf{i}+\mathrm{V}_{\mathrm{t}} \mathbf{j}=3 \mathbf{i}+4 \mathbf{j}
$$

Resultant velocity of shell, $\quad \mathbf{V} \mid=\sqrt{(3)^{2}+(4)^{2}}=\sqrt{25}=5 \mathrm{~m} / \mathrm{sec}$
soL 2.19 Option (C) is correct.
Given : Mass of cage \& counter weight $=\mathrm{m} \mathrm{kg}$ each
Peak speed $=$ V
Initial velocity of both the cage and counter weight.

$$
\mathrm{V}_{1}=\mathrm{Vm} / \mathrm{sec}
$$

Final velocity of both objects

$$
V_{2}=0
$$

Initial kinetic Energy, $\quad E_{1}=\frac{1}{2} m V^{2}+\frac{1}{2} m V^{2}=m V^{2}$
Final kinetic Energy $E_{2}=\frac{1}{2} m(0)^{2}+\frac{1}{2} m(0)^{2}=0$
\quad Now, \quad Power $=$ Rate of change of K.E.

$$
=\frac{E_{1}-E_{2}}{t}=\frac{m V^{2}}{t}
$$

SOL 2.20 Option (B) is correct.
Given : $\mathrm{m}_{1}=1 \mathrm{~kg}, \mathrm{~V}_{1}=10 \mathrm{~m} / \mathrm{sec}, \mathrm{m}_{2}=20 \mathrm{~kg}, \mathrm{~V}_{2}=$ Velocity after striking the wheel $r=1$ meter
A pplying the principal of linear momentum on the system

$$
\frac{d P}{d t}=0 \Rightarrow P=\text { constant }
$$

Initial M omentum $=\mathrm{Final} \mathrm{M}$ omentum

$$
\begin{aligned}
\mathrm{m}_{1} \times \mathrm{V}_{1} & =\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =\frac{\mathrm{m}_{1} \mathrm{~V}_{1}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}=\frac{1 \times 10}{1+20}=\frac{10}{21}
\end{aligned}
$$

Now after the collision the wheel rolling with angular velocity ω.
So,

$$
V_{2}=r \omega \Rightarrow \omega=\frac{V_{2}}{r}=\frac{10}{21 \times 1}=0.476
$$

It is nearly equal to $1 / 3$.

SOL 2.21 Option (A) is correct.
First of all we consider all the forces, which are acting at point L.

Now sum all the forces which are acting along x direction,

$$
F_{L K}=F_{L M} \quad \text { Both are acting in opposite direction }
$$

Also summation of all the forces, which are acting along y-direction.

$$
F_{L N}=0 \quad \text { Only one forces acting in } y \text {-direction }
$$

So the member LN is subjected to zero load.

SOL 2.22 Option (A) is correct.
Given : $k=981 \times 10^{3} \mathrm{~N} / \mathrm{m}, \mathrm{x}_{\mathrm{i}}=100 \mathrm{~mm}=0.1 \mathrm{~m}, \mathrm{~m}=100 \mathrm{~kg}$
Let, when mass $m=100 \mathrm{~kg}$ is put on the spring then spring compressed by $x \mathrm{~mm}$. From the conservation of energy :
Energy stored in free state = Energy stored after the mass is attach.

$$
\begin{aligned}
(K . E .)_{i} & =(K . E .)_{f}+(P . E .)_{f} \\
\frac{1}{2} k x_{i}^{2} & =\frac{1}{2} k x^{2}+m g(x+0.1) \\
k x_{i}^{2} & =k x^{2}+2 m g(x+0.1)
\end{aligned}
$$

Substitute the values, we get

$$
\begin{aligned}
981 \times 10^{3} \times(0.1)^{2} & =\left(981 \times 10^{3} \times x^{2}\right)+[2 \times 100 \times 9.81 \times(x+0.1)] \\
10^{3} \times 10^{-2} & =10^{3} x^{2}+2(x+0.1) \\
10 & =1000 x^{2}+2 x+0.2 \\
1000 x^{2}+2 x-9.8 & =0
\end{aligned}
$$

Solving above equation, we get

$$
x=\frac{-2 \pm \sqrt{(2)^{2}-4 \times 1000(-9.8)}}{2 \times 1000}=\frac{-2 \pm \sqrt{4+39200}}{2000}=\frac{-2 \pm 198}{2000}
$$

On taking -ve sign, we get

$$
x=\frac{-2-198}{2000}=-\frac{1}{10}, m=-100 \mathrm{~mm}
$$

(-ve sign shows the compression of the spring)

SOL 2.23 Option (B) is correct.
Given: \quad First Mass, $m_{1}=10 \mathrm{~kg}$
Balancing M ass, $\mathrm{m}_{2}=20 \mathrm{~kg}$
We know the mass moment of inertia, $I=\mathrm{mk}^{2}$
Where, $\quad k=$ Radius of gyration
Case (I): W hen mass of 10 kg is rotates with uniform angular velocity ' ω '

$$
I_{1}=m_{1} k_{1}^{2}=10 \times(0.2)^{2}=10 \times 0.04=0.4 \mathrm{~kg} \mathrm{~m}^{2} \quad \mathrm{k}_{1}=0.2 \mathrm{~m}
$$

C ase (II): W hen balancing mass of 20 kg is attached then moment of inertia

$$
\begin{aligned}
\mathrm{I}_{2}=10 \times(0.2)^{2}+20 \times(0.1)^{2}=0.4+0.2=0.6 \text { Here } \mathrm{k}_{1} & =0.2 \mathrm{~m} \\
\text { and } \mathrm{k}_{2} & =0.1 \mathrm{~m}
\end{aligned}
$$

Percent increase in mass moment of inertia,

$$
I=\frac{I_{2}-I_{1}}{I_{1}} \times 100=\frac{0.6-0.4}{0.4} \times 100=\frac{1}{2} \times 100=50 \%
$$

SOL 2.24 Option (D) is correct.
Given: Weight of object $W=2000 \mathrm{~N}$
Coefficient of Friction $\mu=0.1$
First of all we have to make the FBD of the system.

Here, $\quad R_{N}=$ N ormal reaction force acting by the pin joint.

$$
\mathrm{F}=\mu \mathrm{R}_{\mathrm{N}}=\text { Friction force }
$$

In equilibrium condition of all the forces which are acting in y direction.

$$
\begin{aligned}
\mu \mathrm{R}_{\mathrm{N}}+\mu \mathrm{R}_{\mathrm{N}} & =2000 \mathrm{~N} \\
\mu \mathrm{R}_{\mathrm{N}} & =1000 \mathrm{~N} \\
\mathrm{R}_{\mathrm{N}} & =\frac{1000}{0.1}=10000 \mathrm{~N} \quad \mu=0.1
\end{aligned}
$$

Taking the moment about the pin, we get

$$
\begin{aligned}
10000 \times 150 & =\mathrm{F} \times 300 \\
\mathrm{~F} & =5000 \mathrm{~N}
\end{aligned}
$$

SOL 2.25 Option (A) is correct.
Given : $\mathrm{AC}=\mathrm{CD}=\mathrm{DB}=\mathrm{EF}=\mathrm{CE}=\mathrm{DF}=\mathrm{I}$
At the member EF uniform distributed load is acting, the U.D.L. is given as "p" per unit length.
So, the total load acting on the element EF of length I

$$
\begin{aligned}
& =\text { Lord per unit length } \times \text { Total length of element } \\
& =\mathrm{p} \times \mathrm{I}=\mathrm{pl}
\end{aligned}
$$

This force acting at the mid point of EF. From the FBD we get that at A and B reactions are acting because of the roller supports, in the upward direction. In equilibrium condition,

$$
\begin{align*}
& \text { Upward force }=\text { D ownward forces } \\
& \qquad R_{a}+R_{b}=p l \tag{i}
\end{align*}
$$

A nd take the moment about point A,

$$
\begin{aligned}
& p l \times\left(I+\frac{I}{2}\right)=R_{b}(I+I+I) \\
& \mathrm{pl} \times \frac{3}{2} \mathrm{I}=\mathrm{R}_{\mathrm{b}} \times 3 \mathrm{l} \Rightarrow \mathrm{R}_{\mathrm{b}}=\frac{\mathrm{pl}}{2}
\end{aligned}
$$

Substitute the value of R_{b} in equation (i), we get

$$
\begin{aligned}
\mathrm{R}_{\mathrm{a}}+\frac{\mathrm{pl}}{2} & =\mathrm{pl} \\
\mathrm{R}_{\mathrm{a}} & =\mathrm{pl}-\frac{\mathrm{pl}}{2}=\frac{\mathrm{pl}}{2}=\mathrm{R}_{\mathrm{b}}=\frac{\mathrm{pl}}{2}
\end{aligned}
$$

At point A we use the principal of resolution of forces in the y-direction, $\sum F_{y}=0: F_{A E} \sin 45^{\circ}=R_{a}=\frac{\mathrm{pl}}{2}$

$$
\mathrm{F}_{\mathrm{AE}}=\frac{\mathrm{pl}}{2} \times \frac{1}{\sin 45^{\circ}}=\frac{\mathrm{pl}}{2} \times \sqrt{2}=\frac{\mathrm{pl}}{\sqrt{2}}
$$

And

$$
\mathrm{F}_{\mathrm{AC}}=\mathrm{F}_{\mathrm{AE}} \cos 45^{\circ}=\frac{\mathrm{pl}}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{\mathrm{pl}}{2}
$$

At C, No external force is acting. So,

$$
\mathrm{F}_{\mathrm{AC}}=\frac{\mathrm{pl}}{2}=\mathrm{F}_{\mathrm{CD}}
$$

SOL 2.26 Option (A) is correct.
Given: \quad Mass of bullet $=m$
M ass of block $=\mathrm{M}$
Velocity of bullet $=\mathrm{v}$
Coefficient of K inematic friction $=\mu$
Let, Velocity of system (Block + bullet) after striking the bullet $=u$ We have to make the FBD of the box after the bullet strikes,

Friction Force (Retardation) $=\mathrm{F}_{\mathrm{r}}$
A pplying principal of conservation of linear momentum,

$$
\frac{\mathrm{dP}}{\mathrm{dt}}=0 \text { or } \mathrm{P}=\mathrm{mV}=\text { constant. }
$$

So,

$$
\begin{align*}
m \mathrm{v} & =(M+m) \mathrm{u} \\
\mathrm{u} & =\frac{m v}{M+m} \tag{i}
\end{align*}
$$

A nd, from the FBD the vertical force (reaction force),

$$
\begin{align*}
\mathrm{R}_{\mathrm{N}} & =(\mathrm{M}+\mathrm{m}) \mathrm{g} \\
\mathrm{~F}_{\mathrm{r}} & =\mu \mathrm{R}_{\mathrm{N}}=\mu(\mathrm{M}+\mathrm{m}) \mathrm{g} \tag{ii}
\end{align*}
$$

Frictional retardation $\quad a=\frac{-F_{r}}{(m+M)}=\frac{-\mu(M+m) g}{M+m}=-\mu \mathrm{g}$
Negative sign show the retardation of the system (acceleration in opposite direction). From the Newton's third law of motion,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{f}}^{2} & =\mathrm{u}^{2}+2 \mathrm{as} \\
\mathrm{~V}_{\mathrm{f}} & =\mathrm{F} \text { inal velocity of system (block }+ \text { bullet) }=0 \\
\mathrm{u}^{2}+2 \mathrm{as} & =0 \\
\mathrm{u}^{2} & =-2 \mathrm{as}=-2 \times(-\mu \mathrm{g}) \times \mathrm{s}=2 \mu \mathrm{gs} \quad \text { From equation (ii) }
\end{aligned}
$$

Substitute the value of u from equation (i), we get

$$
\begin{aligned}
\left(\frac{\mathrm{mv}}{\mathrm{M}+\mathrm{m}}\right)^{2} & =2 \mu \mathrm{gs} \\
\frac{\mathrm{~m}^{2} v^{2}}{(\mathrm{M}+\mathrm{m})^{2}} & =2 \mu \mathrm{gs} \\
v^{2} & =\frac{2 \mu \mathrm{gs}(\mathrm{M}+\mathrm{m})^{2}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$$
\mathrm{v}=\sqrt{2 \mu \mathrm{gs}} \times\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{~m}}\right)=\frac{\mathrm{M}+\mathrm{m}}{\mathrm{~m}} \sqrt{2 \mu \mathrm{gS}}
$$

sol 2.27 Option (A) is correct.
Given: \quad M ass of real $=m$
Radius of gyration $=k$
We have to make FBD of the system,

W here,

$$
\begin{aligned}
\mathrm{T} & =\text { Tension in the thread } \\
\mathrm{mg} & =\text { Weight of the system }
\end{aligned}
$$

Real is rolling down. So A ngular acceleration (α) comes in the action From FBD, For vertical translation motion,

$$
\begin{equation*}
\mathrm{mg}-\mathrm{T}=\mathrm{ma} \tag{i}
\end{equation*}
$$

and for rotational motion,

$$
\begin{align*}
\Sigma M_{G} & =I_{G} \alpha \\
\Gamma \times r & =m k^{2} \times \frac{a}{r} \tag{ii}\\
\mathrm{~T} & =\frac{m k^{2}}{r^{2}} \times a
\end{align*}
$$

$$
\mathrm{T} \times \mathrm{r}=\mathrm{mk}^{2} \times \frac{\mathrm{a}}{\mathrm{r}} \quad \mathrm{I}_{\mathrm{G}}=\mathrm{mk}^{2}, \alpha=\mathrm{a} / \mathrm{r}
$$

From equation (i) \& (ii) Substitute the value of T in equation (i), we get

$$
\begin{align*}
m g-\frac{m^{2}}{r^{2}} \times a & =m a \\
m g & =a\left[\frac{{m k^{2}}_{r^{2}}}{}+m\right] \\
a & =\frac{{g r^{2}}_{k^{2}+r^{2}}}{} \tag{iii}
\end{align*}
$$

SOL 2.28 Option (C) is correct.
From previous question, $\mathrm{T}=\mathrm{mg}-\mathrm{ma}$
Substitute the value of a from equation (iii), we get

$$
\mathrm{T}=\mathrm{mg}-\mathrm{m} \times \frac{\mathrm{gr}^{2}}{\left(\mathrm{k}^{2}+\mathrm{r}^{2}\right)}=\frac{\mathrm{mg}\left(\mathrm{k}^{2}+\mathrm{r}^{2}\right)-\mathrm{mgr}^{2}}{\left(\mathrm{k}^{2}+\mathrm{r}^{2}\right)}=\frac{\mathrm{mgk}^{2}}{\mathrm{k}^{2}+\mathrm{r}^{2}}
$$

sol 2.29 Option (D) is correct.
We know that a particle requires the velocity of $11.2 \mathrm{~km} / \mathrm{s}$ for escape it from the earth's gravitational field. The angle α does not effect on it.

SOL 2.30 Option (C) is correct.

The $B D$ is the diagonal of the square $A B C D$ and $\angle C B D=45^{\circ}$.
From the $\triangle B C E \quad \sin 45^{\circ}=\frac{C E}{B C} \Rightarrow C E=1 \times \sin 45^{\circ}=\frac{1}{\sqrt{2}}$ unit
where $C E$ is the height of the triangle $\triangle B C D$.
Now, the area moment of inertia of a triangle about its base BD is $\frac{\mathrm{bh}^{3}}{12}$ where $b=$ base of triangle \& $h=$ height of triangle
So, the triangle $\triangle A B D$ are same and required moment of inertia of the square $A B C D$ about its diagonal is,

$$
I=2 \times \frac{1}{12} \times(B D) \times(C E)^{3}=\frac{1}{6} \times \sqrt{2} \times\left(\frac{1}{\sqrt{2}}\right)^{3}=\frac{1}{12} \text { unit }
$$

SOL 2.31 Option (A) is correct.

The reactions at the hinged support will be in only vertical direction as external loads are vertical.
Now, consider the FBD of entire truss. In equilibrium of forces.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{f}}=1+1=2 \mathrm{kN} \tag{i}
\end{equation*}
$$

Taking moment about point A, we get

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{R}_{\mathrm{f}} \times 3 \mathrm{~L} & =1 \times \mathrm{L}+1 \times 2 \mathrm{~L}=3 \mathrm{~L} \\
\mathrm{R}_{\mathrm{f}} & =1 \mathrm{kN} \\
\text { From equation (i), } \quad \mathrm{R}_{\mathrm{a}} & =2-1=1 \mathrm{kN}
\end{aligned}
\end{aligned}
$$

First consider the FBD of joint A with the direction of forces assumed in the figure.

Resolving force vertically, we get

$$
\begin{aligned}
\mathrm{R}_{\mathrm{a}} & =\mathrm{F}_{\mathrm{AB}} \sin 45^{\circ} \\
\mathrm{F}_{\mathrm{AB}} & =\frac{1}{\sin 45^{\circ}}=\sqrt{2} \mathrm{kN} \text { (Compression) }
\end{aligned}
$$

Resolving forces horizontally

$$
\mathrm{F}_{\mathrm{AC}} \quad \mathrm{~F}_{\mathrm{AB}} \cos 45^{\circ}=\sqrt{2} \times \frac{1}{\sqrt{2}}=1 \mathrm{kN} \text { (Tension) }
$$

Consider the $F B D$ of joint B with known value of force $F_{A B}$ in member $A B$ Resolving forces vertically,

$$
\mathrm{F}_{\mathrm{BC}}=\mathrm{F}_{\mathrm{AB}} \cos 45^{\circ}=\sqrt{2} \times \frac{1}{\sqrt{2}}=1 \mathrm{kN} \quad \text { (Tension) }
$$

Resolving forces horizontally,

$$
\mathrm{F}_{\mathrm{BD}}=\mathrm{F}_{\mathrm{AB}} \sin 45^{\circ}=\sqrt{2} \times \frac{1}{\sqrt{2}}=1 \mathrm{kN} \text { (Compression) }
$$

Consider the $F B D$ of joint C with known value of force $F_{B C}$ and $F_{A C}$

Resolving forces vertically,

$$
1=F_{B C}+F_{C D} \sin 45^{\circ}
$$

$$
1=1+\mathrm{F}_{C D} \sin 45^{\circ} \Rightarrow \mathrm{F}_{C D}=0
$$

sol 2.32 Option (D) is correct.

From the FBD of the system.

$$
\mathrm{R}_{\mathrm{N}}=\mathrm{mg} \cos 45^{\circ}
$$

All surfaces are smooth, so there is no frictional force at the surfaces.
The downward force $\mathrm{mg} \sin 45^{\circ}$ is balanced by $\mathrm{P} \cos 45^{\circ}$.
$m g \sin 45^{\circ}=P \cos 45^{\circ}$
$m g \times \frac{1}{\sqrt{2}}=P \times \frac{1}{\sqrt{2}} \Rightarrow P=m g$
SOL 2.33 Option (C) is correct.
In this case the motion of mass m is only in x-direction. So, the linear momentum is only in x-direction \& it remains conserved.
A lso from Energy conservation law the energy remains constant i.e. energy is also conserved.

CHAPTER 3

STRENGTH OF MATERIALS

YEAR 2012
ONE MARK
MCQ 3.1 A thin walled spherical shell is subjected to an internal pressure. If the radius of the shell is increased by 1% and the thickness is reduced by 1%, with the internal pressure remaining the same, the percentage change in the circumferential (hoop) stress is
(A) 0
(B) 1
(C) 1.08
(D) 2.02

MCQ 3.2 A cantilever beam of length L is subjected to a moment M at the free end. The moment of inertia of the beam cross section about the neutral axis is I and the Young's modulus is E. The magnitude of the maximum deflection is
(A) $\frac{M L^{2}}{2 E I}$
(B) $\frac{M L^{2}}{E I}$
(C) $\frac{2 M L^{2}}{E I}$
(D) $\frac{4 M L^{2}}{E I}$

MCQ 3.3 For a long slender column of uniform cross section, the ratio of critical buckling load for the case with both ends clamped to the case with both the ends hinged is
(A) 1
(B) 2
(C) 4
(D) 8

YEAR 2012
MCQ 3.4 The homogeneous state of stress for a metal part undergoing plastic deformation is

$$
T=\left(\begin{array}{rrr}
10 & 5 & 0 \\
5 & 20 & 0 \\
0 & 0 & -10
\end{array}\right)
$$

where the stress component values are in MPa. Using Von Mises Yield criterion, the value of estimated shear yield stress, in MPa is
(A) 9.50
(B) 16.07
(C) 28.52
(D) 49.41

MCQ 3.5 The state of stress at a point under plane stress condition is

$$
\sigma_{\mathrm{xx}}=40 \mathrm{MPa}, \sigma_{\mathrm{yy}}=100 \mathrm{MPa} \text { and } \tau_{\mathrm{xy}}=40 \mathrm{M} \mathrm{~Pa}
$$

The radius of the M ohr's circle representing the given state of stress in M Pa is
(A) 40
(B) 50
(C) 60
(D) 100

MCQ 3.6 A solid steel cube constrained on all six faces is heated so that the temperature rises uniformly by ΔT. If the thermal coefficient of the material is α, Young's modulus is E and the Poisson's ratio is v, the thermal stress developed in the cube due to heating is
(A) $-\frac{\alpha(\Delta \mathrm{T}) \mathrm{E}}{(1-2 v)}$
(B) $-\frac{2 \alpha(\Delta \mathrm{~T}) \mathrm{E}}{(1-2 v)}$
(C) $-\frac{3 \alpha(\Delta \mathrm{~T}) \mathrm{E}}{(1-2 v)}$
(D) $-\frac{\alpha(\Delta \mathrm{T}) \mathrm{E}}{3(1-2 v)}$

YEAR 2011
ONE MARK
MCQ 3.7 A simply supported beam PQ is loaded by a moment of 1 kNm at the midspan of the beam as shown in the figure T he reaction forces R_{P} and R_{Q} at supports P and Q respectively are

(A) 1 kN downward, 1 kN upward
(B) 0.5 kN upward, 0.5 kN downward
(C) 0.5 kN downward, 0.5 kN upward
(D) 1 kN upward, 1 kN upward

MCQ 3.8 A column has a rectangular cross-section of $10 \times 20 \mathrm{~mm}$ and a length of 1 m . The slenderness ratio of the column is close to
(A) 200
(B) 346
(C) 477
(D) 1000

MCQ 3.9 M atch thefollowing criteria of material failure, under biaxial stresses σ_{1} and σ_{2} and yield stress σ_{y}, with their corresponding graphic representations.
P. Maximum-normal-stress criterion
Q. Maximum-distortion-energy criterion
R. Maximum-shear-stress criterion
L.

M.

(A) $P-M, Q-L, R-N$
(B) $\mathrm{P}-\mathrm{N}, \mathrm{Q}-\mathrm{M}, \mathrm{R}-\mathrm{L}$
(C) $\mathrm{P}-\mathrm{M}, \mathrm{Q}-\mathrm{N}, \mathrm{R}-\mathrm{L}$
(D) P-N, Q-L, R-M

MCQ 3.10 A thin cylinder of inner radius 500 mm and thickness 10 mm is subjected to an internal pressure of 5 MPa . The average circumferential (hoop) stress in MPa is
(A) 100
(B) 250
(C) 500
(D) 1000

YEAR 2011
TWO MARKS
MCQ 3.11 A torque T is applied at the free end of a stepped rod of circular crosssection as shown in the figure. The shear modulus of material of the rod is G. The expression for d to produce an angular twist θ at the free end is

(A) $\left(\frac{32 T \mathrm{~L}}{\pi \theta G}\right)^{\frac{1}{4}}$
(B) $\left(\frac{18 \mathrm{~T} \mathrm{~L}}{\pi \theta \mathrm{G}}\right)^{\frac{1}{4}}$
(C) $\left(\frac{16 T \mathrm{~L}}{\pi \theta G}\right)^{\frac{1}{4}}$
(D) $\left(\frac{2 T L}{\pi \theta G}\right)^{\frac{1}{4}}$

- Common Data For Q. 12 and 13 :

A triangular-shaped cantilever beam of uniform-thickness is shown in the figure T he Y oung's modulus of the material of the beam is E. A concentrated load P is applied at the free end of the beam.

MCQ 3.12 The area moment of inertia about the neutral axis of a cross-section at a distance x measured from the free end is
(A) $\frac{b x t^{3}}{6 I}$
(B) $\frac{b x t^{3}}{121}$
(C) $\frac{b x t^{3}}{24 \mid}$
(D) $\frac{x t^{3}}{12 \mid}$

MCQ 3.13 The maximum deflection of the beam is
(A) $\frac{\left.24 \mathrm{P}\right|^{3}}{\mathrm{Ebt}^{3}}$
(B) $\frac{12 \mathrm{Pl}^{3}}{\mathrm{Ebt}}$
(C) $\frac{3 P I^{3}}{E b t^{3}}$
(D) $\frac{\left.6 \mathrm{P}\right|^{3}}{E b t^{3}}$

YEAR 2010
ONE MARK
MCQ 3.14 Thestate of plane-stress at a point is given by $\sigma_{\mathrm{x}}=-200 \mathrm{M} \mathrm{Pa}, \sigma_{\mathrm{y}}=100 \mathrm{M} \mathrm{Pa}$ $\tau_{x y}=100 \mathrm{MPa}$. The maximum shear stress (in M Pa) is
(A) 111.8
(B) 150.1
(C) 180.3
(D) 223.6

YEAR 2010
TWO MARKS

- Common Data For Q. 15 and Q. 16

A massless beam has a loading pattern as shown in the figure. The beam is of rectangular cross-section with a width of 30 mm and height of 100 mm

MCQ 3.15 The maximum bending moment occurs at
(A) Location B
(B) 2675 mm to the right of A
(C) 2500 mm to the right of A
(D) 3225 mm to the right of A

MCQ 3.16 The maximum magnitude of bending stress (in MPa) is given by
(A) 60.0
(B) 67.5
(C) 200.0
(D) 225.0

YEAR 2009
MCQ 3.17 If the principal stresses in a plane stress problem are $\sigma_{1}=100 \mathrm{MPa}, \sigma_{2}=40$ MPa, the magnitude of the maximum shear stress (in MPa) will be
(A) 60
(B) 50
(C) 30
(D) 20

MCQ 3.18 A solid circular shaft of diameter d is subjected to a combined bending moment M and torque, T . The material property to be used for designing the shaft using the relation $\frac{16}{\pi d^{3}} \sqrt{M^{2}+T^{2}}$ is
(A) ultimate tensile strength $\left(\mathrm{S}_{\mathrm{u}}\right)$
(B) tensile yield strength $\left(\mathrm{S}_{\mathrm{y}}\right)$
(C) torsional yield strength $\left(\mathrm{S}_{\text {sy }}\right)$
(D) endurance strength $\left(\mathrm{S}_{\mathrm{e}}\right)$

YEAR 2009
MCQ 3.19 A solid shaft of diameter d and length L is fixed at both the ends. A torque, T_{0} is applied at a distance $\frac{L}{4}$ from the left end as shown in the figure given below.

The maximum shear stress in the shaft is
(A) $\frac{16 \mathrm{~T}_{0}}{\pi \mathrm{~d}^{3}}$
(B) $\frac{12 \mathrm{~T}_{0}}{\pi \mathrm{~d}^{3}}$
(C) $\frac{8 \mathrm{~T}_{0}}{\pi \mathrm{~d}^{3}}$
(D) $\frac{4 \mathrm{~T}_{0}}{\pi \mathrm{~d}^{3}}$

MCQ 3.20 A frame of two arms of equal length L is shown in the adjacent figure. The flexural rigidity of each arm of the frame is EI. The vertical deflection at the point of application of load P is

(A) $\frac{\mathrm{PL}^{3}}{3 E \mathrm{I}}$
(B) $\frac{2 P L^{3}}{3 E I}$
(C) $\frac{\mathrm{PL}^{3}}{E I}$
(D) $\frac{4 P L^{3}}{3 E T}$

YEAR 2008
ONE MARK
MCQ 3.21 The transverse shear stress acting in a beam of rectangular cross-section, subjected to a transverse shear load, is
(A) variable with maximum at the bottom of the beam
(B) variable with maximum at the top of the beam
(C) uniform
(D) variable with maximum on the neutral axis

MCQ 3.22 A rod of length L and diameter D is subjected to a tensile load P. W hich of the following is sufficient to calculate the resulting change in diameter?
(A) Young's modulus
(B) Shear modulus
(C) Poisson's ratio
(D) B oth Young's modulus and shear modulus

MCQ 3.23 A cantilever type gate hinged at Q is shown in the figure. P and R are the centers of gravity of the cantilever part and the counterweight respectively. The mass of the cantilever part is 75 kg . The mass of the counter weight, for static balance, is

(A) 75 kg
(B) 150 kg
(C) 225 kg
(D) 300 kg

MCQ 3.24 An axial residual compressive stress due to a manufacturing process is present on the outer surface of a rotating shaft subjected to bending. Under a given bending load, the fatigue life of the shaft in the presence of the residual compressive stress is
(A) decreased
(B) increased or decreased, depending on the external bending load
(C) neither decreased nor increased
(D) increased

YEAR 2008
TWO MARKS
MCQ 3.25 For the component loaded with a force F as shown in the figure, the axial stress at the corner point P is

(A) $\frac{F(3 L-b)}{4 b^{3}}$
(B) $\frac{3(3 L+b)}{4 b^{3}}$
(C) $\frac{F(3 L-4 b)}{4 b^{3}}$
(D) $\frac{F(3 L-2 b)}{4 b^{3}}$

MCQ 3.26 A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 MPa . It is further subjected to a torque of 10 kNm . The maximum principal stress experienced on the shaft is closest to
(A) 41 MPa
(B) 82 MPa
(C) 164 MPa
(D) 204 MPa

MCQ 3.27 The rod PQ of length L and with flexural rigidity $E I$ is hinged at both ends. For what minimum force F is it expected to buckle?

(A) $\frac{\pi^{2} E I}{L^{2}}$
(B) $\frac{\sqrt{2} \pi^{2} E l}{L^{2}}$
(C) $\frac{\pi^{2} E I}{\sqrt{2} L^{2}}$
(D) $\frac{\pi^{2} E I}{2 L^{2}}$

MCQ 3.28 A compression spring is made of music wire of 2 mm diameter having a shear strength and shear modulus of 800 M Pa and 80 GPa respectively. The mean coil diameter is 20 mm , free length is 40 mm and the number of active coils is 10 . If the mean coil diameter is reduced to 10 mm , the stiffness of the spring is approximately
(A) decreased by 8 times
(B) decreased by 2 times
(C) increased by 2 times
(D) increased by 8 times

MCQ 3.29 A two dimensional fluid element rotates like a rigid body. At a point within the element, the pressure is 1 unit. R adius of the M ohr's circle, characterizing the state of stress at that point, is
(A) 0.5 unit
(B) 0 unit
(C) 1 unit
(D) 2 unit

- Common Data For Q. 30 and 31 :

A cylindrical container of radius $R=1 \mathrm{~m}$, wall thickness 1 mm is filled with water up to a depth of 2 m and suspended along its upper rim. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$. The selfweight of the cylinder is negligible. The formula for hoop stress in a thinwalled cylinder can be used at all points along the height of the cylindrical container.

MCQ 3.30 The axial and circumference stress ($\sigma_{\mathrm{d}}, \sigma_{\mathrm{c}}$) experienced by the cylinder wall at mid-depth (1 m as shown) are
(A) $(10,10) \mathrm{MPa}$
(B) $(5,10) \mathrm{MPa}$
(C) $(10,5) \mathrm{MPa}$
(D) $(5,5) \mathrm{MPa}$

MCQ 3.31 If the Young's modulus and Poisson's ratio of the container material are 100 GPa and 0.3 , respectively, the axial strain in the cylinder wall at mid-depth is
(A) 2×10^{-5}
(B) 6×10^{-5}
(C) 7×10^{-5}
(D) 1.2×10^{-4}

MCQ 3.32 The strain energy stored in the beam with flexural rigidity EI and loaded as shown in the figure is

(A) $\frac{P^{2} L^{3}}{3 E I}$
(B) $\frac{2 P^{2} L^{3}}{3 E I}$
(C) $\frac{4 P^{2} L^{3}}{3 E I}$
(D) $\frac{8 P^{2} L^{3}}{3 E I}$

YEAR 2007
MCQ 3.33 In a simply-supported beam loaded as shown below, the maximum bending moment in Nm is

(A) 25
(B) 30
(C) 35
(D) 60

MCQ 3.34 A steel rod of length L and diameter D, fixed at both ends, is uniformly heated to a temperature rise of $\Delta \mathrm{T}$. The Young's modulus is E and the coefficient of linear expansion is α. The thermal stress in the rod is
(A) 0
(B) $\alpha \Delta T$
(C) $\mathrm{E} \alpha \Delta \mathrm{T}$
(D) $\mathrm{E} \alpha \Delta \mathrm{T} \mathrm{L}$

YEAR 2007
TWO MARKS
MCQ 3.35 A uniformly loaded propped cantilever beam and its free body diagram are shown below. The reactions are

(A) $R_{1}=\frac{5 q L}{8}, R_{2}=\frac{3 q L}{8}, M=\frac{q^{2}}{8}$
(B) $R_{1}=\frac{3 q L}{8}, R_{2}=\frac{5 q L}{8}, M=\frac{q L^{2}}{8}$
(C) $R_{1}=\frac{5 q L}{8}, R_{2}=\frac{3 q L}{8}, M=0$
(D) $\mathrm{R}_{1}=\frac{3 \mathrm{qL}}{8}, \mathrm{R}_{2}=\frac{5 \mathrm{qL}}{8}, M=0$

MCQ 3.36 A $200 \times 100 \times 50 \mathrm{~mm}$ steel block is subjected to a hydrostatic pressure of 15 M Pa. The Young's modulus and Poisson's ratio of the material are 200 GPa and 0.3 respectively. The change in the volume of the block in mm^{3} is
(A) 85
(B) 90
(C) 100
(D) 110

MCQ 3.37 A stepped steel shaft shown below is subjected to 10 Nm torque. If the modulus of rigidity is 80 GPa , the strain energy in the shaft in N -mm is

(A) 4.12
(B) 3.46
(C) 1.73
(D) 0.86

- Common Data For Q. 38 and 39 :

A machine frame shown in the figure below is subjected to a horizontal force of 600 N parallel to Z -direction.

MCQ 3.38 The normal and shear stresses in MPa at point P are respectively
(A) 67.9 and 56.6
(B) 56.6 and 67.9
(C) 67.9 and 0.0
(D) 0.0 and 56.6

MCQ 3.39 Themaximum principal stress in M Pa and theorientation of the corresponding principal plane in degrees are respectively
(A) -32.0 and -29.52
(B) 100.0 and 60.48
(C) -32.0 and 60.48
(D) 100.0 and -29.52

YEAR 2006
ONE MARK
MCQ 3.40 For a circular shaft of diameter d subjected to torque T, the maximum value of the shear stress is
(A) $\frac{64 \mathrm{~T}}{\pi \mathrm{~d}^{3}}$
(B) $\frac{32 T}{\pi d^{3}}$
(C) $\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}$
(D) $\frac{8 T}{\pi d^{3}}$

MCQ 3.41 A pin-ended column of length L, modulus of elasticity E and second moment of the cross-sectional area is I loaded eccentrically by a compressive load P
. The critical buckling load (P_{cr}) is given by
(A) $P_{c r}=\frac{E l}{\pi^{2} L^{2}}$
(B) $\mathrm{P}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{EI}}{3 L^{2}}$
(C) $\mathrm{P}_{\mathrm{cr}}=\frac{\pi \mathrm{El}}{\mathrm{L}^{2}}$
(D) $P_{c r}=\frac{\pi^{2} E l}{L^{2}}$

MCQ 3.42 According to Von-M ises' distortion energy theory, the distortion energy under three dimensional stress state is represented by
(A) $\frac{1}{2 \mathrm{E}}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-2 v\left(\sigma_{1} \sigma_{2}+\sigma_{3} \sigma_{2}+\sigma_{1} \sigma_{3}\right)\right]$
(B) $\frac{1-2 v}{6 \mathrm{E}}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}+2\left(\sigma_{1} \sigma_{2}+\sigma_{3} \sigma_{2}+\sigma_{1} \sigma_{3}\right)\right]$
(C) $\frac{1+v}{3 \mathrm{E}}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-\left(\sigma_{1} \sigma_{2}+\sigma_{3} \sigma_{2}+\sigma_{1} \sigma_{3}\right)\right]$
(D) $\frac{1}{3 \mathrm{E}}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-v\left(\sigma_{1} \sigma_{2}+\sigma_{3} \sigma_{2}+\sigma_{1} \sigma_{3}\right)\right]$

MCQ 3.43 A steel bar of $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ square cross-section is subjected to an axial compressive load of 200 kN . If the length of the bar is 2 m and $\mathrm{E}=200 \mathrm{GPa}$, the elongation of the bar will be
(A) 1.25 mm
(B) 2.70 mm
(C) 4.05 mm
(D) 5.40 mm

MCQ 3.44 A bar having a cross-sectional area of $700 \mathrm{~mm}^{2}$ is subjected to axial loads at the positions indicated. The value of stress in the segment $Q R$ is

(A) 40 MPa
(B) 50 MPa
(C) 70 MPa
(D) 120 MPa

- Common Data For Q. 45 and Q. 46 :

A simply supported beam of span length 6 m and 75 mm diameter carries a uniformly distributed load of $1.5 \mathrm{kN} / \mathrm{m}$

MCQ 3.45 What is the maximum value of bending moment ?
(A) $9 \mathrm{kN}-\mathrm{m}$
(B) $13.5 \mathrm{kN}-\mathrm{m}$
(C) $81 \mathrm{kN}-\mathrm{m}$
(D) $125 \mathrm{kN}-\mathrm{m}$

MCQ 3.46 W hat is the maximum value of bending stress ?
(A) 162.98 MPa
(B) 325.95 MPa
(C) 625.95 MPa
(D) 651.90 MPa

MCQ 3.47 A uniform, slender cylindrical rod is made of a homogeneous and isotropic
material. The rod rests on a frictionless surface. The rod is heated uniformly. If the radial and Iongitudinal thermal stresses are represented by σ_{r} and σ_{z} , respectively, then
(A) $\sigma_{\mathrm{r}}=0, \sigma_{\mathrm{z}}=0$
(B) $\sigma_{\mathrm{r}} \neq 0, \sigma_{\mathrm{z}}=0$
(C) $\sigma_{\mathrm{r}}=0, \sigma_{\mathrm{z}} \neq 0$
(D) $\sigma_{\mathrm{r}} \neq 0, \sigma_{\mathrm{z}} \neq 0$

MCQ 3.48 Two identical cantilever beams are supported as shown, with their free ends in contact through a rigid roller. A fter the load P is applied, the free ends will have

(A) equal deflections but not equal slopes
(B) equal slopes but not equal deflections
(C) equal slopes as well as equal deflections
(D) neither equal slopes nor equal deflections

YEAR 2005
TWO MARKS
MCQ 3.49 The two shafts $A B$ and $B C$, of equal length and diameters d and $2 d$, are made of the same material. They are joined at B through a shaft coupling, while the ends A and C are built-in (cantilevered). A twisting moment T is applied to the coupling. If T_{A} and T_{C} represent the twisting moments at the ends A and C, respectively, then

(A) $T_{C}=T_{A}$
(B) $\mathrm{T}_{\mathrm{C}}=8 \mathrm{~T}_{\mathrm{A}}$
(C) $\mathrm{T}_{\mathrm{C}}=16 \mathrm{~T}_{\mathrm{A}}$
(D) $T_{A}=16 T_{C}$

MCQ 3.50 A beam is made up of two identical bars $A B$ and $B C$, by hinging them together at B. The end A is built-in (cantilevered) and the end C is simplysupported. W ith the load P acting as shown, the bending moment at A is

(A) zero
(B) $\frac{P L}{2}$
(C) $\frac{3 P L}{2}$
(D) indeterminate

MCQ 3.51 A cantilever beam carries the anti-symmetric load shown, where W_{0} is the peak intensity of the distributed load. Qualitatively, the correct bending moment diagram for this beam is

(A)

(B)

(C)

(D)

MCQ 3.52 A cantilever beam has the square cross section of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$. It carries a transverse load of 10 N . Consider only the bottom fibres of the beam, the correct representation of the Iongitudinal variation of the bending stress is

(A)
60 Mpa
(B)
60 Mp

(C)
400 Mpa
(D) $400 \mathrm{Mpa} \square \square \square$

MCQ 3.53 The M ohr's circle of plane stress for a point in a body is shown. The design is to be done on the basis of the maximum shear stress theory for yielding. Then, yielding will just begin if the designer chooses a ductile material whose yield strength is

(A) 45 MPa
(B) 50 MPa
(C) 90 MPa
(D) 100 MPa

MCQ 3.54 A weighing machine consist of a 2 kg pan resting on a spring. In this condition, with the pan resting on the spring, the length of the spring is 200 mm . W hen a mass of 20 kg is placed on the pan, the length of the spring becomes 100 mm . For the spring, the un-deformed length L and the spring constant k (stiffness) are
(A) $\mathrm{L}=220 \mathrm{~mm}, \mathrm{k}=1862 \mathrm{~N} / \mathrm{m}$
(B) $\mathrm{L}=210 \mathrm{~mm}, \mathrm{k}=1960 \mathrm{~N} / \mathrm{m}$
(C) $\mathrm{L}=200 \mathrm{~mm}, \mathrm{k}=1960 \mathrm{~N} / \mathrm{m}$
(D) $\mathrm{L}=200 \mathrm{~mm}, \mathrm{k}=2156 \mathrm{~N} / \mathrm{m}$

YEAR 2004
ONE MARK
MCQ 3.55 In terms of Poisson's ratio (v) the ratio of Young's Modulus (E) to Shear Modulus (G) of elastic materials is
(A) $2(1+v)$
(B) $2(1-v)$
(C) $\frac{1}{2}(1+v)$
(D) $\frac{1}{2}(1-v)$

MCQ 3.56 The figure shows the state of stress at a certain point in a stressed body. The magnitudes of normal stresses in x and y directions are 100 MPa and 20 MPa respectively. The radius of Mohr's stress circle representing this state of stress is

(A) 120
(B) 80
(C) 60
(D) 40

MCQ 3.57 A torque of 10 Nm is transmitted through a stepped shaft as shown in figure. The torsional stiffness of individual sections of length MN, NO and $O P$ are $20 \mathrm{Nm} / \mathrm{rad}, 30 \mathrm{Nm} / \mathrm{rad}$ and $60 \mathrm{Nm} /$ rad respectively. The angular deflection between the ends M and P of the shaft is

(A) 0.5 rad
(B) 1.0 rad
(C) 5.0 rad
(D) 10.0 rad

YEAR 2004
TWO MARKS
MCQ 3.58 The figure below shows a steel rod of $25 \mathrm{~mm}^{2}$ cross sectional area. It is loaded at four points, K, L, M and N. A ssume $E_{\text {steel }}=200 \mathrm{GP}$ a. The total change in length of the rod due to loading is

(A) $1 \mu \mathrm{~m}$
(B) $-10 \mu \mathrm{~m}$
(C) $16 \mu \mathrm{~m}$
(D) $-20 \mu \mathrm{~m}$

MCQ 3.59 A solid circular shaft of 60 mm diameter transmits a torque of 1600 N.m. The value of maximum shear stress developed is
(A) 37.72 MPa
(B) 47.72 M Pa
(C) 57.72 M Pa
(D) 67.72 M Pa

- Common Data For Q. 60 and 61 are given below.

A steel beam of breadth 120 mm and height 750 mm is loaded as shown in the figure. A ssume $\mathrm{E}_{\text {stel }}=200 \mathrm{GPa}$.

MCQ 3.60 The beam is subjected to a maximum bending moment of
(A) $3375 \mathrm{kN}-\mathrm{m}$
(B) $4750 \mathrm{kN}-\mathrm{m}$
(C) $6750 \mathrm{kN}-\mathrm{m}$
(D) $8750 \mathrm{kN}-\mathrm{m}$

MCQ 3.61 The value of maximum deflection of the beam is
(A) 93.75 mm
(B) 83.75 mm
(C) 73.75 mm
(D) 63.75 mm

YEAR 2003

ONE MARK
MCQ 3.62 The second moment of a circular area about the diameter is given by (D is the diameter).
(A) $\frac{\pi D^{4}}{4}$
(B) $\frac{\pi D^{4}}{16}$
(C) $\frac{\pi D^{4}}{32}$
(D) $\frac{\pi D^{4}}{64}$

MCQ 3.63 A concentrated load of P acts on a simply supported beam of span L at a distance L/ 3 from the left support. The bending moment at the point of application of the load is given by
(A) $\frac{P L}{3}$
(B) $\frac{2 P L}{3}$
(C) $\frac{P L}{9}$
(D) $\frac{2 P L}{9}$

MCQ 3.64 Two identical circular rods of same diameter and same length are subjected to same magnitude of axial tensile force. One of the rod is made out of mild steel having the modulus of elasticity of 206 GPa . The other rod is made out of cast iron having the modulus of elasticity of 100 GPa . A ssume both the materials to be homogeneous and isotropic and the axial force causes the same amount of uniform stress in both the rods. The stresses developed are within the proportional limit of the respective materials. W hich of the following observations is correct ?
(A) B oth rods elongate by the same amount
(B) Mild steel rod elongates more than the cast iron rod
(C) Cast iron rod elongates more than the mild steel rods
(D) As the stresses are equal strains are also equal in both the rods

MCQ 3.65 The beams, one having square cross section and another circular crosssection, are subjected to the same amount of bending moment. If the cross sectional area as well as the material of both the beams are same then
(A) maximum bending stress developed in both the beams is same
(B) the circular beam experience more bending stress than the square one
(C) the square beam experience more bending stress than the circular one (D) as the material is same, both the beams will experience same deformation.

MCQ 3.66 Consider the arrangement shown in the figure below whereJ is the combined polar mass moment of inertia of the disc and the shafts. $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$ are the torsional stiffness of the respective shafts. The natural frequency of torsional oscillation of the disc is given by

(A) $\sqrt{\frac{k_{1}+k_{2}+k_{3}}{j}}$
(B) $\sqrt{\frac{k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}}{\jmath\left(k_{1}+k_{2}\right)}}$
(C) $\sqrt{\frac{k_{1}+k_{2}+k_{3}}{J\left(k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}\right)}}$
(D) $\sqrt{\frac{k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}}{\jmath\left(k_{2}+k_{3}\right)}}$

MCQ 3.67 Maximum shear stress developed on the surface of a solid circular shaft under pure torsion is 240 MPa . If the shaft diameter is doubled then the maximum shear stress developed corresponding to the same torque will be
(A) 120 MPa
(B) 60 MPa
(C) 30 MPa
(D) 15 MPa

YEAR 2003
TWO MARKS
MCQ 3.68 A simply supported laterally loaded beam was found to deflect more than a specified value. Which of the following measures will reduce the deflection ?
(A) Increase the area moment of inertia
(B) Increase the span of the beam
(C) Select a different material having lesser modulus of elasticity
(D) M agnitude of the load to be increased

MCQ 3.69 A shaft subjected to torsion experiences a pure shear stress τ on the surface. The maximum principal stress on the surface which is at 45° to the axis will have a value
(A) $\tau \cos 45^{\circ}$
(B) $2 \tau \cos 45^{\circ}$
(C) $\tau \cos ^{2} 45^{\circ}$
(D) $2 \tau \sin 45^{\circ} \cos 45^{\circ}$

- Common Data For Q. 70 and 71 are given below.

The state of stress at a point " P " in a two dimensional loading is such that the M ohr's circle is a point located at 175 M Pa on the positive normal stress axis.

MCQ 3.70 The maximum and minimum principal stresses respectively from the M ohr's circle are
(A) $+175 \mathrm{MPa},-175 \mathrm{MPa}$
(B) $+175 \mathrm{MPa},+175 \mathrm{MPa}$
(C) $0,-175 \mathrm{MPa}$
(D) 0,0

MCQ 3.71 The directions of maximum and minimum principal stresses at the point " P" from the M ohr's circle are
(A) $0,90^{\circ}$
(B) $90^{\circ}, 0$
(C) $45^{\circ}, 135^{\circ}$
(D) all directions

YEAR 2002
ONE MARK
MCQ 3.72 The total area under the stress-strain curve of mild steel specimen tested upto failure under tension is a measure of
(A) ductility
(B) ultimate strength
(C) stiffness
(D) toughness

MCQ 3.73 The number of components in a stress tensor defining stress at a point in three dimensions is
(A) 3
(B) 4
(C) 6
(D) 9

YEAR 2002
TWO MARKS
MCQ 3.74 The relationship between Young's modulus (E), Bulk modulus (K) and Poisson's ratio (v) is given by
(A) $\mathrm{E}=3 \mathrm{~K}(1-2 v)$
(B) $K=3 E(1-2 v)$
(C) $\mathrm{E}=3 \mathrm{~K}(1-v)$
(D) $\mathrm{K}=3 \mathrm{E}(1-v)$

MCQ 3.75 The ratio of Euler's bucking loads of columns with the same parameters having (i) both ends fixed, and (ii) both ends hinged is
(A) 2
(B) 4
(C) 6
(D) 8

MCQ 3.76 The shape of the bending moment diagram for a uniform cantilever beam carrying a uniformly distributed load over its length is
(A) a straight line
(B) a hyperbola
(C) an ellipse
(D) a parabola

YEAR 2001
TWO MARKS
MCQ 3.77 The maximum principal stress for the stress state shown in the figure is

(A) σ
(B) 2σ
(C) 3σ
(D) 1.5σ

SOLUTION

sol 3.1 Option (D) is correct.
For thin walled spherical shell circumferential (hoop) stress is

$$
\sigma=\frac{\mathrm{pd}}{4 \mathrm{t}}=\frac{\mathrm{pr}}{2 \mathrm{t}}
$$

For initial condition let radius r_{1} and thickness t_{1}, then

$$
\begin{equation*}
\sigma_{1}=\frac{\mathrm{pr}_{1}}{2 \mathrm{t}_{1}} \tag{i}
\end{equation*}
$$

For final condition radius r_{2} increased by 1%, then

$$
r_{2}=r_{1}+\frac{r_{1}}{100}=1.01 r_{1}
$$

Thickness t_{2} decreased by 1% then
and

$$
\begin{aligned}
\mathrm{t}_{2} & =\mathrm{t}_{1}-\frac{\mathrm{t}_{1}}{100}=0.99 \mathrm{t}_{1} \\
\sigma_{2}=\frac{\mathrm{pr}_{2}}{2 \mathrm{t}_{2}} & =\frac{\mathrm{p} \times 1.01 \mathrm{r}_{1}}{1 \times 9.99 \mathrm{t}_{1}}=1.0202 \frac{\mathrm{pr}_{1}}{2 \mathrm{t}_{1}} \\
\sigma_{2} & =1.0202 \times \sigma_{1}
\end{aligned}
$$

From Eq. (i)
Change in hoop stress (\%)

$$
\sigma_{\mathrm{c}}=\frac{\sigma_{2}-\sigma_{1}}{\sigma_{1}} \times 100=\frac{1.0202 \sigma_{1}-\sigma_{1}}{\sigma_{1}} \times 100=2.02 \%
$$

sol 3.2 Option (A) is correct.

Since

$$
E I \frac{d^{2} y}{d x^{2}}=M
$$

Integrating

$$
\begin{equation*}
\mathrm{El} \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{mx}+\mathrm{C}_{1} \tag{i}
\end{equation*}
$$

At $x=0$,

$$
\frac{d y}{d x}=0
$$

So

$$
E I(0)=M(0)+C_{1} \Rightarrow C_{1}=0
$$

Hence Eq.(i) becomes

$$
\begin{array}{ll}
& E I \frac{d y}{d x}=m x \\
\text { A gain integrating } & E l y=\frac{m x^{2}}{2}+C_{2}
\end{array}
$$

$$
\begin{aligned}
\text { At } x=0, y=0, \quad E I(0) & =\frac{m(0)^{2}}{2}+C_{2} \\
C_{2} & =0
\end{aligned}
$$

Then Eq. (ii) becomes

$$
\begin{aligned}
\mathrm{Ely} & =\frac{M x^{2}}{2} \\
y & =\frac{M x^{2}}{2 E I} \quad \Rightarrow y_{\max }=\frac{M L^{2}}{2 E I}\left(\text { At } x=L, y=y_{\max }\right)
\end{aligned}
$$

sol 3.3 Option (C) is correct.
Critical buckling load, $\quad=\frac{\pi^{2} E I}{L^{2}}$
For both ends clamped $L=\frac{L}{2}$
For both ends hinged $L=L$
Ratio for both ends clamped to both ends hinged is $=\frac{\frac{\pi^{2} E I}{\left(\frac{L}{2}\right)^{2}}}{\frac{\pi^{2} E I}{L^{2}}}=\frac{4}{L^{2}} \times \frac{L^{2}}{1}=4$
sol 3.4 Option (B) is correct.
A ccording to Von M ises Y ield criterion

$$
\sigma_{\mathrm{Y}}^{2}=\frac{1}{2}\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)^{2}+\left(\sigma_{\mathrm{y}}-\sigma_{\mathrm{z}}\right)^{2}+\left(\sigma_{\mathrm{z}}-\sigma_{\mathrm{x}}\right)^{2}+6\left(\tau_{\mathrm{xy}}^{2}+\tau_{\mathrm{yz}}^{2}+\tau_{\mathrm{zx}}^{2}\right)\right]
$$

Given, $\quad T=\left[\begin{array}{rrr}10 & 5 & 0 \\ 5 & 20 & 0 \\ 0 & 0 & -10\end{array}\right]$
From given M atrix

So, $\quad \sigma_{Y}^{2}=\frac{1}{2}\left[(10-20)^{2}+(20+10)^{2}+(-10-10)^{2}+6\left(5^{2}+0^{2}+0^{2}\right)\right]$

$$
=\frac{1}{2} \times[100+900+400+(6 \times 25)]=27.83 \mathrm{M} \mathrm{~Pa}
$$

Shear yield stress

$$
\tau_{Y}=\frac{\sigma_{Y}}{\sqrt{3}}=\frac{27.83}{\sqrt{3}}=16.06 \mathrm{M} \mathrm{~Pa}
$$

sol 3.5 Option (B) is correct.
Given, $\sigma_{x x}=40 \mathrm{MPa}=\mathrm{AN}, \sigma_{y y}=100 \mathrm{MPa}=\mathrm{BN}, \tau_{\mathrm{xy}}=40 \mathrm{MPa}=\mathrm{AR}$
Diagram for M ohr's circle

Radius of M ohr's circle

$$
O R=\sqrt{(A R)^{2}+(A O)^{2}}
$$

$$
A O=\frac{A B}{2}=\frac{B N-A N}{2}=\frac{100-40}{2}=30
$$

Therefore,

$$
\mathrm{OR}=\sqrt{(40)^{2}+(30)^{2}}=50 \mathrm{MPa}
$$

sol 3.6 Option (A) is correct.
For a solid cube strain in x, y and z axis are

$$
\begin{aligned}
& \varepsilon_{\mathrm{x}}=\frac{\sigma_{\mathrm{x}}}{\mathrm{E}}-\frac{v\left(\sigma_{\mathrm{y}}+\sigma_{\mathrm{z}}\right)}{\mathrm{E}} \\
& \varepsilon_{\mathrm{y}}=\frac{\sigma_{\mathrm{y}}}{\mathrm{E}}-\frac{v\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{z}}\right)}{\mathrm{E}} \\
& \varepsilon_{\mathrm{z}}=\frac{\sigma_{\mathrm{z}}}{\mathrm{E}}-\frac{v\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)}{\mathrm{E}}
\end{aligned}
$$

From symmetry of cube, $\varepsilon_{x}=\varepsilon_{y}=\varepsilon_{z}=\varepsilon$
and

$$
\begin{aligned}
\sigma_{\mathrm{x}} & =\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma \\
\varepsilon & =\frac{(1-2 v)}{\mathrm{E}} \times \sigma
\end{aligned}
$$

So
Where $\varepsilon=-\alpha \Delta \mathrm{T}$ (T hermal compression stress)
Therefore,

$$
\sigma=\frac{\varepsilon \times \mathrm{E}}{(1-2 v)}=-\frac{-\alpha \Delta \mathrm{TE}}{(1-2 v)}=-\frac{\alpha \Delta \mathrm{T} \mathrm{E}}{(1-2 v)}
$$

sol 3.7 Option (A) is correct.
First of all we have to make a free body diagram of the given beam.

Here R_{P} and R_{Q} are the reaction forces acting at P and Q.
For equilibrium of forces on the beam,

$$
\begin{equation*}
R_{P}+R_{Q}=0 \tag{i}
\end{equation*}
$$

Taking the moment about the point P,

$$
\mathrm{R}_{\mathrm{Q}} \times 1=1 \mathrm{kN}-\mathrm{m} \quad \Rightarrow \mathrm{R}_{\mathrm{Q}}=1 \mathrm{kN}-\mathrm{m}
$$

From equation (i), $\quad R_{p}=-R_{Q}=-1 k N-m$
Since, our assumption that R_{p} acting in the upward direction, is wrong,
So, R_{p} acting in downward direction and R_{Q} acting in upward direction.
sol 3.8 Option (B) is correct.
Given : $I=1$ meter, $b=20 \mathrm{~mm}, \mathrm{~h}=10 \mathrm{~mm}$
We know that, Slenderness ratio $=\frac{1}{\mathrm{k}}$
W here,

$$
\mathrm{k}=\sqrt{\frac{T}{\mathrm{~A}}}=\sqrt{\frac{\mathrm{bh}^{3} / 12}{\mathrm{~b} \times \mathrm{h}}}
$$

Substitute the values, we get

$$
\begin{aligned}
\mathrm{k} & =\sqrt{\frac{\frac{1}{12} \times 20 \times(10)^{3} \times 10^{-12}}{10 \times 20 \times 10^{-6}}}=\sqrt{\frac{20 \times 10^{-3}}{12 \times 10 \times 20}} \\
& =\sqrt{8.33 \times 10^{-6}}=2.88 \times 10^{-3} \mathrm{~m} \\
\text { Slenderness ratio } & =\frac{1}{2.88 \times 10^{-3}}=347.22 \simeq 346
\end{aligned}
$$

SOL 3.9 Option (C) is correct.
(P) Maximum-normal stress criterion $\rightarrow(\mathrm{M})$
(Q) M aximum-distortion energy criterion \rightarrow (N)
(R) M aximum-shear-stress criterion \rightarrow (L)

So correct pairs are, P-M, Q-N, R-L
sol 3.10 Option (B) is correct.
Given : $r=500 \mathrm{~mm}, \mathrm{t}=10 \mathrm{~mm}, \mathrm{p}=5 \mathrm{MPa}$
We know that average circumferential (hoop) stress is given by,

$$
\sigma_{\mathrm{h}}=\frac{\mathrm{pd}}{2 \mathrm{t}}=\frac{5 \times(2 \times 500)}{2 \times 10}=250 \mathrm{M} \mathrm{~Pa}
$$

sol 3.11 Option (B) is correct.
Here we see that shafts are in series combination. For series combination Total angular twist,

$$
\begin{equation*}
\theta=\theta_{1}+\theta_{2} \tag{i}
\end{equation*}
$$

From the torsional equation,

$$
\begin{aligned}
\mathrm{J} & =\frac{\tau}{\mathrm{r}}=\frac{\mathrm{G} \theta}{\mathrm{~T}} \quad \Rightarrow \theta=\frac{\mathrm{TI}}{\mathrm{GJ}} \quad \mathrm{~J}=\frac{\pi}{32} \mathrm{~d}^{4} \\
\theta & =\frac{32 \mathrm{TI}}{\pi \mathrm{~d}^{4} \mathrm{G}}
\end{aligned}
$$

Now, from equation (i),

$$
\begin{gathered}
\theta=\frac{32 T(L)}{\pi(2 d)^{4} G}+\frac{32 T\left(\frac{L}{2}\right)}{\pi d^{4} G}=\frac{32 T L}{\pi d^{4} G}\left[\frac{1}{16}+\frac{1}{2}\right]=\frac{32 T L}{\pi d^{4} G} \times \frac{9}{16}=\frac{18 T L}{\pi d^{4} G} \\
d=\left(\frac{18 T L}{\pi \theta G}\right)^{\frac{1}{4}}
\end{gathered}
$$

SOL 3.12 Option (B) is correct.
Let, $\quad b=$ width of the base of triangle $A B D=B D$
$\mathrm{t}=$ thickness of conilever beam

From the similar triangle (Figure (i)) $\Delta \mathrm{ABC}$ or $\Delta \mathrm{AFE}$

$$
\begin{align*}
\frac{b / 2}{1} & =\frac{h}{x} \\
h & =\frac{b x}{21} \tag{i}
\end{align*}
$$

let $O E=h$

Now from figure (ii), For a rectangular cross section,

$$
\mathrm{I}=\frac{(2 \mathrm{~h}) \mathrm{t}^{3}}{12}=2 \times \frac{\mathrm{bx}}{21} \times \frac{\mathrm{t}^{3}}{12}=\frac{\mathrm{bxt}{ }^{3}}{121} \quad \text { From equation }(\mathrm{i})
$$

sol 3.13 Option (D) is correct.
We know that deflection equation is

$$
\begin{aligned}
E I \frac{d^{2} t}{d x^{2}} & =M=P \times x \\
\frac{d^{2} y}{d x^{2}} & =\frac{1}{E l} P \times x
\end{aligned}
$$

From previous part of the question

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{E \times \frac{b x t^{3}}{12 L}} \times P x=\frac{12 P L}{E b t^{3}}
$$

On Integrating, we get

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{12 \mathrm{PLx}}{E \mathrm{bt}^{3}}+\mathrm{C}_{1} \tag{i}
\end{equation*}
$$

W hen $x=L, \frac{d y}{d x}=0$

So,

$$
0=\frac{12 \mathrm{PL}^{2}}{E \mathrm{bt}^{3}}+\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}=-\frac{12 \mathrm{PL}^{2}}{E b t^{3}}
$$

A gain integrating equation (i),

$$
\begin{equation*}
y=\frac{12 P L}{E b t^{3}} \times \frac{x^{2}}{2}+C_{1} x+C_{2} \tag{ii}
\end{equation*}
$$

W hen $x=L, y=0$
So,

From equation (ii),

$$
\begin{aligned}
0 & =\frac{12 \mathrm{PL}}{2 \mathrm{Ebt}} \times \mathrm{L}^{2}+\mathrm{C}_{1} \mathrm{~L}+\mathrm{C}_{2}=\frac{6 \mathrm{PL}^{3}}{\mathrm{Et}^{3}}-\frac{12 \mathrm{PL}^{3}}{E \mathrm{Et}^{3}}+\mathrm{C}_{2} \\
\mathrm{C}_{2} & =\frac{6 \mathrm{PL}}{} \mathrm{Ebt}^{3}
\end{aligned}
$$

$$
\begin{equation*}
y=\frac{6 P L x^{2}}{E b t^{3}}-\frac{12 P^{2} \mathrm{x}}{E b t^{3}}+\frac{6 \mathrm{PL}^{3}}{E b t^{3}} \tag{iii}
\end{equation*}
$$

The maximum deflection occurs at $\mathrm{x}=0$, from equation (iii),

$$
\mathrm{y}_{\text {max }}=0+0+\frac{6 \mathrm{PL}^{3}}{E b t^{3}}=\frac{6 \mathrm{PL}^{3}}{E b t^{3}}
$$

sol 3.14 Option (C) is correct.
Given : $\sigma_{\mathrm{x}}=-200 \mathrm{M} \mathrm{Pa}, \sigma_{\mathrm{y}}=100 \mathrm{M} \mathrm{Pa}, \tau_{\mathrm{xy}}=100 \mathrm{M} \mathrm{Pa}$
We know that maximum shear stress is given by,

$$
\tau_{\text {max }}=\frac{1}{2} \sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \tau_{x y}^{2}}
$$

Substitute the values, we get

$$
\begin{aligned}
\tau_{\max } & =\frac{1}{2} \sqrt{(-200-100)^{2}+4 \times(100)^{2}} \\
& =\frac{1}{2} \sqrt{90000+40000}=180.27 \simeq 180.3 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

sol 3.15 Option (C) is correct.

First of all we have to make the FBD of the given system.
Let R_{A} and R_{C} are the reactions acting at point A and C respectively. In the equilibrium condition of forces,

$$
\begin{equation*}
R_{A}+R_{C}=6000 \mathrm{~N} \tag{i}
\end{equation*}
$$

Taking moment about point A,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{c}} \times 4 & =6000 \times 3 \\
\mathrm{R}_{\mathrm{c}} & =\frac{18000}{4}=4500 \mathrm{~N}=4.5 \mathrm{kN}
\end{aligned}
$$

And from equation (i),

$$
R_{A}=6000-4500=1500 \mathrm{~N}=1.5 \mathrm{kN}
$$

Taking a section $X-X$ at a distance x from A and taking the moment about this section

$$
\begin{align*}
M_{x x} & =R_{A} \times x-3(x-2) \times \frac{(x-2)}{2} \\
& =1.5 x-1.5(x-2)^{2} \tag{ii}
\end{align*} \quad F=3(x-2) \text { and } d=\frac{x-2}{2}
$$

For maximum Bending moment,

$$
\begin{aligned}
& \frac{d}{d x}\left(M_{x x}\right)=0 \\
& 1.5-2 \times 1.5(x-2)=0 \\
& 1.5-3 x+6=0 \\
&-3 x=-7.5 \\
& x=2.5 \mathrm{~m}=2500 \mathrm{~mm}
\end{aligned}
$$

So the maximum bending moment occurs at 2500 mm to the right of A .
sol 3.16 Option (B) is correct.
From the equation (ii) of the previous part, we have
M aximum bending moment at $x=2.5 \mathrm{~m}$ is,

$$
(B M)_{2.5 \mathrm{~m}}=1.5 \times 2.5-1.5(2.5-2)^{2}=3.375 \mathrm{kN}-\mathrm{m}
$$

From the bending equation,

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{~T}} \times \mathrm{y}=\frac{\mathrm{M}}{\frac{\mathrm{bh}}{12}} \times \frac{\mathrm{h}}{2}=\frac{6 \mathrm{M}}{\mathrm{bh}^{2}}
$$

Substitute the values, we get

$$
\sigma_{\mathrm{b}}=\frac{6 \times 3375}{0.030 \times(0.1)^{2}}=67.5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=67.5 \mathrm{M} \mathrm{~Pa}
$$

sol 3.17 Option (C) is correct.
Given : $\sigma_{1}=100 \mathrm{MPa}, \sigma_{2}=40 \mathrm{MPa}$
We know, the maximum shear stress for the plane complex stress is given by

$$
\tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2}=\frac{100-40}{2}=\frac{60}{2}=30 \mathrm{MPa}
$$

sol 3.18 Option (C) is correct.

We know that, for a shaft of diameter d is subjected to combined bending moment M and torque T , the equivalent Torque is,

$$
T_{e}=\sqrt{M^{2}+T^{2}}
$$

Induced shear stress is,

$$
\tau=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}=\frac{16}{\pi \mathrm{~d}^{3}} \times \sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}
$$

Now, for safe design, τ should be less than $\frac{\mathrm{S}_{\text {sy }}}{\mathrm{N}}$
Where, $\mathrm{S}_{\mathrm{sy}}=$ Torsional yield strength and $\mathrm{N}=$ Factor of safety
sol 3.19 Option (B) is correct.

First, the shaft is divided in two parts (1) and (2) and gives a twisting moment T_{1} (in counter-clockwise direction) and T_{2} (in clock wise direction) respectively.
By the nature of these twisting moments, we can say that shafts are in parallel combination.
So,

$$
\begin{equation*}
\mathrm{T}_{0}=\mathrm{T}_{1}+\mathrm{T}_{2} \tag{i}
\end{equation*}
$$

From the torsional equation,

$$
\frac{\mathrm{T}}{\mathrm{~J}}=\frac{\tau}{\mathrm{r}}=\frac{\mathrm{G} \theta}{\mathrm{l}} \quad \Rightarrow \mathrm{~T}=\frac{\mathrm{GJ} \theta}{\mathrm{l}}
$$

But, here

$$
\begin{aligned}
\mathrm{G}_{1} & =\mathrm{G}_{2} \\
\theta_{1} & =\theta_{2} \\
\mathrm{~J}_{1} & =\mathrm{J}_{2}
\end{aligned}
$$

For parallel connection
Diameter is same
So,

$$
\mathrm{T}_{1} \mathrm{I}_{1}=\mathrm{T}_{2} \mathrm{I}_{2}
$$

$$
\begin{aligned}
\mathrm{T}_{1} \times \frac{\mathrm{L}}{4} & =\mathrm{T}_{2} \times \frac{3 \mathrm{~L}}{4} \\
\mathrm{~T}_{1} & =3 \mathrm{~T}_{2}
\end{aligned}
$$

Now, From equation (i),

$$
\begin{aligned}
& \mathrm{T}_{0}=3 \mathrm{~T}_{2}+\mathrm{T}_{2}=4 \mathrm{~T}_{2} \\
& \mathrm{~T}_{2}=\frac{\mathrm{T}_{0}}{4}
\end{aligned}
$$

$$
\text { And } \quad \mathrm{T}_{1}=\frac{3 \mathrm{~T}_{0}}{4}
$$

Here

$$
\mathrm{T}_{1}>\mathrm{T}_{2}
$$

So, maximum shear stress is developed due to T_{1},

$$
\frac{\mathrm{T}_{1}}{\mathrm{~J}}=\frac{\tau_{\max }}{\mathrm{r}} \Rightarrow \tau_{\max }=\frac{\mathrm{T}_{1}}{\mathrm{~J}} \times \mathrm{r}
$$

Substitute the values, we get

$$
\tau_{\max }=\frac{\left(\frac{3 \mathrm{~T}_{0}}{4}\right)}{\frac{\pi}{32} \mathrm{~d}^{4}} \times \frac{\mathrm{d}}{2}=\frac{32 \times 3 \mathrm{~T}_{0}}{8 \pi \times \mathrm{d}^{3}}=\frac{12 \mathrm{~T}_{0}}{\pi \mathrm{~d}^{3}}
$$

sol 3.20 Option (D) is correct.
We have to solve this by Castigliano's theorem.

We have to take sections $X X$ and $Y Y$ along the arm $B C$ and $A B$ respectively and find the total strain energy.
So, Strain energy in arm BC is,

$$
U_{B C}=\int_{0}^{L} \frac{M_{x}^{2}}{2 E I} d x=\int_{0}^{L} \frac{(P x)^{2}}{2 E I} d x \quad M_{x}=P \times x
$$

Integrating the equation and putting the limits, we get

$$
U_{B C}=\frac{P^{2}}{2 E I}\left[\frac{x^{3}}{3}\right]_{0}^{L}=\frac{P^{2} L^{3}}{6 E I}
$$

Similarly for arm $A B$, we have

$$
\begin{aligned}
U_{A B} & =\int_{0_{0}^{2} L}^{L} \frac{M_{y}^{2}}{2 E I} d y=\int_{0}^{L} \frac{P^{2} L^{2}}{2 E I} d y \quad M_{y}=P \times L \\
& =\frac{P^{2} L^{3}}{2 E T}
\end{aligned}
$$

So, total strain energy stored in both the arms is,

$$
U=U_{A B}+U_{B C}=\frac{P^{2} L^{3}}{2 E T}+\frac{P^{2} L^{3}}{6 E T}=\frac{2 P^{2} L^{3}}{3 E T}
$$

From the Castigliano's theorem, vertical deflection at point A is,

$$
\delta_{\mathrm{A}}=\frac{\delta \mathrm{U}}{\delta \mathrm{P}}=\frac{\delta}{\delta \mathrm{P}}\left(\frac{2 \mathrm{P}^{2} \mathrm{~L}^{3}}{3 \mathrm{E} I}\right)=\frac{4 \mathrm{P} \mathrm{~L}^{3}}{3 \mathrm{E}}
$$

SOL 3.21 Option (D) is correct.

For a rectangle cross-section:

$$
\tau_{\mathrm{v}}=\frac{\mathrm{FAY}}{\mathrm{lb}}=\frac{6 \mathrm{~F}}{\mathrm{bd}^{3}}\left(\frac{\mathrm{~d}^{2}}{4}-\mathrm{y}^{2}\right) \quad \mathrm{F}=\text { Transverse shear load }
$$

M aximum values of τ_{v} occurs at the neutral axis where, $\mathrm{y}=0$

$$
\mathrm{M} \text { aximum } \tau_{v}=\frac{6 \mathrm{~F}}{\mathrm{bd}^{3}} \times \frac{\mathrm{d}^{2}}{4}=\frac{3 \mathrm{~F}}{2 \mathrm{bd}}=\frac{3}{2} \tau_{\text {mean }} \quad \tau_{\text {mean }}=\frac{\mathrm{F}}{\mathrm{bd}}
$$

So, transverse shear stress is variable with maximum on the neutral axis.
sol 3.22 Option (D) is correct.

From the application of load P, the length of the rod increases by an amount of $\Delta \mathrm{L}$

$$
\Delta \mathrm{L}=\frac{\mathrm{PL}}{\mathrm{AE}}=\frac{\mathrm{PL}}{\frac{\pi}{4} \mathrm{D}^{2} \mathrm{E}}=\frac{4 \mathrm{PL}}{\pi \mathrm{D}^{2} \mathrm{E}}
$$

And increase in length due to applied load P in axial or longitudinal direction, the shear modulus is comes in action.

$$
\mathrm{G}=\frac{\text { Shearing stress }}{\text { Shearing strain }}=\frac{\tau_{\mathrm{s}}}{\Delta \mathrm{~L} / \mathrm{L}}=\frac{\tau_{\mathrm{s}} \mathrm{~L}}{\Delta \mathrm{~L}}
$$

So, for calculating the resulting change in diameter both young's modulus
and shear modulus are used.
sol 3.23 Option (D) is correct.
First of all we have to make the FBD of the given system.

Let mass of the counter weight $=\mathrm{m}$.
Here point Q is the point of contraflexure or point of inflection or a virtual hinge.
So,

$$
\begin{aligned}
M_{Q} & =0 \\
m \times 0.5 & =75 \times 2 \quad \Rightarrow \mathrm{~m}=300 \mathrm{~kg}
\end{aligned}
$$

sol 3.24 Option (D) is correct.

(Gerber's Parabola)
The figure shown the Gerber's parabola. It is the characteristic curve of the fatigue life of the shaft in the presence of the residual compressive stress.
The fatigue life of the material is effectively increased by the introduction of a compressive mean stress, whether applied or residual.
sol 3.25 Option (D) is correct.
Here corner point P is fixed. At point P double stresses are acting, one is due to bending and other stress is due to the direct Load.
So, bending stress, (From the bending equation)

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{l}} \mathrm{y}
$$

Distance from the neutral axis to the external fibre $y=\frac{2 b}{2}=b$,

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{F}(\mathrm{~L}-\mathrm{b})}{\frac{(2 \mathrm{~b})^{4}}{12}} \times \mathrm{b} \quad \text { For square section } \mathrm{I}=\frac{\mathrm{b}^{4}}{12}
$$

$$
=\frac{12 F(\mathrm{~L}-\mathrm{b})}{16 \mathrm{~b}^{3}}=\frac{3 \mathrm{~F}(\mathrm{~L}-\mathrm{b})}{4 \mathrm{~b}^{3}}
$$

and direct stress,

$$
\sigma_{\mathrm{d}}=\frac{\mathrm{F}}{(2 \mathrm{~b})^{2}}=\frac{\mathrm{F}}{4 \mathrm{~b}^{2}}=\frac{\mathrm{F}}{4 \mathrm{~b}^{2}} \times \frac{\mathrm{b}}{\mathrm{~b}}=\frac{\mathrm{Fb}}{4 \mathrm{~b}^{3}}
$$

Total axial stress at the corner point P is,

$$
\sigma=\sigma_{\mathrm{b}}+\sigma_{\mathrm{d}}=\frac{3 \mathrm{~F}(\mathrm{~L}-\mathrm{b})}{4 \mathrm{~b}^{3}}+\frac{\mathrm{Fb}}{4 \mathrm{~b}^{3}}=\frac{\mathrm{F}(3 \mathrm{~L}-2 \mathrm{~b})}{4 \mathrm{~b}^{3}}
$$

SOL 3.26 Option (B) is correct.

The shaft is subjected to a torque of $10 \mathrm{kN}-\mathrm{m}$ and due to this shear stress is developed in the shaft,

$$
\begin{aligned}
\tau_{x y} & =\frac{T}{\delta} \times r=\frac{10 \times 10^{3}}{\frac{\pi}{32} \mathrm{~d}^{4}} \times \frac{\mathrm{d}}{2} \quad \text { From Torsion } \\
& =\frac{16 \times 10 \times 10^{3}}{\pi \mathrm{~d}^{3}}=\frac{16 \times 10^{4}}{3.14 \times\left(10^{-1}\right)^{3}}=\frac{160}{3.14}=50.95 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

Maximum principal stress,

$$
\sigma_{1}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\frac{1}{2} \sqrt{\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)^{2}+4 \tau_{\mathrm{xy}}^{2}}
$$

Substitute the values, we get

$$
\begin{aligned}
\sigma_{1} & =\frac{50}{2}+\frac{1}{2} \sqrt{(50)^{2}+4 \times(50.95)^{2}}=25+\frac{1}{2} \sqrt{12883.61} \\
& =25+\frac{113.50}{2}=25+56.75=81.75 \mathrm{MPa} \simeq 82 \mathrm{MPa}
\end{aligned}
$$

SOL 3.27 Option (B) is correct.
We know that according to Euler's theory, the crippling or buckling load (W_{cr}) under various end conditions is represented by the general equation,

$$
\begin{equation*}
W_{\mathrm{cr}}=\frac{\mathrm{C} \pi^{2} \mathrm{El}}{\mathrm{~L}^{2}} \tag{i}
\end{equation*}
$$

W here
$\mathrm{L}=$ length of column
$C=$ Constant, representing the end conditions of the column.

Here both ends are hinged, $\quad \mathrm{C}=1$
From equation (i),

$$
\mathrm{W}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{El}}{\mathrm{~L}^{2}}
$$

M inimum force F required, $\mathrm{W}_{\mathrm{cr}}=\mathrm{F} \cos 45^{\circ}$

$$
F=\frac{W_{c r}}{\cos 45^{\circ}}=\frac{\sqrt{2} \pi^{2} E I}{L^{2}}
$$

sol 3.28 Option (D) is correct.
We know that deflection in a compression spring is given by

$$
\delta=\frac{64 P R^{3} n}{d^{4} G}=\frac{8 P D^{3} n}{d^{4} G}
$$

W here $\quad n=$ number of active coils

$$
D=M \text { ean coil Diameter }
$$

$$
d=M \text { usic wire Diameter }
$$

And

$$
\begin{aligned}
& k=\frac{P}{\delta}=\frac{d^{4} G}{8 D^{3} n} \\
& k \propto \frac{1}{D^{3}}
\end{aligned}
$$

Given that mean coil diameter is reduced to 10 mm .
So,
$\mathrm{D}_{1}=20 \mathrm{~mm}$
$D_{2}=20-10=10 \mathrm{~mm}$
and

$$
\begin{aligned}
& \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{3}=\left(\frac{20}{10}\right)^{3}=8 \\
& \mathrm{k}_{2}=8 \mathrm{k}_{1}
\end{aligned}
$$

So, stiffness is increased by 8 times.
sol 3.29 Option (B) is correct.
Pressure will remain uniform in all directions. So, hydrostatic load acts in all directions on the fluid element and Mohr's circle becomes a point on $\sigma-\tau$ axis and
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}$ and $\tau_{\mathrm{xy}}=0$
So,

$$
\mathrm{R}=\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}}=0
$$

SOL 3.30 Option (B) is correct.
Given : $R=1 \mathrm{~m}, \mathrm{t}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
We know that axial or longitudinal stress for a thin cylinder is,

$$
\begin{equation*}
\sigma_{\mathrm{x}}=\sigma_{\mathrm{a}}=\frac{\mathrm{p} \times \mathrm{D}}{4 \mathrm{t}}=\frac{\mathrm{p} \times 2 \mathrm{R}}{4 \mathrm{t}} \tag{i}
\end{equation*}
$$

Here,

$$
p=P \text { ressure of the fluid inside the shell }
$$

So, pressure at 1 m depth is,

$$
\mathrm{p}=\rho \mathrm{gh}=1000 \times 10 \times 1=10^{4} \mathrm{~N} / \mathrm{m}^{2}
$$

From equation (i),

$$
\sigma_{\mathrm{a}}=\frac{10^{4} \times 2 \times 1}{4 \times 10^{-3}}=5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=5 \mathrm{MPa}
$$

and hoop or circumferential stress,

$$
\sigma_{\mathrm{y}}=\sigma_{\mathrm{c}}=\frac{\mathrm{p} \times \mathrm{D}}{2 \mathrm{t}}=\frac{10^{4} \times 2}{2 \times 10^{-3}}=10 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=10 \mathrm{MPa}
$$

sol 3.31 Option (A) is correct.
Given : v or $\frac{1}{\mathrm{~m}}=0.3, \mathrm{E}=100 \mathrm{GPa}=100 \times 10^{9} \mathrm{~Pa}$
Axial strain or Iongitudinal strain at mid - depth is,

$$
\sigma_{\mathrm{a}}=\sigma_{\mathrm{x}}=\frac{\mathrm{pD}}{2 \mathrm{tE}}\left(\frac{1}{2}-\frac{1}{\mathrm{~m}}\right)
$$

Substitute the values, we get

$$
\begin{aligned}
\sigma_{\mathrm{a}} & =\frac{10^{4} \times 2 \times 1}{2 \times 10^{-3} \times 100 \times 10^{9}}\left(\frac{1}{2}-0.3\right) \\
& =\frac{10^{4}}{10^{8}}\left(\frac{1}{2}-0.3\right)=10^{-4} \times 0.2=2 \times 10^{-5}
\end{aligned}
$$

soL 3.32 Option (C) is correct.

B.M.D.

In equilibrium condition of forces,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=2 \mathrm{P} \tag{i}
\end{equation*}
$$

Taking the moment about point A,

$$
\begin{gathered}
R_{B} \times 4 L-P \times L-P \times 3 L=0 \\
R_{B} \times 4 L-4 P L=0 \\
R_{B}=\frac{4 P L}{4 L}=P
\end{gathered}
$$

From equation (i), $\quad \mathrm{R}_{\mathrm{A}}=2 \mathrm{P}-\mathrm{P}=\mathrm{P}$
W ith the help of R_{A} and R_{B}, we have to make the Bending moment diagram of the given beam. From this B.M.D, at section AC and BD Bending moment varying with distance but at section $C D$, it is constant.
Now strain energy $\quad U=\int \frac{M^{2}}{2 E I} d x$
W here M is the bending moment of beam.
Total strain energy is given by

$$
\begin{aligned}
U & =\underbrace{\int_{0}^{L} \frac{(P x)^{2} d x}{2 E I}}_{\{\text {for section } A C\}}+\underbrace{\frac{(P L)^{2} 2 L}{2 E I}}_{\{\text {for section } C D\}}+\underbrace{\int_{0}^{L} \frac{(P x)^{2} d x}{2 E I}}_{\{\text {for section } B D\}} \\
& =2 \int_{0}^{L} \frac{(P x)^{2} d x}{2 E I}+\frac{P^{2} L^{3}}{E I}=\frac{P^{2}}{E I} \int_{0}^{L} x^{2} d x+\frac{P^{2} L^{3}}{E I}
\end{aligned}
$$

Integrating above equation, we get

$$
U=\frac{P^{2}}{E I}\left[\frac{X^{3}}{3}\right]_{0}^{L}+\frac{P^{2} L^{3}}{E I}=\frac{P^{2} L^{3}}{3 E I}+\frac{P^{2} L^{3}}{E I}=\frac{4 P^{2} L^{3}}{3 E I}
$$

sol 3.33 Option (B) is correct.
Due to 100 N force, bending moment occurs at point C and magnitude of this bending moment is,

$$
M_{C}=100 \times(0.1)=10 N-m \quad \text { (in clock wise direction) }
$$

We have to make a free body diagram of the given beam,

Where R_{A} and R_{B} are the reactions acting at point A and B
For equilibrium of forces,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=100 \mathrm{~N} \tag{i}
\end{equation*}
$$

Taking the moment about point A ,

$$
100 \times 0.5+10=R_{B} \times 1 \quad \Rightarrow R_{B}=60 N
$$

From equation (i),

$$
R_{A}=100-R_{B}=100-60=40 \mathrm{~N}
$$

M aximum bending moment occurs at point C ,

$$
M_{C}=R_{A} \times 0.5+10=40 \times 0.5+10=20+10=30 \mathrm{~N}-\mathrm{m}
$$

sol 3.34 Option (C) is correct.
Let, I = original length of the bar
$\alpha=$ Co-efficient of linear expansion of the bar material
$\Delta \mathrm{T}=\mathrm{R}$ ise or drop in temperature of the bar
$\delta l=$ Change in length which would have occurred due to difference of temperature if the ends of the bar were free to expand or contract.

Rise in temperature
or,

$$
\begin{aligned}
\alpha & =\frac{\delta \mid}{\lceil\times \Delta T} \\
\delta \mid & =\mid \times \alpha \times \Delta T
\end{aligned}
$$

And temperature strain,

$$
\varepsilon=\frac{\delta \mid}{T}=\frac{\mid \times \alpha \times \Delta T}{\mid}=\alpha \times \Delta \mathrm{T}
$$

Basically temperature stress and strain are longitudinal (i.e. tensile or compressive) stress and strain

$$
\begin{aligned}
\mathrm{E} & =\frac{\text { Stress }}{\text { Strain }}=\frac{\sigma}{\varepsilon} \\
\sigma & =\mathrm{E} \varepsilon=\mathrm{E} \alpha \Delta \mathrm{~T}
\end{aligned}
$$

sol 3.35 Option (A) is correct.

First of all, we have to make a FBD of the beam. We know that a UDL acting at the mid-point of the beam and its magnitude is equal to ($q \times L$) . So,

In equilibrium of forces,

$$
\begin{equation*}
\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{qL} \tag{i}
\end{equation*}
$$

This cantilever beam is subjected to two types of load.
First load is due to UDL and second load is due to point load at B. Due to this deflection occurs at B, which is equal in amount.
So, deflection occurs at B due to the UDL alone,

$$
\delta_{U D L}=\frac{\mathrm{qL}^{4}}{8 \mathrm{E}}
$$

Also, deflection at B due to point load,

$$
\delta_{P L}=\frac{R_{2} L^{3}}{3 E T}
$$

Deflections are equal at B,

$$
\begin{aligned}
\delta_{U D L} & =\delta_{P L} \\
\frac{q L^{4}}{8 E I} & =\frac{R_{2} L^{3}}{3 E I} \quad \Rightarrow R_{2}=\frac{3 q L}{8}
\end{aligned}
$$

And from equation (i), we have

$$
\mathrm{R}_{1}=\mathrm{qL}-\mathrm{R}_{2}=\mathrm{qL}-\frac{3 \mathrm{qL}}{8}=\frac{5 \mathrm{qL}}{8}
$$

For M, taking the moment about B,

$$
\begin{aligned}
-q L \times \frac{L}{2}+R_{1} \times L-M & =0 \\
-\frac{q L^{2}}{2}+\frac{5 q L^{2}}{8}-M & =0 \\
M & =\frac{q L^{2}}{8}
\end{aligned}
$$

Therefore, $\mathrm{R}_{1}=\frac{5 \mathrm{qL}}{8}, \mathrm{R}_{2}=\frac{3 \mathrm{qL}}{8}$ and $M=\frac{\mathrm{qL}^{2}}{8}$
Option (B) is correct.
Given :

$$
\begin{aligned}
& \nu=200 \times 100 \times 50 \mathrm{~mm}^{3}=10^{6} \mathrm{~mm}^{3} \\
& \mathrm{p}=15 \mathrm{MPa}=15 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=15 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E} & =200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\
\left(v \text { or } \frac{1}{\mathrm{~m}}\right) & =0.3
\end{aligned}
$$

We know the relation between volumetric strain, young's modulus and Poisson's ration is given by,

$$
\frac{\Delta \nu}{\nu}=\frac{3 p}{E}(1-2 v)
$$

Substitute the values, we get

$$
\begin{aligned}
\frac{\Delta \nu}{10^{6}} & =\frac{3 \times 15}{200 \times 10^{3}}(1-2 \times 0.3) \\
\Delta \nu & =\frac{45 \times 10}{2}(1-0.6)=225 \times 0.4=90 \mathrm{~mm}^{3}
\end{aligned}
$$

soL 3.37 Option (C) is correct.
Given : $\mathrm{T}=10 \mathrm{~N}-\mathrm{m}=10^{4} \mathrm{~N}-\mathrm{mm}, \mathrm{G}=80 \mathrm{GPa}=80 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}_{1}=\mathrm{L}_{2}=100 \mathrm{~mm}, \mathrm{~d}_{1}=50 \mathrm{~mm}, \mathrm{~d}_{2}=25 \mathrm{~mm}$
We know that for a shaft of length I and polar moment of inertia J, subjected to a torque T with an angle of twist θ. The expression of strain energy,

$$
U=\frac{1}{2} T^{2} I
$$

So Total strain energy,

$$
U=\frac{T^{2} L}{2 G \jmath_{1}}+\frac{T^{2} L}{2 G J_{2}}=\frac{T^{2} L}{2 G}\left[\frac{1}{J_{1}}+\frac{1}{\jmath_{2}}\right] \quad J=\frac{\pi}{32} d^{4}
$$

Substitute the values, we get

$$
\begin{aligned}
U & =\frac{\left(10^{4}\right)^{2} \times 100}{2 \times 80 \times 10^{3}}\left[\frac{1}{\frac{\pi}{32}(50)^{4}}+\frac{1}{\frac{\pi}{32}(25)^{4}}\right] \\
& =\frac{10^{6}}{16} \times \frac{32}{\pi}\left[\frac{1}{625 \times 10^{4}}+\frac{1}{390625}\right] \\
& =\frac{10^{6}}{16 \times 10^{4}} \times \frac{32}{\pi}\left[\frac{1}{625}+\frac{1}{39.0625}\right] \\
& =63.69 \times[0.0016+0.0256]=1.73 \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

SOL 3.38 Option (A) is correct.
Given : $F=600 \mathrm{~N} \quad$ (Parallel to Z-direction), $d=30 \mathrm{~mm}$ Normal stress at point P, from bending equation

$$
\begin{gathered}
\sigma=\frac{M}{1} \times y=\frac{600 \times 300}{\frac{\pi}{64} \mathrm{~d}^{4}} \times \frac{\mathrm{d}}{2} \quad \text { Here } \mathrm{M}=\text { bending moment } \\
=\frac{18 \times 10^{4} \times 32}{\pi \mathrm{~d}^{3}}=\frac{18 \times 10^{4} \times 32}{3.14(30)^{3}}=67.9 \mathrm{MPa}
\end{gathered}
$$

A nd from Torsional equation, shear stress, $\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau}{\mathrm{r}}$

$$
\begin{aligned}
\tau & =\frac{\mathrm{T}}{\mathrm{~J}} \times \mathrm{r}=\frac{600 \times 500}{\frac{\pi}{32} \mathrm{~d}^{4}} \times \frac{\mathrm{d}}{2} \quad \mathrm{~T}=\text { Force } \times \text { A rea length } \\
& =\frac{16 \times 600 \times 500}{3.14 \times(30)^{3}}=56.61 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

SOL 3.39 Option (D) is correct.
Here : $\sigma_{\mathrm{x}}=0, \sigma_{\mathrm{y}}=67.9 \mathrm{M} \mathrm{Pa}, \tau_{\mathrm{xy}}=56.6 \mathrm{M} \mathrm{Pa}$
Maximum principal stress,

$$
\sigma_{1}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\frac{1}{2} \sqrt{\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)^{2}+4 \tau_{\mathrm{xy}}^{2}} \quad \sigma_{\mathrm{x}}=?
$$

Substitute the values, we get

$$
\begin{aligned}
\sigma_{1} & =\frac{0+67.9}{2}+\frac{1}{2} \sqrt{(-67.9)^{2}+4 \times(56.6)^{2}} \\
& =33.95+\frac{1}{2} \sqrt{17424.65}=33.95+66 \\
& =99.95 \simeq 100 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

And

$$
\tan 2 \theta=\frac{2 \tau_{\mathrm{xy}}}{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}
$$

Substitute the values, we get

$$
\begin{aligned}
\tan 2 \theta & =\frac{2 \times 56.6}{0-67.9}=-1.667 \\
2 \theta & =-59.04 \\
\theta & =-\frac{59.04}{2}=-29.52^{\circ}
\end{aligned}
$$

sol 3.40 Option (C) is correct.

From the Torsional equation

$$
\frac{\mathrm{T}}{\mathrm{~J}}=\frac{\tau}{\mathrm{r}}=\frac{\mathrm{G} \theta}{\mathrm{~T}}
$$

Take first two terms,

$$
\begin{aligned}
\frac{T}{J} & =\frac{\tau}{r} \\
\frac{T}{\frac{\pi}{32} \mathrm{~d}^{4}} & =\frac{\tau}{\frac{d}{2}} \quad \mathrm{~J}=\text { Polar moment of inertia } \\
\tau_{\max } & =\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}
\end{aligned}
$$

sol 3.41 Option (D) is correct.

According to Euler's theory, the crippling or buckling load (P_{cr}) under various end conditions is represented by a general equation,

$$
\begin{equation*}
P_{c r}=\frac{C \pi^{2} E l}{L^{2}} \tag{i}
\end{equation*}
$$

Where, $\quad E=M$ odulus of elasticity
I = M ass-moment of inertia
$\mathrm{L}=$ Length of column
C = constant, representing the end conditions of the column or end fixity coefficient.
Here both ends are hinged, $\quad C=1$
Substitute in equation (i), we get $\mathrm{P}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{El}}{\mathrm{L}^{2}}$
sol 3.42 Option (C) is correct.
According to "VON MISES - HENKY THEORY", the elastic failure of a material occurs when the distortion energy of the material reaches the distortion energy at the elastic limit in simple tension.
Shear strain energy due to the principle stresses σ_{1}, σ_{2} and σ_{3}

$$
\begin{aligned}
\Delta \mathrm{E} & =\frac{1+v}{6 \mathrm{E}}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \\
& =\frac{1+v}{6 \mathrm{E}}\left[2\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right)-2\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)\right] \\
& =\frac{1+v}{3 \mathrm{E}}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{1} \sigma_{3}\right)\right]
\end{aligned}
$$

soL 3.43 Option (A) is correct.
Given : $A=(40)^{2}=1600 \mathrm{~mm}^{2}, \mathrm{P}=-200 \mathrm{kN}$ (Compressive)
$\mathrm{L}=2 \mathrm{~m}=2000 \mathrm{~mm}, \mathrm{E}=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$

Elongation of the bar,

$$
\Delta \mathrm{L}=\frac{\mathrm{PL}}{\mathrm{AE}}=\frac{-200 \times 10^{3} \times 2000}{1600 \times 200 \times 10^{3}}=-1.25 \mathrm{~mm} \quad \text { Compressive }
$$

In magnitude,

$$
\Delta \mathrm{L}=1.25 \mathrm{~mm}
$$

sol 3.44 Option (A) is correct.
The FBD of segment $Q R$ is shown below :

Given :

$$
\mathrm{A}=700 \mathrm{~mm}^{2}
$$

From the free body diagram of the segment QR ,
Force acting on $\mathrm{QR}, \quad \mathrm{P}=28 \mathrm{kN}$ (Tensile)
Stress in segment QR is given by,

$$
\sigma=\frac{\mathrm{P}}{\text { Area }}=\frac{28 \times 10^{3}}{700 \times 10^{-6}}=40 \mathrm{M} \mathrm{~Pa}
$$

sol 3.45 Option none of these is correct.

Given : $\mathrm{L}=6 \mathrm{~m}, \mathrm{~W}=1.5 \mathrm{kN} / \mathrm{m}, \mathrm{d}=75 \mathrm{~mm}$
We know that for a uniformly distributed load, maximum bending moment at the centre is given by,

$$
\begin{aligned}
& \text { B.M. }=\frac{W L^{2}}{8}=\frac{1.5 \times 10^{3} \times(6)^{2}}{8} \\
& \text { B.M. }=6750 \mathrm{~N}-\mathrm{m}=6.75 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Option (A) is correct.
From the bending equation,

$$
\frac{\mathrm{M}}{1}=\frac{\sigma_{\mathrm{b}}}{\mathrm{y}}
$$

W here

$$
\mathrm{M}=\text { Bending moment acting at the given section }=6.75 \mathrm{kN}-\mathrm{m}
$$

$$
\mathrm{I}=\mathrm{M} \text { oment of inertia }=\frac{\pi}{64} \mathrm{~d}^{4}
$$

$$
\begin{aligned}
& y=\text { Distance from the neutral axis to the external fibre }=\frac{d}{2} \\
& \sigma_{\mathrm{b}}=\text { Bending stress }
\end{aligned}
$$

$$
\text { So, } \quad \sigma_{\mathrm{b}}=\frac{\mathrm{M}}{1} \times \mathrm{y}
$$

Substitute the values, we get

$$
\begin{aligned}
\sigma_{\mathrm{b}} & =\frac{6.75 \times 10^{6}}{\frac{\pi}{64}(75)^{4}} \times \frac{75}{2}=\frac{32400}{\pi \times 2 \times(75)^{4}} \times 10^{6} \\
& =1.6305 \times 10^{-4} \times 10^{6}=163.05 \mathrm{M} \mathrm{~Pa} \simeq 162.98 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

SOL 3.47 Option (A) is correct.
We know that due to temperature changes, dimensions of the material change. If these changes in the dimensions are prevented partially or fully, stresses are generated in the material and if the changes in the dimensions are not prevented, there will be no stress set up. (Zero stresses).
Hence cylindrical rod is allowed to expand or contract freely.
So, $\sigma_{\mathrm{r}}=0$ and $\sigma_{\mathrm{z}}=0$

SOL 3.48 Option (A) is correct.
From the figure, we can say that load P applies a force on upper cantilever and the reaction force also applied on upper cantilever by the rigid roller. Due to this, deflections are occur in both the cantilever, which are equal in amount. But because of different forces applied by the P and rigid roller, the slopes are unequal.
sol 3.49 Option (C) is correct.

Here both the shafts $A B$ and $B C$ are in parallel connection.
So, deflection in both the shafts are equal.

$$
\begin{equation*}
\theta_{\mathrm{AB}}=\theta_{\mathrm{BC}} \tag{i}
\end{equation*}
$$

From Torsional formula,

$$
\frac{\mathrm{T}}{\mathrm{~J}}=\frac{\mathrm{G} \theta}{\mathrm{~L}} \quad \Rightarrow \theta=\frac{\mathrm{TL}}{\mathrm{GJ}}
$$

From equation (i),

$$
\frac{T_{A} \mathrm{~L}}{\mathrm{G} \int_{A B}}=\frac{\mathrm{T}_{\mathrm{C}} \mathrm{~L}}{\mathrm{G} \mathrm{~B}_{\mathrm{BC}}}
$$

$$
\begin{array}{rlr}
\frac{T_{A} \times L}{G \times \frac{\pi}{32} d^{4}} & =\frac{T_{C} \times L}{G \times \frac{\pi}{32}(2 d)^{4}} \\
\frac{T_{A}}{d^{4}} & =\frac{T_{C}}{16 d^{4}} & \\
T_{C} & =16 T_{A} & \text { For same material, } G_{A B}=G_{B C}
\end{array}
$$

SOL 3.50 Option (B) is correct.
First of all we have to make a Free body diagram of the given beam.

Where, R_{A} and R_{B} are the reactions acting at point A and B
The point B is a point of contraflexure or point of inflexion or a virtual hinge. The characteristic of the point of contraflexure is that, about this point moment equal to zero.
For span $B C, \quad M_{B}=0$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{C}} \times \mathrm{L} & =\mathrm{P} \times \frac{\mathrm{L}}{2} \\
\mathrm{R}_{\mathrm{c}} & =\frac{\mathrm{P}}{2}
\end{aligned}
$$

For the equilibrium of forces on the beam,

$$
\begin{aligned}
R_{A}+R_{C} & =P \\
R_{A} & =P-\frac{P}{2}=\frac{P}{2}
\end{aligned}
$$

Now for the bending moment about point A, take the moment about point A,

$$
\begin{aligned}
M_{A}+R_{C} \times 2 L-P \times\left(L+\frac{L}{2}\right) & =0 \\
M_{A}+\frac{P}{2} \times 2 L-P \times \frac{3 L}{2} & =0 \\
M_{A} & =\frac{P L}{2}
\end{aligned}
$$

sol 3.51 Option (C) is correct.
We know that, for a uniformly varying load bending moment will be cubic in nature.
(A) We see that there is no shear force at B, so the slope of $B M D$ at right of B must be zero and similarly on left end A there is no shear force, so
slope of BMD also zero.
(B) Now due to triangular shape of load intensity, when we move from right to left, the rate of increase of shear force decreases and maximum at the middle and therefore it reduces.

SOL 3.52 Option (A) is correct.

Taking a section $X X$ on the beam.
M oment about this section $X X$

$$
M_{x x}=10 \times x=10 x N-m
$$

For a square section,

$$
\mathrm{I}=\frac{\mathrm{b}^{4}}{12}=\frac{\left(10 \times 10^{-3}\right)^{4}}{12}=\frac{10^{-8}}{12} \mathrm{~m}^{4}
$$

Using the bending equation,

$$
\frac{\mathrm{M}}{\mathrm{I}}=\frac{\sigma}{\mathrm{y}} \quad \Rightarrow \sigma=\frac{\mathrm{M}}{\mathrm{l}} \mathrm{y}
$$

Substitute the values, we get

$$
\begin{equation*}
\sigma=\frac{10 \mathrm{x}}{\frac{10^{-8}}{17}} \times \frac{10^{-2}}{2}=60 \times 10^{6} \mathrm{x} \tag{i}
\end{equation*}
$$

From equation (i), Bending stress at point $A(x=0)$,

$$
\sigma_{\mathrm{A}}=60 \times 10^{6} \times 0=0
$$

A nd at point C $(x=1 \mathrm{~m})$

$$
\sigma_{\mathrm{c}}=60 \times 10^{6} \times 1=60 \mathrm{MPa}
$$

As no any forces are acting to the right of the point C.
So bending stress is constant after point C.

60 Mpa

sol 3.53 Option (C) is correct.
Maximum shear stress, $\quad \tau=\frac{\sigma_{\text {max }}-\sigma_{\text {min }}}{2}$
M aximum shear stress at the elastic limit in simple tension (yield strength)
$=\frac{\sigma_{\mathrm{Y}}}{2}$
To prevent failure $\quad \frac{\sigma_{\max }-\sigma_{\text {min }}}{2} \leq \frac{\sigma_{\mathrm{Y}}}{2}$
$\sigma_{\text {max }}-\sigma_{\text {min }}=\sigma_{\mathrm{Y}}$
Here
$\sigma_{\max }=-10 \mathrm{MPa}, \sigma_{\min }=-100 \mathrm{MPa}$
So,
$\sigma_{\mathrm{Y}}=-10-(-100)=90 \mathrm{MPa}$

SOL 3.54 Option (B) is correct.
Initial length (un-deformed) of the spring $=\mathrm{L}$ and spring stiffness $=\mathrm{k}$

Let spring is deformed by an amount $\Delta \mathrm{x}$, then Spring force, $\mathrm{F}=\mathrm{k} \Delta \mathrm{x}$
For initial condition, $\quad 2 g=k(L-0.2) \quad W=m g$
A fter this a mass of 20 kg is placed on the 2 kg pan. So total mass becomes 22 kg and length becomes 100 mm .
For this condition, $\quad(20+2) g=k(L-0.1)$
Dividing equation (ii) by equation (i),

$$
\begin{aligned}
\frac{22 g}{2 g} & =\frac{k(\mathrm{~L}-0.1)}{\mathrm{k}(\mathrm{~L}-0.2)} \\
11 & =\frac{(\mathrm{L}-0.1)}{(\mathrm{L}-0.2)} \\
11 \mathrm{~L}-2.2 & =\mathrm{L}-0.1 \\
10 \mathrm{~L} & =2.1 \\
\mathrm{~L} & =\frac{2.1}{10}=0.21 \mathrm{~m}=210 \mathrm{~mm}
\end{aligned}
$$

And from equation (i),

$$
\begin{aligned}
2 \mathrm{~g} & =\mathrm{k}(0.21-0.2) \\
\mathrm{k} & =\frac{2 \times 9.8}{0.01}=1960 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

So, $\mathrm{L}=210 \mathrm{~mm}$, and $\mathrm{k}=1960 \mathrm{~N} / \mathrm{m}$

SOL 3.55 Option (A) is correct.
Relation between E, G and v is given by,

Where \quad| E | $=2 \mathrm{G}(1+v)$ |
| ---: | :--- |
| E | $=$ young's modulus |
| G | $=$ Shear M odulus |
| v | $=$ Poisson's ratio |
| Now, $\quad \mathrm{E}$ | $=2(1+v)$ |

sol 3.56 Option (C) is correct.

$$
\sigma_{\mathrm{x}}=100 \mathrm{M} \mathrm{~Pa} \text { (Tensile), } \sigma_{\mathrm{y}}=-20 \mathrm{M} \mathrm{~Pa} \text { (Compressive) }
$$

We know that, $\quad \sigma_{1}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}}$

$$
\sigma_{2}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}-\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}}
$$

From the figure, R adius of M ohr's circle,

$$
\mathrm{R}=\frac{\sigma_{1}-\sigma_{2}}{2}=\frac{1}{2} \times 2 \sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

Substitute the values, we get

$$
R=\sqrt{\left[\frac{100-(-20)}{2}\right]^{2}}=60
$$

SOL 3.57 Option (B) is correct.
Given : $\mathrm{T}=10 \mathrm{~N}-\mathrm{m}, \mathrm{k}_{\mathrm{MN}}=20 \mathrm{~N}-\mathrm{m} / \mathrm{rad}, \mathrm{k}_{\mathrm{NO}}=30 \mathrm{~N}-\mathrm{m} / \mathrm{rad}, \mathrm{k}_{\mathrm{OP}}=60 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$ A ngular deflection,

$$
\theta=\frac{\mathrm{T}}{\mathrm{k}}
$$

For section MN, NO or OP, $\quad \theta_{M N}=\frac{10}{20} \mathrm{rad}, \theta_{\text {NO }}=\frac{10}{30} \mathrm{rad}, \theta_{\mathrm{OP}}=\frac{10}{60} \mathrm{rad}$
Since MN, NO and OP are connected in series combination. So angular deflection between the ends M and P of the shaft is,

$$
\theta_{\mathrm{MP}}=\theta_{\mathrm{MN}}+\theta_{\mathrm{NO}}+\theta_{\mathrm{OP}}=\frac{10}{20}+\frac{10}{30}+\frac{10}{60}=1 \text { radian }
$$

sol 3.58 Option (B) is correct.
Given: $A=25 \mathrm{~mm}^{2}, E_{\text {steel }}=200 \mathrm{GPa}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
First of all we have to make the F.B.D of the sections $K L, L M$ and $M N$ separately.

Now, From the F.B.D,

$$
\mathrm{P}_{\mathrm{KL}}=100 \mathrm{~N} \text { (Tensile) }
$$

$$
\mathrm{P}_{\mathrm{LM}}=-150 \mathrm{~N} \text { (Compressive) }
$$

$$
\mathrm{P}_{\mathrm{MN}}=50 \mathrm{~N} \text { (Tensile) }
$$

or $\quad L_{K L}=500 \mathrm{~mm}, \mathrm{~L}_{\mathrm{LM}}=800 \mathrm{~mm}, \mathrm{~L}_{\mathrm{MN}}=400 \mathrm{~mm}$
Total change in length,

$$
\begin{aligned}
\Delta \mathrm{L} & =\Delta \mathrm{L}_{K L}+\Delta \mathrm{L}_{\mathrm{LM}}+\Delta \mathrm{L}_{M N} \\
& =\frac{P_{K L} L_{K L}}{\mathrm{AE}}+\frac{\mathrm{P}_{\mathrm{LM}} \mathrm{~L}_{L M}}{\mathrm{AE}}+\frac{\mathrm{P}_{M N} \mathrm{~L}_{M N}}{\mathrm{AE}} \quad \Delta \mathrm{~L}=\frac{\mathrm{PL}}{\mathrm{AE}}
\end{aligned}
$$

Substitute the values, we get

$$
\begin{aligned}
\Delta \mathrm{L} & =\frac{1}{25 \times 200 \times 10^{3}}[100 \times 500-150 \times 800+50 \times 400] \\
& =\frac{1}{5000 \times 10^{3}}[-50000]=-10 \mu \mathrm{~m}
\end{aligned}
$$

SOL 3.59 Option (A) is correct.
Given : $d=60 \mathrm{~mm}, \mathrm{~T}=1600 \mathrm{~N}-\mathrm{m}$
From the torsional formula,

$$
\frac{\mathrm{T}}{\mathrm{~J}}=\frac{\tau}{\mathrm{r}} \quad \mathrm{r}=\frac{\mathrm{d}}{2} \text { and } \mathrm{J}=\frac{\pi}{32} \mathrm{~d}^{4}
$$

So,

$$
\tau_{\max }=\frac{\mathrm{T}}{\frac{\pi}{32} \mathrm{~d}^{4}} \times \frac{\mathrm{d}}{2}=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}
$$

Substitute the values, we get

$$
\begin{aligned}
\tau_{\max } & =\frac{16 \times 1600}{3.14 \times\left(60 \times 10^{-3}\right)^{3}}=\frac{8152.866}{(60)^{3}} \times 10^{9} \\
& =0.03774 \times 10^{9} \mathrm{~Pa}=37.74 \mathrm{M} \mathrm{~Pa} \simeq 37.72 \mathrm{MPa}
\end{aligned}
$$

sol 3.60 Option (A) is correct.
Given : $\mathrm{b}=120 \mathrm{~mm}, \mathrm{~h}=750 \mathrm{~mm}, \mathrm{E}_{\text {steel }}=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$, $\mathrm{W}=120 \mathrm{kN} / \mathrm{m}, \mathrm{L}=15 \mathrm{~m}$
It is a uniformly distributed load. For a uniformly distributed load, maximum bending moment at centre is given by,

$$
\text { B.M. }=\frac{W L^{2}}{8}=\frac{120 \times \frac{15}{8} \times 15}{}=3375 \mathrm{kN}-\mathrm{m}
$$

sol 3.61 Option (A) is correct.

We know that maximum deflection at the centre of uniformly distributed load is given by,

$$
\delta_{\max }=\frac{5}{384} \times \frac{W L^{4}}{E I}
$$

For rectangular cross-section,

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{bh}^{3}}{12}=\frac{(120) \times(750)^{3}}{12}=4.21875 \times 10^{9} \mathrm{~mm}^{4}=4.21875 \times 10^{-3} \mathrm{~m}^{4} \\
& \text { So, } \quad \begin{aligned}
\delta_{\max } & =\frac{5}{384} \times \frac{120 \times 10^{3} \times(15)^{4}}{200 \times 10^{9} \times 4.21875 \times 10^{-3}} \\
& =\frac{5}{384} \times 7200 \times 10^{-3}=0.09375 \mathrm{~m}=93.75 \mathrm{~mm}
\end{aligned} .
\end{aligned}
$$

sol 3.62 Option (D) is correct.
We know that, moment of inertia is defined as the second moment of a plane area about an axis perpendicular to the area.
Polar moment of inertia perpendicular to the plane of paper,

$$
\mathrm{J} \text { or } \mathrm{I}_{\mathrm{p}}=\frac{\pi \mathrm{D}^{4}}{32}
$$

By the "perpendicular axis" theorem,

$$
\begin{aligned}
I_{X X}+I_{Y Y} & =I_{P} & \text { For circular section } I_{X X}=I_{Y Y} \\
2 I_{X X} & =I_{P} & \\
I_{X X} & =\frac{I_{P}}{2}=\frac{\pi D^{4}}{64}=I_{Y Y} &
\end{aligned}
$$

sol 3.63 Option (D) is correct.
We know that, the simplest form of the simply supported beams is the beam supported on rollers at ends. The simply supported beam and the FBD shown in the Figure.

Where, R_{A} and R_{B} are the reactions acting at the ends of the beam.
In equilibrium condition of forces,

$$
\begin{equation*}
P=R_{A}+R_{B} \tag{i}
\end{equation*}
$$

Taking the moment about point A,

$$
\begin{aligned}
R_{B} \times L & =P \times \frac{L}{3} \\
R_{B} & =\frac{P}{3}
\end{aligned}
$$

From equation (i),

$$
R_{A}=P-R_{B}=P-\frac{P}{3}=\frac{2 P}{3}
$$

Now bending moment at the point of application of the load

$$
\begin{aligned}
M & =R_{A} \times \frac{L}{3}=\frac{2 P}{3} \times \frac{L}{3}=\frac{2 P L}{9} \\
\text { Or, } \quad M & =R_{B} \times \frac{2 L}{3}=\frac{2 P L}{9}
\end{aligned}
$$

soL 3.64 Option (C) is correct.
Given: $\mathrm{L}_{\mathrm{s}}=\mathrm{L}_{\mathrm{i}}, \mathrm{E}_{\mathrm{s}}=206 \mathrm{GPa}, \mathrm{E}_{\mathrm{i}}=100 \mathrm{GPa}, \mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{i}}, \mathrm{D}_{\mathrm{s}}=\mathrm{D}_{\mathrm{i}}, \Rightarrow \mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{i}}$ W here subscript s is for steel and i is for iron rod.
We know that elongation is given by,

$$
\Delta \mathrm{L}=\frac{\mathrm{PL}}{\mathrm{AE}}
$$

Now, for steel or iron rod

$$
\frac{\Delta L_{s}}{\Delta L_{i}}=\frac{P_{s} L_{s}}{A_{s} E_{s}} \times \frac{A_{i} E_{i}}{P_{i} L_{i}}=\frac{E_{i}}{E_{s}}
$$

Substitute the values, we get

$$
\frac{\Delta \mathrm{L}_{\mathrm{s}}}{\Delta \mathrm{~L}_{\mathrm{i}}}=\frac{100}{206}=0.485<1
$$

or, $\quad \Delta \mathrm{L}_{\mathrm{s}}<\Delta \mathrm{L}_{\mathrm{i}} \quad \Rightarrow \Delta \mathrm{L}_{\mathrm{i}}>\Delta \mathrm{L}_{\mathrm{s}}$
So, cast iron rod elongates more than the mild steel rod.
sol 3.65 Option (B) is correct.

Let,
$\mathrm{a}=$ Side of square cross-section
$\mathrm{d}=$ diameter of circular cross-section
Using subscripts for the square and c for the circular cross section.

Given: $\quad M_{s}=M_{c} ; A_{c}=A_{s}$
So,

$$
\begin{equation*}
\frac{\pi}{4} d^{2}=a^{2} \tag{i}
\end{equation*}
$$

From the bending equation,

$$
\frac{\mathrm{M}}{\mathrm{~T}}=\frac{\sigma}{\mathrm{y}}=\frac{\mathrm{E}}{\mathrm{R}} \quad \Rightarrow \quad \sigma=\frac{\mathrm{M}}{\mathrm{~T}} \times \mathrm{y}
$$

Where, $\quad y=$ Distance from the neutral axis to the external fibre.

$$
\sigma=B \text { ending stress }
$$

For square cross-section bending stress,

$$
\begin{equation*}
\sigma_{s}=\frac{M_{s}}{\frac{\mathrm{a}^{4}}{12}} \times \frac{a}{2}=\frac{6 M_{s}}{a^{3}} \tag{ii}
\end{equation*}
$$

And for circular cross-section,

$$
\begin{equation*}
\sigma_{c}=\frac{M_{c}}{\frac{\pi}{64} d^{4}} \times \frac{d}{2}=\frac{32 M_{c}}{d^{3}} \tag{iii}
\end{equation*}
$$

On dividing equation (iii) by equation (ii), we get

$$
\begin{equation*}
\frac{\sigma_{\mathrm{c}}}{\sigma_{\mathrm{s}}}=\frac{32 \mathrm{M}_{\mathrm{c}}}{\mathrm{~d}^{3}} \times \frac{\mathrm{a}^{3}}{6 \mathrm{M}_{\mathrm{s}}}=\frac{16 \mathrm{a}^{3}}{3 \mathrm{~d}^{3}} \tag{c}
\end{equation*}
$$

From equation (i),

$$
\begin{aligned}
\left(\frac{\pi}{4} d^{2}\right)^{3 / 2} & =\left(a^{2}\right)^{3 / 2}=a^{3} \\
\frac{a^{3}}{d^{3}} & =\left(\frac{\pi}{4}\right)^{3 / 2}=0.695
\end{aligned}
$$

Substitute this value in equation (iv), we get

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{c}}}{\sigma_{\mathrm{s}}}=\frac{16}{3} \times 0.695=3.706 \\
& \frac{\sigma_{\mathrm{c}}}{\sigma_{\mathrm{s}}}>1 \quad \Rightarrow \quad \sigma_{\mathrm{c}}>\sigma_{\mathrm{s}}
\end{aligned}
$$

So, Circular beam experience more bending stress than the square section.
sol 3.66 Option (B) is correct.
Here k_{1} and k_{2} are in series combination and k_{3} is in parallel combination with this series combination.
So,

$$
k_{\text {eq }}=\frac{k_{1} \times k_{2}}{k_{1}+k_{2}}+k_{3}=\frac{k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}}{k_{1}+k_{2}}
$$

Natural frequency of the torsional oscillation of the disc, $\omega_{n}=\sqrt{\frac{k_{\text {eq }}}{\mathrm{J}}}$
Substitute the value of $k_{\text {eq }}$, we get $\quad \omega_{n}=\sqrt{\frac{k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}}{\jmath\left(k_{1}+k_{2}\right)}}$
soL 3.67 Option (C) is correct.
Given: $\quad \tau_{1}=\tau_{\text {max }}=240 \mathrm{M} \mathrm{Pa}$
Let, diameter of solid shaft $d_{1}=d$, And Final diameter $d_{2}=2 d$

From the Torsional Formula,

$$
\frac{T}{J}=\frac{\tau}{r} \quad \Rightarrow \quad T=\frac{\tau}{r} \times J
$$

where, $\mathrm{J}=$ polar moment of inertia. Given that torque is same,

$$
\begin{array}{rlr}
\frac{\tau_{1}}{\mathrm{r}_{1}} \times \mathrm{J}_{1} & =\frac{\tau_{2}}{\mathrm{r}_{2}} \times \mathrm{J}_{2} \\
\frac{2 \tau_{1}}{\mathrm{~d}_{1}} \times \mathrm{J}_{1} & =\frac{2 \tau_{2}}{\mathrm{~d}_{2}} \times \mathrm{J}_{2} \\
\frac{\tau_{1}}{\mathrm{~d}_{1}} \times \frac{\pi}{32} \mathrm{~d}_{1}^{4} & =\frac{\tau_{2}}{\mathrm{~d}_{2}} \times \frac{\pi}{32} \mathrm{~d}_{2}^{4} \\
\tau_{1} \times \mathrm{d}_{1}^{3} & =\tau_{2} \times \mathrm{d}_{2}^{3} \quad \Rightarrow=\frac{\pi}{32} \mathrm{~d}^{4} \\
\end{array}
$$

Substitute the values, we get

$$
\tau_{2}=240 \times\left(\frac{\mathrm{d}}{2 \mathrm{~d}}\right)^{3}=240 \times \frac{1}{8}=30 \mathrm{MPa}
$$

Alternative M ethod :

From the Torsional Formula,

$$
\tau=\frac{\mathrm{Tr}}{\mathrm{~J}}
$$

$$
\mathrm{r}=\frac{\mathrm{d}}{2} \text { and } \mathrm{J}=\frac{\pi}{32} \mathrm{~d}^{4}
$$

So, maximum shear stress,

$$
\tau_{\max }=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}=240 \mathrm{MPa}
$$

Given Torque is same and Shaft diameter is doubled then,

$$
\begin{aligned}
\tau_{\max }^{\prime} & =\frac{16 \mathrm{~T}}{\pi(2 \mathrm{~d})^{3}}=\frac{16 \mathrm{~T}}{8 \pi \mathrm{~d}^{3}} \\
& =\frac{\tau_{\max }}{8}=\frac{240}{8}=30 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

SOL 3.68 Option (A) is correct.

We know, differential equation of flexure for the beam is,

$$
\text { EI } \frac{d^{2} y}{d x^{2}}=M \quad \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{M}{E I}
$$

Integrating both sides, $\frac{d y}{d x}=\frac{1}{E I} \int M d x=\frac{1}{E I} M x+C_{1}$
A gain integrating, $\quad y=\frac{1}{E T}\left(\frac{M x^{2}}{2}\right)+c_{1} x+c_{2}$
where, y gives the deflection at the given point. It is easily shown from the equation (i), If we increase the value of E and I, then deflection reduces.
sol 3.69 Option (D) is correct.
Given figure shows stresses on an element subjected to pure shear.

Let consider a element to which shear stress have been applied to the sides $A B$ and $D C$. Complementary stress of equal value but of opposite effect are then setup on sides $A D$ and $B C$ in order to prevent rotation of the element. So, applied and complementary shears are represented by symbol τ_{xy}.
C onsider the equilibrium of portion PBC. Resolving normal to PC assuming unit depth.

$$
\begin{aligned}
\sigma_{\theta} \times \mathrm{PC} & =\tau_{\mathrm{xy}} \times \mathrm{BC} \sin \theta+\tau_{\mathrm{xy}} \times \mathrm{PB} \cos \theta \\
& =\tau_{\mathrm{xy}} \times \mathrm{PC} \cos \theta+\tau_{\mathrm{xy}} \times \mathrm{PC} \sin \theta \cos \theta \\
& =\tau_{\mathrm{xy}}(2 \sin \theta \cos \theta) \times \mathrm{PC} \\
\sigma_{\theta} & =2 \tau_{\mathrm{xy}} \sin \theta \cos \theta
\end{aligned}
$$

The maximum value of σ_{θ} is $\tau_{x y}$ when $\theta=45^{\circ}$.

$$
\sigma_{\theta}=2 \tau \sin 45^{\circ} \cos 45^{\circ} \quad \text { Given }\left(\tau_{x y}=\tau\right)
$$

soL 3.70 Option (B) is correct.

Given, Mohr's circle is a point located at 175 M Pa on the positive Normal stress (at point P)
So, $\sigma_{1}=\sigma_{2}=175 \mathrm{MPa}$, and $\tau_{\max }=0$
So, both maximum and minimum principal stresses are equal.

Alternate M ethod :

$$
\sigma_{\mathrm{x}}=175 \mathrm{MPa} \quad \sigma_{\mathrm{y}}=175 \mathrm{MPa} \text { and } \tau_{\mathrm{xy}}=0
$$

M aximum principal stress

$$
\sigma_{1}=\frac{1}{2}\left[\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)+\sqrt{\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)+4 \tau_{\mathrm{xy}}^{2}}\right]=\frac{1}{2}[(175+175)+0]=175 \mathrm{M} \mathrm{~Pa}
$$

Minimum principal stress

$$
\sigma_{2}=\frac{1}{2}\left[\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)-\sqrt{\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)+4 \tau_{\mathrm{xy}}^{2}}\right]=\frac{1}{2}[(175+175)-0]=175 \mathrm{M} \mathrm{~Pa}
$$

sol 3.71 Option (D) is correct.
Mohr's circle is a point, and a point will move in every direction. So, the directions of maximum and minimum principal stresses at point P is in all directions.
E very value of θ will give the same result of 175 M Pa in all directions.
sol 3.72 Option (D) is correct.
Mild steel is ductile in nature and it elongates appreciable before fracture.
The stress-strain curve of a specimen tested upto failure under tension is a measure of toughness.
sol 3.73 Option (C) is correct.
3 dimensional stress tensor is defined as

$$
\mathrm{z}_{\mathrm{ij}}=\left[\begin{array}{ccc}
\sigma_{\mathrm{x}} & \tau_{\mathrm{xy}} & \tau_{\mathrm{xz}} \\
\tau_{\mathrm{yx}} & \sigma_{\mathrm{y}} & \tau_{\mathrm{yz}} \\
\tau_{\mathrm{zx}} & \tau_{\mathrm{zy}} & \sigma_{\mathrm{z}}
\end{array}\right]
$$

There are 9 components of the stress tensor. But due to complementary nature of shear stresses,

$$
\tau_{\mathrm{xy}}=\tau_{\mathrm{yx}}, \tau_{\mathrm{xz}}=\tau_{\mathrm{zx}} \text { and } \tau_{\mathrm{yz}}=\tau_{\mathrm{zy}}
$$

So, we can say that the number of components in a stress tensor for defining stress at a point is 6 i.e. $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}, \tau_{\mathrm{xy}}, \tau_{\mathrm{yz}}, \tau_{\mathrm{zx}}$.
sol 3.74 Option (A) is correct.
We know the volumetric strain is, $\quad \varepsilon_{\nu}=\frac{(1-2 v)}{\mathrm{E}}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)$
Put $\sigma_{1}=\sigma_{2}=\sigma_{3}=-\sigma$,

$$
\varepsilon_{\nu}=\frac{1-2 v}{\mathrm{E}}(-3 \sigma)=\frac{3(1-2 v)}{\mathrm{E}} \sigma \quad \text { (in magnitude) }
$$

The above equation gives the volumetric strain when the elemental volume is subjected to a compressive stress of σ from all sides. Negative sign indicates a compressive volumetric strain.
So, $\quad \frac{\varepsilon_{\nu}}{\sigma}=\frac{3(1-2 v)}{\mathrm{E}} \Rightarrow \quad \frac{\sigma}{\varepsilon_{\nu}}=\frac{\mathrm{E}}{3(1-2 v)}$
But $\quad \frac{\sigma}{\varepsilon_{\nu}}=\mathrm{K} \quad$ (Bulk modulus)
Hence, $\quad \mathrm{E}=3 \mathrm{~K}(1-2 v)$
soL 3.75 Option (B) is correct.

According to Euler's theory, the crippling or buckling load ($\mathrm{W}_{\text {cr }}$) under various end conditions is given by,

$$
\mathrm{W}_{\mathrm{cr}}=\frac{\mathrm{C} \pi^{2} \mathrm{EA}}{\mathrm{~L}^{2}}
$$

Where $\mathrm{C}=$ constant, representing the end conditions of the column.
All parameters are same. So, $\mathrm{W}_{\mathrm{cr}} \propto \mathrm{C}$
(i) For both ends fixed, $\mathrm{C}=4$
(ii) For both ends hinged, $C=1$, so, $\frac{W_{(i)}}{W(\text { (ii) }}=\frac{4}{1}=4$
sol 3.76 Option (D) is correct.

$$
M_{x}=-W x \times \frac{x}{2}=-\frac{W x^{2}}{2}
$$

The equation for M_{x} gives parabolic variations for B.M. Maximum B.M. occurs at $x=L$ and is equal to $W L^{2} / 2$. (in magnitude)
soL 3.77 Option (B) is correct.

For stress state the maximum principal stress is given by,

$$
\sigma_{1}=\frac{1}{2}\left[\left(\sigma_{x}+\sigma_{y}\right)+\sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \tau_{x y}^{2}}\right]
$$

Here $\sigma_{\mathrm{x}}=\sigma, \sigma_{\mathrm{y}}=\sigma$ and $\mathrm{z}_{\mathrm{xy}}=\sigma$
Hence,

$$
\sigma_{1}=\frac{1}{2}\left[(\sigma+\sigma)+\sqrt{0+4 \sigma^{2}}\right]=\frac{1}{2}[2 \sigma+2 \sigma]=2 \sigma
$$

CHAPTER 4

THEORY OF MACHINES

YEAR 2012
MCQ 4.1 The following are the data for two crossed helical gears used for speed reduction :
Gear I: Pitch circle diameter in the plane of rotation 80 mm and helix angle 30°.
Gear II : Pitch circle diameter in the plane of rotation 120 mm and helix angle 22.5°.
If the input speed is 1440 rpm , the output speed in rpm is
(A) 1200
(B) 900
(C) 875
(D) 720

MCQ 4.2 A solid disc of radius r rolls without slipping on a horizontal floor with angular velocity ω and angular acceleration α. The magnitude of the acceleration of the point of contact on the disc is
(A) zero
(B) $\mathrm{r} \alpha$
(C) $\sqrt{(\mathrm{r} \alpha)^{2}+\left(\mathrm{r} \omega^{2}\right)^{2}}$
(D) $r \omega^{2}$

MCQ 4.3 In the mechanism given below, if the angular velocity of the eccentric circular disc is $1 \mathrm{rad} / \mathrm{s}$, the angular velocity (rad/s) of the follower link for the instant shown in the figure is (Note. All dimensions are in mm).

(A) 0.05
(B) 0.1
(C) 5.0
(D) 10.0

MCQ 4.4 A circular solid disc of uniform thickness 20 mm , radius 200 mm and mass 20 kg , is used as a flywheel. If it rotates at 600 rpm , the kinetic energy of the flywheel, in J oules is
(A) 395
(B) 790
(C) 1580
(D) 3160

YEAR 2012
TWO MARKS
MCQ 4.5 A concentrated mass m is attached at the centre of a rod of length 2 L as shown in the figure. The rod is kept in a horizontal equilibrium position by a spring of stiffness k. For very small amplitude of vibration, neglecting the weights of the rod and spring, the undamped natural frequency of the system is

(A) $\sqrt{\frac{k}{m}}$
(B) $\sqrt{\frac{2 k}{m}}$
(C) $\sqrt{\frac{k}{2 m}}$
(D) $\sqrt{\frac{4 k}{m}}$

YEAR 2011
ONE MARK
MCQ 4.6 A double-parallelogram mechanism is shown in the figure. Note that $P Q$ is a single link. The mobility of the mechanism is

(A) -1
(B) 0
(C) 1
(D) 2

MCQ 4.7 For the four-bar linkage shown in the figure, the angular velocity of link $A B$
is $1 \mathrm{rad} / \mathrm{s}$. The length of link $C D$ is 1.5 times the length of link $A B$. In the configuration shown, the angular velocity of link CD in rad/s is

(A) 3
(B) $\frac{3}{2}$
(C) 1
(D) $\frac{2}{3}$

MCQ 4.8 A mass of 1 kg is attached to two identical springs each with stiffness $\mathrm{k}=20 \mathrm{kN} / \mathrm{m}$ as shown in the figure. Under the frictionless conditions, the natural frequency of the system in Hz is close to

(A) 32
(B) 23
(C) 16
(D) 11

MCQ 4.9 A disc of mass m is attached to a spring of stiffness k as shown in the figure T he disc rolls without slipping on a horizontal surface. The natural frequency of vibration of the system is

(A) $\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
(B) $\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$
(C) $\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{k}}{3 \mathrm{~m}}}$
(D) $\frac{1}{2 \pi} \sqrt{\frac{3 k}{2 m}}$

MCQ 4.10 M obility of a statically indeterminate structure is
(A) ≤-1
(B) 0
(C) 1
(D) ≥ 2

MCQ 4.11 There are two points P and Q on a planar rigid body. The relative velocity between the two points
(A) should always be along PQ
(B) can be oriented along any direction
(C) should always be perpendicular to PQ
(D) should be along QP when the body undergoes pure translation

MCQ 4.12 Which of the following statements is INCORRECT ?
(A) Grashof's rule states that for a planar crank-rocker four bar mechanism, the sum of the shortest and longest link lengths cannot be less than the sum of the remaining two link lengths
(B) Inversions of a mechanism are created by fixing different links one at a time
(C) Geneva mechanism is an intermittent motion device
(D) Gruebler's criterion assumes mobility of a planar mechanism to be one

MCQ 4.13 The natural frequency of a spring-mass system on earth is ω_{n}. The natural frequency of this system on the moon ($g_{\text {moon }}=g_{\text {earth }} / 6$) is
(A) ω_{n}
(B) $0.408 \omega_{n}$
(C) $0.204 \omega_{n}$
(D) $0.167 \omega_{n}$

MCQ 4.14 Tooth interference in an external involute spur gear pair can be reduced by (A) decreasing center distance between gear pair
(B) decreasing module
(C) decreasing pressure angle
(D) increasing number of gear teeth

YEAR 2010
MCQ 4.15 A mass m attached to a spring is subjected to a harmonic force as shown in figure T he amplitude of the forced motion is observed to be 50 mm . The value of m (in kg) is

(A) 0.1
(B) 1.0
(C) 0.3
(D) 0.5

MCQ 4.16 For the epicyclic gear arrangement shown in the figure $\omega_{2}=100 \mathrm{rad} / \mathrm{s}$ clockwise (CW) and $\omega_{\text {arm }}=80 \mathrm{rad} / \mathrm{s}$ counter clockwise (CCW). The angular velocity ω_{5} (in rad/s) is

(A) 0
(B) 70 CW
(B) 140 CCW
(D) 140 CW

MCQ 4.17 For the configuration shown, the angular velocity of link $A B$ is $10 \mathrm{rad} / \mathrm{s}$ counterclockwise. The magnitude of the relative sliding velocity (in ms^{-1}) of slider B with respect to rigid link CD is

(A) 0
(B) 0.86
(C) 1.25
(D) 2.50

MCQ 4.18 A simple quick return mechanism is shown in the figure. The forward to
return ratio of the quick return mechanism is $2: 1$. If the radius of crank $\mathrm{O}_{1} \mathrm{P}$ is 125 mm , then the distance ' d ' (in mm) between the crank centre to lever pivot centre point should be

(A) 144.3
(B) 216.5
(C) 240.0
(D) 250.0

MCQ 4.19 The rotor shaft of a large electric motor supported between short bearings at both the ends shows a deflection of 1.8 mm in the middle of the rotor. A ssuming the rotor to be perfectly balanced and supported at knife edges at both the ends, the likely critical speed (in rpm) of the shaft is
(A) 350
(B) 705
(C) 2810
(D) 4430

YEAR 2009
MCQ 4.20 An epicyclic gear train in shown schematically in the given figure. The run gear 2 on the input shaft is a 20 teeth external gear. The planet gear 3 is a 40 teeth external gear. The ring gear 5 is a 100 teeth internal gear. The ring gear 5 is fixed and the gear 2 is rotating at 60 rpm CCW (CCW = counterclockwise and CW = clockwise).

The arm 4 attached to the output shaft will rotate at
(A) 10 rpm CCW
(B) 10 rpm CW
(C) 12 rpm CW
(D) 12 rpm CCW

MCQ 4.21 An automotive engine weighing 240 kg is supported on four springs with linear characteristics. Each of the front two springs have a stiffness of $16 \mathrm{MN} / \mathrm{m}$ while the stiffness of each rear spring is $32 \mathrm{MN} / \mathrm{m}$. The engine speed (in rpm), at which resonance is likely to occur, is
(A) 6040
(B) 3020
(C) 1424
(D) 955

MCQ 4.22 A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is $3.6 \mathrm{kN} / \mathrm{m}$ and the damping constant of the damper is $400 \mathrm{Ns} / \mathrm{m}$. If the mass is 50 kg , then the damping factor (d) and damped natural frequency $\left(f_{n}\right)$, respectively, are
(A) 0.471 and 1.19 Hz
(B) 0.471 and 7.48 Hz
(C) 0.666 and 1.35 Hz
(D) 0.666 and 8.50 Hz

MCQ 4.23 M atch the approaches given below to perform stated kinematics/ dynamics analysis of machine.

A nalysis

P. Continuous relative rotation
Q. Velocity and acceleration
R. M obility
S. Dynamic-static analysis
(A) P-1, Q-2, R-3, S-4
(C) P-2, Q-3, R-4, S-1
(B) P-3, Q-4, R-2, S-1
(D) $\mathrm{P}-4, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}-3$

YEAR 2008
ONE MARK
MCQ 4.24 A planar mechanism has 8 links and 10 rotary joints. The number of degrees of freedom of the mechanism, using Gruebler's criterion, is
(A) 0
(B) 1
(C) 2
(D) 3

MCQ 4.25 The natural frequency of the spring mass system shown in the figure is closest to

(A) 8 Hz
(B) 10 Hz
(C) 12 Hz
(D) 14 Hz

MCQ 4.26 In a cam design, the rise motion is given by a simple harmonic motion $(\mathrm{SHM}) \mathrm{s}=\mathrm{h} / 2(1-\cos (\pi \theta / \beta))$ where h is total rise, θ is camshaft angle, β is the total angle of the rise interval. The jerk is given by
(A) $\frac{\mathrm{h}}{2}\left(1-\cos \frac{\pi \theta}{\beta}\right)$
(B) $\frac{\pi}{\beta} \frac{\mathrm{h}}{2} \sin \left(\frac{\pi \theta}{\beta}\right)$
(C) $\frac{\pi^{2}}{\beta^{2}} \frac{h}{2} \cos \left(\frac{\pi \theta}{\beta}\right)$
(D) $-\frac{\pi^{3}}{\beta^{3}} \frac{h}{2} \sin \left(\frac{\pi \theta}{\beta}\right)$

MCQ 4.27 A uniform rigid rod of mass $m=1 \mathrm{~kg}$ and length $L=1 \mathrm{~m}$ is hinged at its centre and laterally supported at one end by a spring of spring constant $\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$. The natural frequency ω_{n} in $\mathrm{rad} / \mathrm{s}$ is
(A) 10
(B) 20
(C) 30
(D) 40

YEAR 2007

ONE MARK
MCQ 4.28 For an under damped harmonic oscillator, resonance
(A) occurs when excitation frequency is greater than undamped natural frequency
(B) occurs when excitation frequency is less than undamped natural frequency
(C) occurs when excitation frequency is equal to undamped natural frequency
(D) never occurs

YEAR 2007
TWO MARKS
MCQ 4.29 The speed of an engine varies from $210 \mathrm{rad} / \mathrm{s}$ to $190 \mathrm{rad} / \mathrm{s}$. During the cycle the change in kinetic energy is found to be 400 Nm . The inertia of the flywheel in $\mathrm{kg} / \mathrm{m}^{2}$ is
(A) 0.10
(B) 0.20
(C) 0.30
(D) 0.40

MCQ 4.30 The input link $\mathrm{O}_{2} \mathrm{P}$ of a four bar linkage is rotated at $2 \mathrm{rad} / \mathrm{s}$ in counter clockwise direction as shown below. The angular velocity of the coupler PQ
in rad/s, at an instant when $\angle \mathrm{O}_{4} \mathrm{O}_{2} \mathrm{P}=180^{\circ}$, is

(A) 4
(B) $2 \sqrt{2}$
(C) 1
(D) $\frac{1}{\sqrt{2}}$

MCQ 4.31 The natural frequency of the system shown below is

(A) $\sqrt{\frac{k}{2 m}}$
(B) $\sqrt{\frac{k}{m}}$
(C) $\sqrt{\frac{2 k}{m}}$
(D) $\sqrt{\frac{3 k}{m}}$

MCQ 4.32 The equation of motion of a harmonic oscillator is given by

$$
\frac{d^{2} x}{d t^{2}}+2 \xi \omega_{n} \frac{d x}{d t}+\omega_{n}^{2} x=0
$$

and the initial conditions at $t=0$ are $x(0)=x, \frac{d x}{d t}(0)=0$. The amplitude of $x(t)$ after n complete cycles is
(A) $\mathrm{Xe}^{-2 n \pi\left(\frac{\varepsilon}{\sqrt{1-\epsilon}}\right)}$
(B) $\mathrm{Xe}^{2 n \pi\left(\frac{\xi}{\sqrt{1-\xi}}\right)}$
(C) $X e^{-2 n \pi\left(\frac{\sqrt{\sqrt{1-2}}}{\varepsilon}\right)}$
(D) X

- Common Data For Q. 33 Q. 34

A quick return mechanism is shown below. The crank OS is driven at $2 \mathrm{rev} / \mathrm{s}$ in counter-clockwise direction.

MCQ 4.33 If the quick return ratio is $1: 2$, then the length of the crank in mm is
(A) 250
(B) $250 \sqrt{3}$
(C) 500
(D) $500 \sqrt{3}$

MCQ 4.34 The angular speed of $P Q$ in rev/ s when the block R attains maximum speed during forward stroke (stroke with slower speed) is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) 2
(D) 3

MCQ 4.35 For a four-bar linkage in toggle position, the value of mechanical advantage is
(A) 0.0
(B) 0.5
(C) 1.0
(D) ∞

MCQ 4.36 The differential equation governing the vibrating system is

(A) $m \ddot{x}+c \dot{x}+k(x-y)=0$
(B) $m(\ddot{x}-\ddot{y})+c(\dot{x}-\dot{y})+k x=0$
(C) $m \ddot{x}+c(\dot{x}-\dot{y})+k x=0$
(D) $m(\ddot{x}-\ddot{y})+c(\dot{x}-\dot{y})+k(x-y)=0$

MCQ 4.37 The number of inversion for a slider crank mechanism is
(A) 6
(B) 5
(C) 4
(D) 3

YEAR 2006

TWO MARKS
MCQ 4.38 M atch the item in columns I and II

Column I

P. A ddendum
Q. Instantaneous centre of velocity
R. Section modulus
S. Prime circle
(A) P-4, Q-2, R-3, S-1
(B) $\mathrm{P}-4, \mathrm{Q}-3, \mathrm{R}-2, \mathrm{~S}-1$
(C) $\mathrm{P}-3, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}-4$
(D) $\quad \mathrm{P}-3, \mathrm{Q}-4, \mathrm{R}-1, \mathrm{~S}-2$

MCQ 4.39 If C_{f} is the coefficient of speed fluctuation of a flywheel then the ratio of $\omega_{\max } / \omega_{\min }$ will be
(A) $\frac{1-2 C_{f}}{1+2 C_{f}}$
(B) $\frac{2-C_{f}}{2+C_{f}}$
(C) $\frac{1+2 C_{f}}{1-2 C_{f}}$
(D) $\frac{2+C_{f}}{2-C_{f}}$

MCQ 4.40 \quad Match the items in columns I and II

Column I

P. Higher K inematic Pair
Q. Lower K inemation Pair
R. Quick Return M echanism
S. M obility of a Linkage

Columnl I

1. Grubler's Equation
2. Line contact
3. Euler's Equation
4. Planar
5. Shaper
6. Surface contact
(A) P-2, Q-6, R-4, S-3
(B) P-6, Q-2, R-4, S-1
(C) P-6, Q-2, R-5, S-3
(D) $P-2, Q-6, R-5, S-1$

MCQ 4.41 A machine of 250 kg mass is supported on springs of total stiffness $100 \mathrm{kN} / \mathrm{m}$. Machine has an unbalanced rotating force of 350 N at speed of 3600 rpm . A ssuming a damping factor of 0.15 , the value of transmissibility ratio is
(A) 0.0531
(B) 0.9922
(C) 0.0162
(D) 0.0028

MCQ 4.42 In a four-bar linkage, S denotes the shortest link length, L is the longest link length, P and Q are the lengths of other two links. At least one of the three moving links will rotate by 360° if
(A) $\mathrm{S}+\mathrm{L} \leq \mathrm{P}+\mathrm{Q}$
(B) $\mathrm{S}+\mathrm{L}>\mathrm{P}+\mathrm{Q}$
(C) $S+P \leq L+Q$
(D) $S+P>L+Q$

- Common Data For Q. 43 and Q. 44

A planetary gear train has four gears and one carrier. A ngular velocities of the gears are $\omega_{1}, \omega_{2}, \omega_{3}$ and ω_{4}, respectively. The carrier rotates with angular velocity ω_{5}.

MCQ 4.43 W hat is the relation between the angular velocities of Gear 1 and Gear 4 ?
(A) $\frac{\omega_{1}-\omega_{5}}{\omega_{4}-\omega_{5}}=6$
(B) $\frac{\omega_{4}-\omega_{5}}{\omega_{1}-\omega_{5}}=6$
(C) $\frac{\omega_{1}-\omega_{2}}{\omega_{4}-\omega_{5}}=-\left(\frac{2}{3}\right)$
(D) $\frac{\omega_{2}-\omega_{5}}{\omega_{4}-\omega_{5}}=\frac{8}{9}$

MCQ 4.44 For $\omega_{1}=60 \mathrm{rpm}$ clockwise (CW) when looked from the left, what is the angular velocity of the carrier and its direction so that Gear 4 rotates in counterclockwise (CCW) direction at twice the angular velocity of Gear 1 when looked from the left?
(A) $130 \mathrm{rpm}, \mathrm{CW}$
(B) $223 \mathrm{rpm}, \mathrm{CCW}$
(C) $256 \mathrm{rpm}, \mathrm{CW}$
(D) $156 \mathrm{rpm}, \mathrm{CCW}$

- Common Data For Q. 45 and Q. 46 :

A vibratory system consists of a mass 12.5 kg , a spring of stiffness $1000 \mathrm{~N} / \mathrm{m}$, and a dash-pot with damping coefficient of $15 \mathrm{Ns} / \mathrm{m}$.

MCQ 4.45 The value of critical damping of the system is
(A) $0.223 \mathrm{Ns} / \mathrm{m}$
(B) $17.88 \mathrm{Ns} / \mathrm{m}$
(C) $71.4 \mathrm{Ns} / \mathrm{m}$
(D) $223.6 \mathrm{Ns} / \mathrm{m}$

MCQ 4.46 The value of logarithmic decrement is
(A) 1.35
(B) 1.32
(C) 0.68
(D) 0.66

YEAR 2005

ONE MARK
MCQ 4.47 The number of degrees of freedom of a planar linkage with 8 links and 9 simple revolute joints is
(A) 1
(B) 2
(C) 3
(D) 4

MCQ 4.48 There are four samples P, Q, R and S, with natural frequencies 64, 96, 128 and 256 Hz , respectively. They are mounted on test setups for conducting vibration experiments. If a loud pure note of frequency 144 Hz is produced by some instrument, which of the samples will show the most perceptible induced vibration?
(A) P
(B) Q
(C) R
(D) S

YEAR 2005
TWO MARKS
MCQ 4.49 In a cam-follower mechanism, the follower needs to rise through 20 mm during 60° of cam rotation, the first 30° with a constant acceleration and then with a deceleration of the same magnitude. The initial and final speeds of the follower are zero. The cam rotates at a uniform speed of 300 rpm . The maximum speed of the follower is
(A) $0.60 \mathrm{~m} / \mathrm{s}$
(B) $1.20 \mathrm{~m} / \mathrm{s}$
(C) $1.68 \mathrm{~m} / \mathrm{s}$
(D) $2.40 \mathrm{~m} / \mathrm{s}$

MCQ 4.50 A rotating disc of 1 m diameter has two eccentric masses of 0.5 kg each at radii of 50 mm and 60 mm at angular positions of 0° and 150°, respectively. A balancing mass of 0.1 kg is to be used to balance the rotor. W hat is the radial position of the balancing mass ?
(A) 50 mm
(B) 120 mm
(C) 150 mm
(D) 280 mm

MCQ 4.51 In a spring-mass system, the mass is 0.1 kg and the stiffness of the spring is $1 \mathrm{kN} / \mathrm{m}$. By introducing a damper, the frequency of oscillation is found to be 90% of the original value. W hat is the damping coefficient of the damper ?
(A) $1.2 \mathrm{Ns} / \mathrm{m}$
(B) $3.4 \mathrm{Ns} / \mathrm{m}$
(C) $8.7 \mathrm{Ns} / \mathrm{m}$
(D) $12.0 \mathrm{Ns} / \mathrm{m}$

- Common Data For Q. 52, 53, and Q. 54

An instantaneous configuration of a four-bar mechanism, whose plane is horizontal is shown in the figure below. At this instant, the angular velocity and angular acceleration of link $\mathrm{O}_{2} \mathrm{~A}$ are $\omega=8 \mathrm{rad} / \mathrm{s}$ and $\alpha=0$, respectively, and the driving torque (τ) is zero. The link $\mathrm{O}_{2} \mathrm{~A}$ is balanced so that its centre of mass falls at O_{2}.

MCQ 4.52 Which kind of 4-bar mechanism is $\mathrm{O}_{2} \mathrm{ABO}_{4}$?
(A) Double-crank mechanism
(B) Crank-rocker mechanism
(C) Double-rocker mechanism
(D) Parallelogram mechanism

MCQ 4.53 At the instant considered, what is the magnitude of the angular velocity of $\mathrm{O}_{4} \mathrm{~B}$?
(A) $1 \mathrm{rad} / \mathrm{s}$
(B) $3 \mathrm{rad} / \mathrm{s}$
(C) $8 \mathrm{rad} / \mathrm{s}$
(D) $\frac{64}{3} \mathrm{rad} / \mathrm{s}$

MCQ 4.54 At the same instant, if the component of the force at joint A along $A B$ is 30 N , then the magnitude of the joint reaction at O_{2}
(A) is zero
(B) is 30 N
(C) is 78 N
(D) cannot be determined from the given data

YEAR 2004

MCQ 4.55 For a mechanism shown below, the mechanical advantage for the given configuration is

(A) 0
(B) 0.5
(C) 1.0
(D) ∞

MCQ 4.56 A vibrating machine is isolated from the floor using springs. If the ratio of excitation frequency of vibration of machine to the natural frequency of the isolation system is equal to 0.5 , then transmissibility ratio of isolation is
(A) $1 / 2$
(B) $3 / 4$
(C) $4 / 3$
(D) 2

YEAR 2004

TWO MARKS
MCQ 4.57 The figure below shows a planar mechanism with single degree of freedom. The instant centre 24 for the given configuration is located at a position

(A) L
(B) M
(C) N
(D) ∞

MCQ 4.58 In the figure shown, the relative velocity of link 1 with respect to link 2 is $12 \mathrm{~m} / \mathrm{sec}$. Link 2 rotates at a constant speed of 120 rpm . T he magnitude of Coriolis component of acceleration of link 1 is

(A) $302 \mathrm{~m} / \mathrm{s}^{2}$
(B) $604 \mathrm{~m} / \mathrm{s}^{2}$
(C) $906 \mathrm{~m} / \mathrm{s}^{2}$
(D) $1208 \mathrm{~m} / \mathrm{s}^{2}$

MCQ 4.59 A uniform stiff rod of length 300 mm and having a weight of 300 N is pivoted at one end and connected to a spring at the other end. For keeping
the rod vertical in a stable position the minimum value of spring constant k needed is

(A) $300 \mathrm{~N} / \mathrm{m}$
(B) $400 \mathrm{~N} / \mathrm{m}$
(C) $500 \mathrm{~N} / \mathrm{m}$
(D) $1000 \mathrm{~N} / \mathrm{m}$

MCQ 4.60 Match the following

Type of M echanism
P. Scott-Russel M echanism
Q. Geneva M echanism
R. Off-set slider-crank M echanism
S. Scotch Yoke M echanism
(A) P-2
Q-3 R-1
S-4
(C) P-4 $\quad \mathrm{Q}-1 \quad \mathrm{R}-2 \quad \mathrm{~S}-3$
(B) P-3 $\quad \mathrm{Q}-2 \quad \mathrm{R}-4 \quad \mathrm{~S}-1$
(D) P-4 $\quad \mathrm{Q}-3 \quad \mathrm{R}-1 \quad \mathrm{~S}-2$

M otion achieved

1. Intermittent Motion
2. Quick return Motion
3. Simple Harmonic M otion
4. Straight Line M otion

MCQ 4.61 M atch the following with respect to spatial mechanisms.

Types of Joint
P. Revolute
Q. Cylindrical
R. Spherical

Degree of constraints

1. Three
2. Five
3. Four
4. Two
5. Zero
(A) $\mathrm{P}-1$
Q-3 R-3
(B) $\mathrm{P}-5 \quad \mathrm{Q}-4 \quad \mathrm{R}-3$
(C) P-2 $\quad \mathrm{Q}-3 \quad \mathrm{R}-1$
(D) P-4 $\quad \mathrm{Q}-5 \quad \mathrm{R}-3$

MCQ 4.62 A mass M , of 20 kg is attached to the free end of a steel cantilever beam of length 1000 mm having a cross-section of $25 \times 25 \mathrm{~mm}$. A ssume the mass of the cantilever to be negligible and $\mathrm{E}_{\text {stee }}=200 \mathrm{GPa}$. If the lateral vibration of this system is critically damped using a viscous damper, then damping
constant of the damper is

(A) $1250 \mathrm{Ns} / \mathrm{m}$
(B) $625 \mathrm{Ns} / \mathrm{m}$
(C) $312.50 \mathrm{Ns} / \mathrm{m}$
(D) $156.25 \mathrm{Ns} / \mathrm{m}$

- Common Data For Q. 63 and Q. 64

A compacting machine shown in the figure below is used to create a desired thrust force by using a rack and pinion arrangement. The input gear is mounted on the motor shaft. The gears have involute teeth of 2 mm module.

MCQ 4.63 If the drive efficiency is 80\%, the torque required on the input shaft to create 1000 N output thrust is
(A) 20 Nm
(B) 25 Nm
(C) 32 Nm
(D) 50 Nm

MCQ 4.64 If the pressure angle of the rack is 20°, then force acting along the line of action between the rack and the gear teeth is
(A) 250 N
(B) 342 N
(C) 532 N
(D) 600 N

YEAR 2003

ONE MARK

MCQ 4.65 The mechanism used in a shaping machine is
(A) a closed 4-bar chain having 4 revolute pairs
(B) a closed 6-bar chain having 6 revolute pairs
(C) a closed 4 -bar chain having 2 revolute and 2 sliding pairs
(D) an inversion of the single slider-crank chain

MCQ 4.66 The lengths of the links of a 4-bar linkage with revolute pairs are p, q, r, and s units. given that $p<q<r<s$. Which of these links should be the fixed one, for obtaining a "double crank" mechanism ?
(A) link of length p
(B) link of length q
(C) link of length r
(D) link of length s

MCQ 4.67 W hen a cylinder is located in a Vee-block, the number of degrees of freedom which are arrested is
(A) 2
(B) 4
(C) 7
(D) 8

YEAR 2003
TWO MARKS
MCQ 4.68 For a certain engine having an average speed of 1200 rpm , a flywheel approximated as a solid disc, is required for keeping the fluctuation of speed within 2% about the average speed. The fluctuation of kinetic energy per cycle is found to be 2 kJ . What is the least possible mass of the flywheel if its diameter is not to exceed 1 m ?
(A) 40 kg
(B) 51 kg
(C) 62 kg
(D) 73 kg

MCQ 4.69 A flexible rotor-shaft system comprises of a 10 kg rotor disc placed in the middle of a mass-less shaft of diameter 30 mm and length 500 mm between bearings (shaft is being taken mass-less as the equivalent mass of the shaft is included in the rotor mass) mounted at the ends. The bearings are assumed to simulate simply supported boundary conditions. The shaft is made of steel for which the value of $\mathrm{E} 2.1 \times 10^{11} \mathrm{~Pa}$. What is the critical speed of rotation of the shaft ?
(A) 60 Hz
(B) 90 Hz
(C) 135 Hz
(D) 180 Hz

- Common Data For Q. 70 and Q. 71 :

The circular disc shown in its plan view in the figure rotates in a plane parallel to the horizontal plane about the point O at a uniform angular
velocity ω. T wo other points A and B are located on the line $O Z$ at distances r_{A} and r_{B} from 0 respectively.

MCQ 4.70 The velocity of Point B with respect to point A is a vector of magnitude (A) 0
(B) $\omega\left(r_{B}-r_{A}\right)$ and direction opposite to the direction of motion of point B
(C) $\omega\left(r_{B}-r_{A}\right)$ and direction same as the direction of motion of point B
(D) $\omega\left(r_{B}-r_{A}\right)$ and direction being from 0 to Z

MCQ 4.71 The acceleration of point B with respect to point A is a vector of magnitude (A) 0
(B) $\omega\left(r_{B}-r_{A}\right)$ and direction same as the direction of motion of point B
(C) $\omega^{2}\left(r_{B}-r_{A}\right)$ and direction opposite to be direction of motion of point B
(D) $\omega^{2}\left(r_{B}-r_{A}\right)$ and direction being from Z to 0

MCQ 4.72 The undamped natural frequency of oscillations of the bar about the hinge point is
(A) $42.43 \mathrm{rad} / \mathrm{s}$
(B) $30 \mathrm{rad} / \mathrm{s}$
(C) $17.32 \mathrm{rad} / \mathrm{s}$
(D) $14.14 \mathrm{rad} / \mathrm{s}$

MCQ 4.73 The damping coefficient in the vibration equation is given by
(A) $500 \mathrm{Nms} / \mathrm{rad}$
(B) $500 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$
(C) $80 \mathrm{Nms} / \mathrm{rad}$
(D) $80 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$

YEAR 2002

MCQ 4.74 The minimum number of links in a single degree-of-freedom planar mechanism with both higher and lower kinematic pairs is
(A) 2
(B) 3
(C) 4
(D) 5

MCQ 4.75 The Coriolis component of acceleration is present in
(A) 4 bar mechanisms with 4 turning pairs
(B) shape mechanism
(C) slider-crank mechanism
(D) scotch yoke mechanism

MCQ 4.76 If the length of the cantilever beam is halved, the natural frequency of the mass M at the end of this cantilever beam of negligible mass is increased by a factor of
(A) 2
(B) 4
(C) $\sqrt{8}$
(D) 8

YEAR 2001
ONE MARK
MCQ 4.77 For a spring-loaded roller follower driven with a disc cam,
(A) the pressure angle should be larger during rise than that during return for ease of transmitting motion.
(B) the pressure angle should be smaller during rise than that during return for ease of transmitting motion.
(C) the pressure angle should be large during rise as well as during return for ease of transmitting motion.
(D) the pressure angle does not affect the ease of transmitting motion.

MCQ 4.78 In the figure shown, the spring deflects by δ to position A (the equilibrium position) when a mass m is kept on it. During free vibration, the mass is at position B at some instant. The charge in potential energy of the spring mass system from position A to position B is

(A) $\frac{1}{2} k x^{2}$
(B) $\frac{1}{2} \mathrm{kx}^{2}-\mathrm{mgx}$
(C) $\frac{1}{2} k(x+\delta)^{2}$
(D) $\frac{1}{2} \mathrm{kx}^{2}+\mathrm{mgx}$

MCQ 4.79 W hich of the following statements is correct ?
(A) Flywheel reduces speed fluctuations during a cycle for a constant load, but flywheel does not control the mean speed of the engine, if the load changes.
(B) Flywheel does not reduce speed fluctuation during a cycle for a constant load, but flywheel does not control the mean speed of the engine, if the load changes.
(C) Governor controls speed fluctuations during a cycle for a constant load, but governor does not control the mean speed of the engine, if the load changes.
(D) Governor controls speed fluctuations during a cycle for a constant load, and governor also controls the mean speed of the engine, if the load changes.

YEAR 2001
TWO MARKS
MCQ 4.80 The sun gear in the figure is driven clockwise at 100 rpm . The ring gear is held stationary. For the number of teeth shown on the gears, the arm rotates at

(A) zero
(B) 20 rpm
(C) 33.33 rpm
(D) 66.67 rpm

MCQ 4.81 The assembly shown in the figure is composed of two massless rods of length L with two particles, each of mass m. The natural frequency of this assembly for small oscillations is

(A) $\sqrt{\frac{g}{L}}$
(B) $\sqrt{\frac{2 g}{(L \cos \alpha)}}$
(C) $\sqrt{\frac{9}{(L \cos \alpha)}}$
(D) $\sqrt{\frac{(g \cos \alpha)}{L}}$

SOLUTION

sol 4.1 Option (B) is correct.
For helical gears, speed ratio is given by

$$
\begin{equation*}
\frac{N_{1}}{N_{2}}=\frac{D_{2}}{D_{1}} \times \frac{\cos \beta_{2}}{\cos \beta_{1}} \tag{i}
\end{equation*}
$$

$\mathrm{N}_{1}=1440 \mathrm{rpm}, \mathrm{D}_{1}=80 \mathrm{~mm}, \mathrm{D}_{2}=120 \mathrm{~mm}, \beta_{1}=30^{\circ}, \beta_{2}=22.5^{\circ}$ Hence from Eq. (i)

$$
\begin{aligned}
\mathrm{N}_{2} & =\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}} \times \frac{\cos \beta_{1}}{\cos \beta_{2}} \times \mathrm{N}_{1}=\frac{80}{120} \times \frac{\cos 30^{\circ}}{\cos 22.5^{\circ}} \times 1440 \\
& =899.88 \simeq 900 \mathrm{rpm}
\end{aligned}
$$

sol 4.2 Option (D) is correct.

For A solid disc of radius (r) as given in figure, rolls without slipping on a horizontal floor with angular velocity ω and angular acceleration α.
The magnitude of the acceleration of the point of contact (A) on the disc is only by centripetal acceleration because of no slip condition.

$$
\begin{equation*}
v=\omega r \tag{i}
\end{equation*}
$$

Differentiating Eq. (1) w.r.t. (t)

$$
\frac{d v}{d t}=r \frac{d \omega}{d t}=r \cdot \alpha \quad\left(\frac{d \omega}{d t}=\alpha, \frac{d v}{d t}=a\right)
$$

or, $\quad a=r \cdot \alpha$
Instantaneous velocity of point A is zero
So at point A, Instantaneous tangential acceleration = zero
Therefore only centripetal acceleration is there at point A.
Centripetal acceleration $=r \omega^{2}$

SOL 4.3 Option (B) is correct.
From similar $\triangle \mathrm{PQO}$ and $\triangle \mathrm{SRO}$

$$
\begin{equation*}
\frac{P Q}{S R}=\frac{P O}{S O} \tag{i}
\end{equation*}
$$

$$
P Q=\sqrt{(50)^{2}-(25)^{2}}=43.3 \mathrm{~mm}
$$

From Eq. (i)

$$
\begin{aligned}
\frac{43.3}{S R} & =\frac{50}{5} \\
S R & =\frac{43.5 \times 5}{50}=4.33 \mathrm{~mm}
\end{aligned}
$$

Velocity of $\mathrm{Q}=$ Velocity of R (situated at the same link)

$$
\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{R}}=\mathrm{SR} \times \omega=4.33 \times 1=4.33 \mathrm{~m} / \mathrm{s}
$$

A ngular velocity of $\mathrm{PQ} . \quad \omega_{\mathrm{PQ}}=\frac{\mathrm{V}_{\mathrm{Q}}}{\mathrm{PQ}}=\frac{4.33}{43.3}=0.1 \mathrm{rad} / \mathrm{s}$
sol 4.4 Option (B) is correct.
For flywheel

$$
\begin{aligned}
\mathrm{K.E} & =\frac{1}{2} I \omega^{2} \\
\omega & =\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \times \pi \times 600}{60}=62.83 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

I (for solid circular disk) $=\frac{1}{2} \mathrm{mR}^{2}=\frac{1}{2} \times 20 \times(0.2)^{2}=0.4 \mathrm{~kg}-\mathrm{m}^{2}$
Hence,

$$
\mathrm{K} . \mathrm{E}=\frac{1}{2} \times(0.4) \times(62.83)^{2}=789.6 \simeq 790 \mathrm{~J} \text { oules } .
$$

SOL 4.5 Option (D) is correct.
For a very small amplitude of vibration.

From above figure change in length of spring

$$
\mathrm{x}=2 \mathrm{~L} \sin \theta=2 \mathrm{~L} \theta \quad \text { (is very small so } \sin \theta \simeq \theta \text {) }
$$

M ass moment of inertia of mass (m) about O is

$$
\mathrm{I}=\mathrm{mL}^{2}
$$

As no internal force acting on the system. So governing equation of motion from Newton's law of motion is,

$$
\text { or, } \begin{aligned}
1 \ddot{\theta}+\mathrm{kx} \times 2 \mathrm{~L} & =0 \\
\mathrm{~mL}^{2} \ddot{\theta}+\mathrm{k} 2 \mathrm{~L} \theta \times 2 \mathrm{~L} & =0 \\
\ddot{\theta}+\frac{4 \mathrm{~kL}^{2} \theta}{\mathrm{~mL}^{2}} & =0 \\
\text { or } \quad \ddot{\theta}+\frac{4 \mathrm{k} \theta}{\mathrm{~m}} & =0
\end{aligned}
$$

Comparing general equation $\ddot{\theta}+\omega_{n}^{2} \theta=0$ we have

$$
\omega_{\mathrm{n}}^{2}=\frac{4 \mathrm{k}}{\mathrm{~m}} \Rightarrow \omega_{\mathrm{n}}=\sqrt{\frac{4 \mathrm{k}}{\mathrm{~m}}}
$$

sol 4.6 Option (C) is correct.

Given that $P Q$ is a single link.
Hence : $I=5, j=5, h=1$
It has been assumed that slipping is possible between the link $\mathrm{I}_{5} \& \mathrm{I}_{1}$. From the kutzbach criterion for a plane mechanism,
Numbers of degree of freedom or movability.

$$
n=3(1-1)-2 j-h=3(5-1)-2 \times 5-1=1
$$

sol 4.7 Option (D) is correct.
Given $\omega_{\mathrm{AB}}=1 \mathrm{rad} / \mathrm{sec}, \mathrm{I}_{\mathrm{CD}}=1.5 \mathrm{I}_{\mathrm{AB}} \quad \Rightarrow \begin{aligned} & \mathrm{I}_{\mathrm{CD}} \\ & \Gamma_{\mathrm{AB}}\end{aligned}=1.5$
Let angular velocity of link CD is $\omega_{c d}$
From angular velocity ratio theorem,

$$
\begin{aligned}
& \frac{\omega_{A B}}{\omega_{C D}}=\frac{I_{C D}}{I_{A B}} \\
& \omega \omega D=\omega_{A B} \times \frac{I_{A B}}{I_{C D}}=1 \times \frac{1}{1.5}=\frac{2}{3} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

sol 4.8 Option (A) is correct.
Given $\mathrm{k}=20 \mathrm{kN} / \mathrm{m}, \mathrm{m}=1 \mathrm{~kg}$
From the Given spring mass system, springs are in parallel combination. So,

$$
k_{\text {eq }}=k+k=2 k
$$

Natural Frequency of spring mass system is,

$$
\begin{aligned}
\omega_{\mathrm{n}} & =\sqrt{\frac{k_{\mathrm{eq}}}{m}} \\
2 \pi \mathrm{f}_{\mathrm{n}} & =\sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{m}} \quad \quad f_{\mathrm{n}}=\mathrm{N} \text { atural Frequency in } \mathrm{Hz} \\
\mathrm{f}_{\mathrm{n}} & =\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{m}}=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}=\frac{1}{2 \times 3.14} \sqrt{\frac{2 \times 20 \times 1000}{1}} \\
& =\frac{200}{6.28}=31.84 \mathrm{~Hz} \simeq 32 \mathrm{~Hz}
\end{aligned}
$$

sol 4.9 Option (C) is correct.

$$
\begin{equation*}
\theta=\frac{x}{r} \Rightarrow x=r \theta \tag{i}
\end{equation*}
$$

Total energy of the system remains constant.
So,
T.E. = K.E. due to translatory motion

+ K.E. due to rotary motion + P.E. of spring
$\left.\mathrm{T} . \mathrm{E} .=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} \right\rvert\, \dot{\theta}^{2}+\frac{1}{2} k x^{2}$
$=\frac{1}{2} m r^{2} \dot{\theta}^{2}+\frac{1}{2} \left\lvert\, \dot{\theta}^{2}+\frac{1}{2} k r^{2} \theta^{2} \quad\right.$ From equation (i) $\dot{x}=r \dot{\theta}$
$=\frac{1}{2} m r^{2} \dot{\theta}^{2}+\frac{1}{2} \times \frac{1}{2} m r^{2} \dot{\theta}^{2}+\frac{1}{2} k r^{2} \theta^{2} \quad$ For a disc $I=\frac{m r^{2}}{2}$
$=\frac{3}{4} \mathrm{mr}^{2} \dot{\theta}^{2}+\frac{1}{2} \mathrm{kr}^{2} \theta^{2}=$ Constant
On differentiating above equation w.r.t. t , we get

$$
\begin{aligned}
\frac{3}{4} \mathrm{mr}^{2} \times(2 \ddot{\theta} \ddot{\theta})+\frac{1}{2} \mathrm{kr}^{2}(2 \theta \dot{\theta}) & =0 \\
\frac{3}{2} \mathrm{mr}^{2} \ddot{\theta}+\mathrm{kr}^{2} \theta & =0 \\
\ddot{\theta}+\frac{2 \mathrm{k}}{3 \mathrm{~m}} \theta & =0 \\
\omega_{\mathrm{n}}^{2} & =\frac{2 \mathrm{k}}{3 \mathrm{~m}} \Rightarrow \omega_{\mathrm{n}}=\sqrt{\frac{2 \mathrm{k}}{3 \mathrm{~m}}}
\end{aligned}
$$

Therefore, natural frequency of vibration of the system is,

$$
f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{2 k}{3 m}}
$$

sol 4.10 Option (A) is correct.
Given figure shows the six bar mechanism.

We know movability or degree of freedom is $n=3(I-1)-2 j-h$ The mechanism shown in figure has six links and eight binary joints (because there are four ternary joints $A, B, C \& D$, i.e. $I=6, j=8 \quad h=0$
So,
$\mathrm{n}=3(6-1)-2 \times 8=-1$
Therefore, when $n=-1$ or less, then there are redundant constraints in the chain, and it forms a statically indeterminate structure. So, From the Given options (A) satisfy the statically indeterminate structure $\mathrm{n} \leq-1$
sol 4.11 Option (C) is correct.

Velocity of any point on a link with respect to another point (relative velocity) on the same link is always perpendicular to the line joining these points on the configuration (or space) diagram.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{QP}} & =\text { Relative velocity between } \mathrm{P} \& \mathrm{Q} \\
& =\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}} \text { always perpendicular to } \mathrm{PQ} .
\end{aligned}
$$

sol 4.12 Option (A) is correct.
According to Grashof's law "For a four bar mechanism, the sum of the shortest and longest link lengths should not be greater than the sum of remaining two link lengths if there is to be continuous relative motion
between the two links.

$$
I_{4}+I_{2} \ngtr I_{1}+I_{3}
$$

sol 4.13 Option (A) is correct.
We know natural frequency of a spring mass system is,

$$
\begin{equation*}
\omega_{\mathrm{n}}=\sqrt{\frac{k}{m}} \tag{i}
\end{equation*}
$$

This equation (i) does not depend on the g and weight ($\mathrm{W}=\mathrm{mg}$)
So, the natural frequency of a spring mass system is unchanged on the moon. Hence, it will remain ω_{n}, i.e. $\omega_{\text {moon }}=\omega_{\mathrm{n}}$
sol 4.14 Option (D) is correct.
W hen gear teeth are produced by a generating process, interference is automatically eliminated because the cutting tool removes the interfering portion of the flank. This effect is called undercutting. By undercutting the undercut tooth can be considerably weakened.
So, interference can be reduced by using more teeth on the gear. However, if the gears are to transmit a given amount of power, more teeth can be used only by increasing the pitch diameter.
sol 4.15 Option (A) is correct.

Given $k=3000 \mathrm{~N} / \mathrm{m}, \mathrm{c}=0, \mathrm{~A}=50 \mathrm{~mm}, \mathrm{~F}(\mathrm{t})=100 \cos (100 \mathrm{t}) \mathrm{N}$

$$
\omega t=100 t
$$

$$
\omega=100 \quad \text { It is a forced vibratory system. }
$$

From the Newton's law,

$$
\begin{equation*}
m \ddot{x}+k x=F \tag{i}
\end{equation*}
$$

A nd its general solution will be,

$$
\begin{array}{rlr}
\mathrm{x} & =\mathrm{A} \cos \omega \mathrm{t} \\
\frac{\mathrm{dx}}{\mathrm{dt}} & =\dot{x} & =-\mathrm{A} \omega \sin \omega \mathrm{t} \\
\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}} & =\ddot{\mathrm{x}} & =-\mathrm{A} \omega^{2} \cos \omega \mathrm{t}
\end{array} \quad \text { where } \omega=\sqrt{\frac{k}{m}}
$$

Substitute these values in equation (i), we get

$$
\begin{aligned}
-m A \omega^{2} \cos \omega t+k A \cos \omega t & =100 \cos (\omega t) \\
-m A \omega^{2}+k A & =100
\end{aligned}
$$

Now substitute $k=3000 \mathrm{~N} / \mathrm{m}, \mathrm{A}=0.05 \mathrm{~m}$, in above equation, we get

$$
\begin{aligned}
-\mathrm{m} \times 0.05 \times(100)^{2}+3000 \times 0.05 & =100 \\
-5 \mathrm{~m}+1.5 & =1 \\
\mathrm{~m} & =0.1 \mathrm{~kg}
\end{aligned}
$$

Alternate M ethod:

We know that, in forced vibration amplitude is given by :

$$
\begin{equation*}
A=\frac{F_{0}}{\sqrt{(k-m \omega)^{2}+(c \omega)^{2}}} \tag{i}
\end{equation*}
$$

Here, $F(t)=100 \cos (100 \mathrm{t}), \mathrm{F}_{0}=100 \mathrm{~N}, \mathrm{~A}=50 \mathrm{~mm}=50 \times 10^{-3} \mathrm{~m}$
$\omega=100 \mathrm{rad} / \mathrm{sec}, \mathrm{k}=3000 \mathrm{Nm}^{-1}, \mathrm{c}=0$
So, from equation (i), we get

$$
\begin{aligned}
A & =\frac{F_{0}}{k-m \omega^{2}} \\
k-m \omega^{2} & =\frac{F_{0}}{A} \\
3000-m \times(100)^{2} & =\frac{100}{50 \times 10^{-3}} \\
10000 \mathrm{~m} & =1000 \quad \Rightarrow \mathrm{~m}=0.1 \mathrm{~kg}
\end{aligned}
$$

sol 4.16 Option (C) is correct.

Given $\mathrm{N}_{\mathrm{i}}=$ No. of teeth for gear i ,
$\mathrm{N}_{2}=20, \mathrm{~N}_{3}=24, \mathrm{~N}_{4}=32, \mathrm{~N}_{5}=80, \omega_{2}=100 \mathrm{rad} / \mathrm{sec}(\mathrm{CW})$
$\omega_{\text {arm }}=80 \mathrm{rad} / \mathrm{sec}(C C W)=-80 \mathrm{rad} / \mathrm{sec}$
The table of the motion given below :
Take CCW $=-$ ve and CW $=+$ ve

S. No.	Condition of M otion	Revolution of elements			
		Arm	Gear $2 \omega_{2}$	Compound Gear 3-4, $\omega_{3}=\omega_{4}$	Gear 5 ω_{5}
1.	Arm 'a' is fixed \& Gear 2 rotates through +1 revolution (CW)	0	+1	$-\frac{N_{2}}{N_{3}}$	$-\frac{N_{2}}{N_{3}} \times \frac{N_{4}}{N_{5}}$
2.	Gear 2 rotates through $+x$ revolution (CW)	0	$+x$	$-x \frac{N_{2}}{N_{3}}$	$-x \frac{N_{2}}{N_{3}} \times \frac{N_{4}}{N_{5}}$
3.	Add +y revolutions to all elements	$+y$	$+y$	$+y$	$+y$
4.	Total motion.	$+y$	$x+y$	$y-x \frac{N_{2}}{N_{3}}$	$y-x \frac{N_{2}}{N_{3}} \times \frac{N_{4}}{N_{5}}$

Note. \quad Speed ratio $=\frac{\text { Speed of driver }}{\text { Speed of driven }}=\frac{\text { No.of teeth on driven }}{\text { No. of teeth on driver }}$
i.e.

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}
$$

Gear $3 \& 4$ mounted on same shaft, So $\omega_{3}=\omega_{4}$
And

$$
\begin{array}{rlrl}
\omega_{\mathrm{arm}} & =y & & \text { From the table } \\
\mathrm{y} & =-80 \mathrm{rad} / \sec (\mathrm{CCW}) & & \\
x+y & =\omega_{2}=100 & & \text { From the table } \\
x & =100-(-80)=180 \mathrm{rad} / \mathrm{sec}(C W) &
\end{array}
$$

And

$$
\begin{aligned}
\omega_{5} & =y-x \times \frac{N_{2}}{N_{3}} \times \frac{N_{4}}{N_{5}} \\
& =-80-180 \times \frac{20}{24} \times \frac{32}{80}=-140 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

From the table

From the table

Negative sign shows the counter clockwise direction.
sol 4.17 Option (D) is correct.
Let, V_{B} is the velocity of slider B relative to link $C D$
The crank length $A B=250 \mathrm{~mm}$ and velocity of slider B with respect to rigid link $C D$ is simply velocity of B (because C is a fixed point).
Hence,

$$
v_{B}=(A B) \times \omega_{A B}=250 \times 10^{-3} \times 10=2.5 \mathrm{~m} / \mathrm{sec}
$$

Alternate M ethod :

From the given figure, direction of velocity of $C D$ is perpendicular to link $A B \&$ direction of velocity of $A B$ is parallel to link $C D$.
So, direction of relative velocity of slider B with respect to C is in line with link BC.

Hence	$v_{C}=0$
Or	$v_{B C}=v_{B}-v_{C}=A B \times \omega_{A B}-0=0.025 \times 10=2.5 \mathrm{~m} / \mathrm{sec}$

sol 4.18 Option (D) is correct.

Given $\mathrm{O}_{1} \mathrm{P}=\mathrm{r}=125 \mathrm{~mm}$
Forward to return ratio $=2: 1$
We know that, $\frac{\text { Time of cutting (forward) stroke }}{\text { Time of return stroke }}=\frac{\beta}{\alpha}=\frac{360-\alpha}{\alpha}$
Substitute the value of Forward to return ratio, we have

$$
\begin{aligned}
\frac{2}{1} & =\frac{360-\alpha}{\alpha} \\
2 \alpha & =360-\alpha \quad \Rightarrow \alpha=120^{\circ}
\end{aligned}
$$

A nd angle $\angle \mathrm{RO}_{1} \mathrm{O}_{2}=\frac{\alpha}{2}=\frac{120^{\circ}}{2}=60^{\circ}$
Now we are to find the distance ' d ' between the crank centre to lever pivot centre point $\left(\mathrm{O}_{1} \mathrm{O}_{2}\right)$. From the $\Delta \mathrm{RO}_{2} \mathrm{O}_{1}$

$$
\begin{aligned}
\sin \left(90^{\circ}-\frac{\alpha}{2}\right) & =\frac{\mathrm{O}_{1} \mathrm{R}}{\mathrm{O}_{1} \mathrm{O}_{2}}=\frac{r}{\mathrm{O}_{1} \mathrm{O}_{2}} \\
\sin \left(90^{\circ}-60^{\circ}\right) & =\frac{r}{\mathrm{O}_{1} \mathrm{O}_{2}} \\
\mathrm{O}_{1} \mathrm{O}_{2} & =\frac{r}{\sin 30^{\circ}}=\frac{125}{1 / 2}=250 \mathrm{~mm}
\end{aligned}
$$

sol 4.19 Option (B) is correct.
Given $\delta=1.8 \mathrm{~mm}=0.0018 \mathrm{~m}$
The critical or whirling speed is given by,

$$
\begin{aligned}
\omega_{\mathrm{c}} & =\sqrt{\frac{g}{\delta}} \\
\frac{2 \pi \mathrm{~N}_{\mathrm{c}}}{60} & =\sqrt{\frac{g}{\delta}} \quad \quad \mathrm{~N}_{\mathrm{c}}=\text { Critical speed in rpm } \\
\mathrm{N}_{\mathrm{c}} & =\frac{60}{2 \pi} \sqrt{\frac{g}{\delta}}=\frac{60}{2 \times 3.14} \sqrt{\frac{9.81}{0.0018}} \\
& =9.55 \sqrt{5450}=704.981 \simeq 705 \mathrm{rpm}
\end{aligned}
$$

sol 4.20 Option (A) is correct.
G iven $Z_{2}=20 \mathrm{~T}$ eeth, $Z_{3}=40 \mathrm{~T}$ eeth, $\mathrm{Z}_{5}=100 \mathrm{~T}$ eeth, $\mathrm{N}_{5}=0$,
$\mathrm{N}_{2}=60 \mathrm{rpm}$ (CCW)

If gear 2 rotates in the CCW direction, then gear 3 rotates in the clockwise direction. Let, Arm 4 will rotate at $\mathrm{N}_{4} \mathrm{rpm}$. The table of motions is given below. Take CCW $=+$ ve, CW $=-$ ve

S. No.	Condition of M otion	R evolution of elements			
		Sun Gear 2	Planet Gear 3	A rm 4	Ring Gear 5
		N_{2}	N_{3}	N_{4}	N_{5}
1.	Arm fixed and sun gear 2 rotates +1 rpm (CCW)	$+1$	$-\frac{Z_{2}}{Z_{3}}$	0	$-\frac{Z_{2}}{Z_{3}} \times \frac{Z_{3}}{Z_{5}}$
2.	Give +x rpm to gear 2 (CCW)	$+x$	$-\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{3}} \mathrm{x}$	0	$-x \mathrm{Z}_{\mathrm{Z}_{2}}$
3.	Add $+y$ revolutions to all elements	+y	+y	+y	+y
4.	Total motion.	$y+x$	$y-x Z_{Z_{2}}^{Z_{2}}$	+y	$y-x Z_{Z_{2}}$

Note: \quad Speed ratio $=\frac{\text { Speed of driver }}{\text { Speed of driven }}=\frac{\text { No. of teeth on dirven }}{\text { No. of teeth on driver }}$

Ring gear 5 is fixed. So,

$$
\begin{align*}
N_{5} & =0 \\
y-x \frac{Z_{2}}{Z_{5}} & =0 \\
y & =\frac{Z_{2}}{Z_{5}} x=\frac{20}{100} x=\frac{x}{5} \tag{i}
\end{align*}
$$

Given,

$$
\begin{aligned}
\mathrm{N}_{2} & =60 \mathrm{rpm}(\mathrm{CCW}) \\
y+\mathrm{x} & =60 \\
\frac{x}{5}+\mathrm{x} & =60 \\
x & =10 \times 5=50 \mathrm{rpm}
\end{aligned}
$$

A nd from equation (i),

$$
y=\frac{50}{5}=10 \mathrm{rpm}(C C W)
$$

From the table the arm will rotate at

$$
\mathrm{N}_{4}=\mathrm{y}=10 \mathrm{rpm}(\mathrm{CCW})
$$

sol 4.21 Option (A) is correct.

Given $k_{1}=k_{2}=16 \mathrm{MN} / \mathrm{m}, \mathrm{k}_{3}=\mathrm{k}_{4}=32 \mathrm{MN} / \mathrm{m}, \mathrm{m}=240 \mathrm{~kg}$
Here, $k_{1} \& k_{2}$ are the front two springs or k_{3} and k_{4} are the rear two springs. These 4 springs are parallel, So equivalent stiffness

$$
k_{\text {eq }}=k_{1}+k_{2}+k_{3}+k_{4}=16+16+32+32=96 \mathrm{M} \mathrm{~N} / \mathrm{m}^{2}
$$

We know at resonance

$$
\begin{aligned}
\omega & =\omega_{\mathrm{n}}=\sqrt{\frac{k}{\mathrm{~m}}} \\
\frac{2 \pi \mathrm{~N}}{60} & =\sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{~m}}} \quad \mathrm{~N}=\text { Engine speed in rpm } \\
\mathrm{N} & =\frac{60}{2 \pi} \sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{~m}}}=\frac{60}{2 \pi} \sqrt{\frac{96 \times 10^{6}}{240}}
\end{aligned}
$$

$$
=\frac{60}{2 \pi} \times 10^{2} \times \sqrt{40}=6042.03 \simeq 6040 \mathrm{rpm}
$$

Sol 4.22 Option (A) is correct.
Given $\mathrm{k}=3.6 \mathrm{kN} / \mathrm{m}, \mathrm{c}=400 \mathrm{Ns} / \mathrm{m}, \mathrm{m}=50 \mathrm{~kg}$
We know that, Natural Frequency

$$
\begin{equation*}
\omega_{\mathrm{n}}=\sqrt{\frac{k}{\mathrm{~m}}}=\sqrt{\frac{3.6 \times 1000}{50}}=8.485 \mathrm{rad} / \mathrm{sec} \tag{i}
\end{equation*}
$$

And damping factor is given by,

$$
\begin{aligned}
\mathrm{d} \text { or } \varepsilon & =\frac{\mathrm{c}}{\mathrm{c}_{\mathrm{c}}}=\frac{\mathrm{c}}{2 \sqrt{\mathrm{~km}}}=\frac{400}{2 \times \sqrt{3.6 \times 1000 \times 50}} \\
& =\frac{400}{2 \times 424.26}=0.471
\end{aligned}
$$

Damping Natural frequency,

$$
\begin{aligned}
\omega_{\mathrm{d}} & =\sqrt{1-\varepsilon^{2}} \omega_{\mathrm{n}} \\
2 \pi \mathrm{f}_{\mathrm{d}} & =\sqrt{1-\varepsilon^{2}} \omega_{\mathrm{n}} \\
\mathrm{f}_{\mathrm{d}} & =\frac{\omega_{\mathrm{n}}}{2 \pi} \times \sqrt{1-\varepsilon^{2}}=\frac{8.485}{2 \times 3.14} \times \sqrt{1-(0.471)^{2}}=1.19 \mathrm{~Hz}
\end{aligned}
$$

sol 4.23 Option (B) is correct.

A nalysis

P. Continuous relative rotation
Q. Velocity and Acceleration
R. M obility
S. Dynamic-static A nalysis

A pproach

3. Grashoff Iaw
4. K ennedy's Theorem
5. Grubler's Criterion
6. D'Alembert's Principle

So, correct pairs are $\mathrm{P}-3, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-1$
sol 4.24 Option (B) is correct.
From Gruebler's criterion, the equation for degree of freedom is given by,

$$
n=3(I-1)-2 j-h
$$

Given $\mathrm{I}=8$ and $\quad \mathrm{j}=10, \mathrm{~h}=0$

$$
\mathrm{n}=3(8-1)-2 \times 10=1 \quad \text { from equation(i) }
$$

SOL 4.25 Option (B) is correct.
Given $m=1.4 \mathrm{~kg}, \mathrm{k}_{1}=4000 \mathrm{~N} / \mathrm{m}, \mathrm{k}_{2}=1600 \mathrm{~N} / \mathrm{m}$
In the given system $k_{1} \& k_{2}$ are in parallel combination
So

$$
\mathrm{k}_{\mathrm{eq}}=\mathrm{k}_{1}+\mathrm{k}_{2}=4000+1600=5600 \mathrm{~N} / \mathrm{m}
$$

Natural frequency of spring mass system is given by,

$$
\mathrm{f}_{\mathrm{n}}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{~m}}}=\frac{1}{2 \pi} \sqrt{\frac{5600}{1.4}}=\frac{1}{2 \pi} \times 63.245=10.07 \simeq 10 \mathrm{~Hz}
$$

sol 4.26 Option (D) is correct.
J erk is given by triple differentiation of s w.r.t. t,

$$
\mathrm{J} \text { erk }=\frac{\mathrm{d}^{3} \mathrm{~S}}{\mathrm{dt}^{3}}
$$

Given

$$
\mathrm{s}=\frac{\mathrm{h}}{2}\left(1-\cos \frac{\pi \theta}{\beta}\right)=\frac{\mathrm{h}}{2}\left[1-\cos \frac{\pi(\omega \mathrm{t})}{\beta}\right] \quad \theta=\omega \mathrm{t}
$$

Differentiating above equation w.r.t. t , we get

$$
\frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{h}}{2}\left[-\frac{\pi \omega}{\beta}\left\{-\sin \frac{\pi(\omega \mathrm{t})}{\beta}\right\}\right]
$$

A gain Differentiating w.r.t. t ,

$$
\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}=\frac{\mathrm{h}}{2} \frac{\pi^{2} \omega^{2}}{\beta^{2}}\left[\cos \frac{\pi(\omega \mathrm{t})}{\beta}\right]
$$

A gain Differentiating w.r.t. t,

$$
\frac{\mathrm{d}^{3} \mathrm{~s}}{\mathrm{dt}} \mathrm{t}^{3}=-\frac{\mathrm{h}}{2} \frac{\pi^{3} \omega^{3}}{\beta^{3}} \sin \frac{\pi \theta}{\beta}
$$

Let $\omega=1 \mathrm{rad} / \mathrm{sec}$

$$
\frac{\mathrm{d}^{3} \mathrm{~s}}{\mathrm{dt}^{3}}=-\frac{\mathrm{h}}{2} \frac{\pi^{3}}{\beta^{3}} \sin \left(\frac{\pi \theta}{\beta}\right)
$$

sol 4.27 Option (C) is correct.

Given $\mathrm{m}=1 \mathrm{~kg}, \mathrm{~L}=1 \mathrm{~m}, \mathrm{k}=300 \mathrm{~N} / \mathrm{m}$
We have to turn the rigid rod at an angle θ about its hinged point, then rod moves upward at a distance x and also deflect in the opposite direction with the same amount. Let θ is very very small and $\operatorname{take} \tan \theta \simeq \theta$
From $\triangle \mathrm{AOB}$,

$$
\begin{align*}
& \theta=\frac{\mathrm{x}}{\mathrm{~L} / 2} \Rightarrow \mathrm{x}=\frac{\mathrm{L}}{2} \theta \tag{i}\\
& \theta=\omega \mathrm{t} \Rightarrow \dot{\theta}=\omega \tag{ii}
\end{align*}
$$

By using the principal of energy conservation,

$$
\frac{1}{2} \left\lvert\, \omega^{2}+\frac{1}{2} k x^{2}=\right.\text { Constant }
$$

$$
\begin{aligned}
\frac{1}{2} \left\lvert\, \dot{\theta}^{2}+\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{~L}}{2} \theta\right)^{2}\right. & =\mathrm{C} \\
\frac{1}{2} \left\lvert\, \dot{\theta}^{2}+\frac{1}{8} L^{2} k \theta^{2}\right. & =\mathrm{C}
\end{aligned}
$$

From equation (i) and (ii)

On differentiating w.r.t. t , we get

$$
\begin{equation*}
\frac{1}{2} I \times 2 \ddot{\theta} \ddot{\theta}+\frac{\mathrm{kL}^{2}}{8} \times 2 \theta \dot{\theta}=0 \tag{iii}
\end{equation*}
$$

For a rigid rod of length $L \&$ mass m, hinged at its centre, the moment of inertia,

$$
\mathrm{I}=\frac{\mathrm{mL}^{2}}{12}
$$

Substitute I in equation (iii), we get

$$
\begin{align*}
\frac{1}{2} \times \frac{\mathrm{mL}^{2}}{12} \times 2 \ddot{\theta} \ddot{\theta}+\frac{\mathrm{kL}^{2}}{4} \theta \dot{\theta} & =0 \\
\ddot{\theta}+\frac{3 \mathrm{k}}{\mathrm{~m}} \theta & =0 \tag{iv}
\end{align*}
$$

Compare equation (iv) with the general equation,

$$
\ddot{\theta}+\omega_{n}^{2} \theta=0
$$

So, we have

$$
\begin{aligned}
& \omega_{\mathrm{n}}^{2}=\frac{3 \mathrm{k}}{\mathrm{~m}} \\
& \omega_{\mathrm{n}}=\sqrt{\frac{3 \mathrm{k}}{\mathrm{~m}}}=\sqrt{\frac{3 \times 300}{1}}=30 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

sol 4.28 Option (C) is correct.
For an under damped harmonic oscillator resonance occurs when excitation frequency is equal to the undamped natural frequency

$$
\omega_{\mathrm{d}}=\omega_{\mathrm{n}}
$$

sol 4.29 Option (A) is correct.
Given $\omega_{1}=210 \mathrm{rad} / \mathrm{sec}, \omega_{2}=190 \mathrm{rad} / \mathrm{sec}, \Delta \mathrm{E}=400 \mathrm{Nm}$
As the speed of flywheel changes from ω_{1} to ω_{2}, the maximum fluctuation of energy,

$$
\begin{aligned}
\Delta \mathrm{E} & =\frac{1}{2} I\left[\left(\omega_{1}\right)^{2}-\left(\omega_{2}\right)^{2}\right] \\
\mathrm{I} & =\frac{2 \Delta \mathrm{E}}{\left[\left(\omega_{1}\right)^{2}-\left(\omega_{2}\right)^{2}\right]}=\frac{2 \times 400}{\left[(210)^{2}-(190)^{2}\right]}=\frac{800}{400 \times 20}=0.10 \mathrm{kgm}^{2}
\end{aligned}
$$

sol 4.30 Option (C) is correct.
Given, $/ \mathrm{O}_{4} \mathrm{O}_{2} \mathrm{P}=180^{\circ}, \omega_{0_{2} \mathrm{P}}=2 \mathrm{rad} / \mathrm{sec}$
The instantaneous centre diagram is given below,
Let, velocity of point P on link $\mathrm{O}_{2} \mathrm{P}$ is V_{P},

$$
\begin{equation*}
V_{P}=\omega_{2} \mathrm{P} \times \mathrm{O}_{2} \mathrm{P}=\omega_{0_{2} \mathrm{P}} \times\left(\mathrm{I}_{12} I_{23}\right)=2 \mathrm{a} \tag{i}
\end{equation*}
$$

And P is also a point on link $Q P$,

$$
\text { So, } \quad \begin{align*}
\mathrm{V}_{\mathrm{P}} & =\omega_{\mathrm{PQ}} \times \mathrm{O}_{4} \mathrm{P}=\omega_{\mathrm{PQ}} \times\left(\left.\mathrm{I}_{13}\right|_{23}\right) \\
& =\omega_{\mathrm{PQ}} \times 2 \mathrm{a}
\end{align*}
$$

B oth the links $\mathrm{O}_{2} \mathrm{P}$ and QP are runs at the same speed
From equation (i) and (ii), we get

$$
\begin{aligned}
& 2 \mathrm{a} & =\omega_{\mathrm{PQ}} \times 2 \mathrm{a} \\
\text { or, } & \omega_{\mathrm{PQ}} & =1 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

sol 4.31 Option (A) is correct.

The springs, with stiffness $\frac{k}{2} \& \frac{k}{2}$ are in parallel combination. So their resultant stiffness will be,

$$
k_{1}=\frac{k}{2}+\frac{k}{2}=k
$$

As $k_{1} \& k$ are in series, so the resultant stiffness will be,

$$
\mathrm{k}_{\mathrm{eq}}=\frac{\mathrm{k} \times \mathrm{k}}{\mathrm{k}+\mathrm{k}}=\frac{\mathrm{k}^{2}}{2 \mathrm{k}}=\frac{\mathrm{k}}{2}
$$

The general equation of motion for undamped free vibration is given as,

$$
\begin{aligned}
m \ddot{x}+k_{e q} x & =0 \\
m \ddot{x}+\frac{k}{2} x & =0 \\
\ddot{x}+\frac{k}{2 m} x & =0
\end{aligned}
$$

Compare above equation with general equation $\ddot{x}+\omega_{n}^{2} x=0$, we get Natural frequency of the system is,

$$
\omega_{\mathrm{n}}^{2}=\frac{\mathrm{k}}{2 \mathrm{~m}} \Rightarrow \omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{k}}{2 \mathrm{~m}}}
$$

Alternative :

$$
\mathrm{k}_{\mathrm{eq}}=\frac{\mathrm{k}}{2}
$$

We know, for a spring mass system,

$$
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{keq}_{\mathrm{eq}}}{m}}=\sqrt{\frac{\mathrm{k} / 2}{m}}=\sqrt{\frac{k}{2 m}}
$$

soL 4.32 Option (A) is correct.
Given The equation of motion of a harmonic oscillator is

$$
\begin{align*}
\frac{d^{2} x}{d t^{2}}+2 \xi \omega_{n} \frac{d x}{d t}+\omega_{n}^{2} x & =0 \tag{i}\\
\ddot{x}+2 \xi \omega_{n} \dot{x}+\omega_{n}^{2} x & =0
\end{align*}
$$

Compare equation (i) with the general equation,

$$
\begin{array}{r}
m \ddot{x}+c \dot{x}+k x=0 \\
\ddot{x}+\frac{c}{m} \dot{x}+\frac{k}{m} x=0
\end{array}
$$

We get,

$$
\begin{align*}
& \frac{c}{\mathrm{~m}}=2 \xi \omega_{\mathrm{n}} \tag{ii}\\
& \frac{\mathrm{k}}{\mathrm{~m}}=\omega_{\mathrm{n}}^{2}, \quad \Rightarrow \omega_{\mathrm{n}}=\sqrt{\frac{k}{\mathrm{~m}}} \tag{iii}
\end{align*}
$$

From equation (ii) \& (iii), $\xi=\frac{c}{2 m \times \sqrt{\frac{k}{m}}}=\frac{c}{2 \sqrt{k m}}$
Logarithmic decrement,

$$
\begin{align*}
\delta & =\ln \left(\frac{x_{1}}{x_{2}}\right)=\frac{2 \pi c}{\sqrt{c_{c}^{2}-c^{2}}} \tag{iv}\\
& =\ln \left(\frac{x_{1}}{x_{2}}\right)=\frac{2 \pi \times 2 \xi \sqrt{\mathrm{~km}}}{(2 \sqrt{\mathrm{~km}})^{2}-(2 \xi \sqrt{\mathrm{~km}})^{2}}=\frac{4 \pi \xi \sqrt{\mathrm{~km}}}{\sqrt{4 \mathrm{~km}-4 \xi^{2} \mathrm{~km}}} \\
& =\frac{2 \pi \xi}{\sqrt{1-\xi^{2}}} \\
\frac{x_{1}}{\mathrm{x}_{2}} & =\mathrm{e} \frac{2 \pi \xi}{\sqrt{1-\xi^{2}}}
\end{align*}
$$

If system executes n cycles, the logarithmic decrement δ can be written as

$$
\begin{aligned}
\delta & =\frac{1}{n} \log _{\mathrm{e}} \frac{\mathrm{x}_{1}}{\mathrm{x}_{\mathrm{n}+1}} \\
\mathrm{e}^{\mathrm{n} \delta} & =\frac{\mathrm{x}_{1}}{\mathrm{x}_{\mathrm{n}+1}}
\end{aligned}
$$

Where $\quad x_{1}=$ amplitude at the starting position.
$x_{n+1}=$ A mplitude after n cycles
The amplitude of $x(t)$ after n complete cycles is,

$$
e^{n \delta}=\frac{X}{x(t)}
$$

$$
x(t)=e^{-n \delta} \times X=X e^{-\frac{n 2 \pi \xi}{\sqrt{1-\xi^{2}}}} \quad \text { From equation (iv) }
$$

sol 4.33 Option (A) is correct.

Given Quick return ratio $=1: 2, O P=500 \mathrm{~mm}$
Here OT $=$ Length of the crank. We see that the angle β made by the forward stroke is greater than the angle α described by the return stroke. Since the crank has uniform angular speed, therefore

$$
\text { Quick return ratio }=\frac{\text { Time of return stroke }}{\text { Time of cutting stroke }}
$$

and A ngle

$$
\begin{aligned}
\frac{1}{2}=\frac{\alpha}{\beta} & =\frac{\alpha}{360-\alpha} \\
360-\alpha & =2 \alpha \\
3 \alpha & =360 \\
\alpha & =120^{\circ}
\end{aligned}
$$

$$
\text { From the } \triangle T O P, \quad \begin{aligned}
\cos \frac{\alpha}{2} & =\frac{O T}{O P}=\frac{r}{500} \quad O T=r \\
\cos 60^{\circ} & =\frac{r}{500} \\
r & =500 \times \frac{1}{2}=250 \mathrm{~mm}
\end{aligned} \quad \begin{aligned}
& \text { OT }
\end{aligned}
$$

sol 4.34 Option (B) is correct.
We know that maximum speed during forward stroke occur when QR \& QP are perpendicular.
So,

$$
\begin{array}{rlr}
\mathrm{V} & =\mathrm{OS} \times \omega_{\mathrm{OS}}=\mathrm{PQ} \times \omega_{\mathrm{PQ}} & \mathrm{~V}=\mathrm{r} \omega \\
250 \times 2 & =750 \times \omega_{\mathrm{PQ}} \\
\omega_{\mathrm{PQ}} & =\frac{500}{750}=\frac{2}{3} \mathrm{rad} / \mathrm{sec}
\end{array}
$$

sol 4.35 Option (D) is correct.

from angular velocity
ratio theorem
Construct $\mathrm{B}^{\prime} \mathrm{A}$ and $\mathrm{C}^{\prime} \mathrm{D}$ perpendicular to the line PBC . Also, assign lables β and γ to the acute angles made by the coupler.

So,

$$
\frac{\mathrm{R}_{P D}}{\mathrm{R}_{P A}}=\frac{\mathrm{R}_{\mathrm{C}^{\prime} D}}{\mathrm{R}_{B^{\prime} A}}=\frac{\mathrm{R}_{C D} \sin \gamma}{\mathrm{R}_{B A} \sin \beta}
$$

$$
\text { M.A. }=\frac{T_{4}}{T_{2}}=\frac{\omega_{2}}{\omega_{4}}=\frac{R_{C D} \sin \gamma}{R_{B A} \sin \beta}
$$

W hen the mechanism is toggle,then $\beta=0^{\circ}$ and 180°.
So
$M . A=\infty$

SOL 4.36
Option (C) is correct.
Assume any arbitrary relationship between the coordinates and their first derivatives, say $x>y$ and $\dot{x}>\dot{y}$. Also assume $x>0$ and $\dot{x}>0$.
A small displacement gives to the system towards the left direction. M ass m is fixed, so only damper moves for both the variable x and y. Note that these forces are acting in the negative direction.

Differential equation governing the above system is,

$$
\begin{aligned}
& \quad \sum F=-m \frac{d^{2} x}{d t^{2}}-c\left(\frac{d x}{d t}-\frac{d y}{d t}\right)-k x=0 \\
& m \ddot{x}+c(\dot{x}-\dot{y})+k x=0
\end{aligned}
$$

soL 4.37 Option (C) is correct.
For a 4 bar slider crank mechanism, there are the number of links or inversions are 4. These different inversions are obtained by fixing different links once at a time for one inversion. Hence, the number of inversions for a slider crank mechanism is 4 .
sol 4.38 Option (B) is correct.

Column I

P. Addendum
Q. Instantaneous centre of velocity
R. Section modulus
S. Prime circle

Column II

4. Gear
5. Linkage
6. Beam
7. Cam

So correct pairs are, P-4, Q-3, R-2, S-1
sol 4.39 Option (D) is correct.
The ratio of the maximum fluctuation of speed to the mean speed is called the coefficient of fluctuation of speed $\left(\mathrm{C}_{\mathrm{f}}\right)$.
Let, $\quad N_{1} \& N_{2}=M$ aximum \& Minimum speeds in r.p.m. during the cycle

$$
\begin{equation*}
N=M \text { ean speed in r.p.m. }=\frac{N_{1}+N_{2}}{2} \tag{i}
\end{equation*}
$$

Therefore,

$$
\begin{array}{rlr}
C_{f} & =\frac{N_{1}-N_{2}}{N}=\frac{2\left(N_{1}-N_{2}\right)}{N_{1}+N_{2}} & \text { from equation (i) } \\
& =\frac{\omega_{1}-\omega_{2}}{\omega}=\frac{2\left(\omega_{1}-\omega_{2}\right)}{\omega_{1}+\omega_{2}} & \\
C_{f} & =\frac{2\left(\omega_{\max }-\omega_{\min }\right)}{\omega_{\max }+\omega_{\min }} & \omega_{1}=\omega_{\max },
\end{array}
$$

$$
\begin{aligned}
C_{f} \omega_{\max }+C_{f} \omega_{\min } & =2 \omega_{\max }-2 \omega_{\min } \\
\omega_{\max }\left(C_{f}-2\right) & =\omega_{\min }\left(-2-C_{f}\right)
\end{aligned}
$$

Hence, $\quad \frac{\omega_{\max }}{\omega_{\min }}=-\frac{\left(2+C_{f}\right)}{C_{f}-2}=\frac{2+C_{f}}{2-C_{f}}$
sol 4.40 Option (D) is correct.
In this question pair or mechanism is related to contact \& machine related to it.

Column I
P. Higher K inematic Pair
Q. Lower K inematic Pair
R. Quick Return Mechanism
S. M obility of a Linkage

Column II
2. Line Contact
6. Surface Contact
5. Shaper

1. Grubler's Equation

So correct pairs are, P-2, Q-6, R-5, S-1
sol 4.41 Option (C) is correct.

$$
\begin{aligned}
& \text { Given } \mathrm{m}=250 \mathrm{~kg}, \mathrm{k}=100 \mathrm{kN} / \mathrm{m}, \mathrm{~N}=3600 \mathrm{rpm}, \varepsilon=\frac{\mathrm{c}}{\mathrm{c}_{\mathrm{c}}}=0.15 \\
& \qquad \omega=\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \times 3.14 \times 3600}{60}=376.8 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Natural frequency of spring mass system,

So,

$$
\begin{aligned}
\omega_{\mathrm{n}} & =\sqrt{\frac{k}{\mathrm{~m}}}=\sqrt{\frac{100 \times 1000}{250}}=20 \mathrm{rad} / \mathrm{sec} \\
\frac{\omega}{\omega_{n}} & =\frac{376.8}{20}=18.84 \\
\text { T.R. }=\frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{~F}} & =\sqrt{\frac{1+\left(2 \varepsilon \frac{\omega}{\omega_{n}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \varepsilon \frac{\omega}{\omega_{n}}\right]^{2}}} \\
& =\sqrt{\frac{1+(2 \times 0.15 \times 18.84)^{2}}{\left[1-(18.84)^{2}\right]^{2}+[2 \times 0.15 \times 18.84]^{2}}} \\
& =\sqrt{\frac{1+31.945}{[1-354.945]^{2}+31.945}}=\sqrt{\frac{32.945}{125309}}=0.0162
\end{aligned}
$$

sol 4.42 Option (A) is correct.
Here $P, Q, R, \& S$ are the lengths of the links.
According to Grashof's law : "For a four bar mechanism, the sum of the shortest and longest link lengths should not be greater than the sum of remaining two link lengths, if there is to be continuous relative motion between the two links

sol 4.43 Option (A) is correct.

The table of motions is given below. Take CW $=+$ ve, CCW $=-$ ve

$\begin{aligned} & \mathrm{S} . \\ & \mathrm{No} . \end{aligned}$	Condition of M otion	R evolution of elements			
		$\begin{aligned} & \text { Gear } 1 \\ & \mathrm{~N}_{1} \end{aligned}$	Compound Gear 2-3, $N_{2}=N_{3}$	$\begin{aligned} & \text { Gear } 4 \\ & \mathrm{~N}_{4} \end{aligned}$	Carrier N_{5}
1.	Carrier 5 is fixed \& Gear 1 rotates +1 rpm (CW)	+1	$-\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}$	$\frac{Z_{1}}{Z_{2}} \times \frac{Z_{3}}{Z_{4}}$	0
2.	Gear 1 rotates through +x rpm (CW)	$+\mathrm{x}$	$-x \frac{Z_{1}}{Z_{2}}$	$x^{Z_{1} Z_{3}} Z_{2} Z_{4}$	0
3.	Add +y revolutions to all elements	$+y$	+y	+y	+y
4.	Total motion.	$x+y$	$y-x \frac{Z_{1}}{Z_{2}}$	$y+x \times \frac{Z_{1} Z_{3}}{Z_{2} Z_{4}}$	+y

N ote
(i)

$$
\text { Speed ratio }=\frac{\text { Speed of driver }}{\text { Speed of driven }}=\frac{\text { No. of teeth on driven }}{\text { No.of teeth on driver }}
$$

i.e.

$$
\begin{aligned}
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}} & =\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}} \\
\mathrm{CCW} & =\text { Counter clock wise direction (}-\mathrm{ve} \text {) } \\
\mathrm{CW} & =\text { Clock wise direction }(+\mathrm{ve})
\end{aligned}
$$

(ii) Gear 2 \& Gear 3 mounted on the same shaft (Compound Gears)

So,

$$
N_{2}=N_{3}
$$

We know,

$$
\omega=\frac{2 \pi N}{60}, \Rightarrow \omega \propto N
$$

$$
\text { Hence, } \quad \frac{N_{1}-N_{5}}{N_{4}-N_{5}}=\frac{\omega_{1}-\omega_{5}}{\omega_{4}-\omega_{5}}=\frac{(x+y)-y}{y+x \times \frac{Z_{1} Z_{3}}{Z_{2} Z_{4}}-y}
$$

$$
\begin{aligned}
& \frac{\omega_{1}-\omega_{5}}{\omega_{4}-\omega_{5}}=\frac{x}{x \times \frac{Z_{1} Z_{3}}{Z_{2} Z_{4}}}=\frac{Z_{2} Z_{4}}{Z_{1} Z_{3}} \\
& \frac{\omega_{1}-\omega_{5}}{\omega_{4}-\omega_{5}}=\frac{45 \times 40}{15 \times 20}=3 \times 2=6
\end{aligned}
$$

sol 4.44 Option (D) is correct.
Given $\omega_{1}=60 \mathrm{rpm}(C W), \omega_{4}=-2 \times 60(C C W)=-120 \mathrm{rpm}$
From the previous part,

$$
\begin{aligned}
\frac{\omega_{1}-\omega_{5}}{\omega_{4}-\omega_{5}} & =6 \\
\frac{60-\omega_{5}}{-120-\omega_{5}} & =6 \\
60-\omega_{5} & =-720-6 \omega_{5} \\
\omega_{5} & =-\frac{780}{5}=-156 \mathrm{rpm}
\end{aligned}
$$

Negative sign show the counter clock wise direction.
So,

$$
\omega_{5}=156 \mathrm{rpm}, \mathrm{CCW}
$$

sol 4.45 Option (D) is correct.
Given $\mathrm{m}=12.5 \mathrm{~kg}, \mathrm{k}=1000 \mathrm{~N} / \mathrm{m}, \mathrm{c}=15 \mathrm{Ns} / \mathrm{m}$
Critical Damping,

$$
c_{c}=2 m \sqrt{\frac{k}{m}}=2 \sqrt{\mathrm{~km}}
$$

On substituting the values, we get

$$
c_{c}=2 \sqrt{1000 \times 12.5}=223.6 \mathrm{Ns} / \mathrm{m}
$$

SOL 4.46 None of these
We know logarithmic decrement,

$$
\begin{equation*}
\delta=\frac{2 \pi \varepsilon}{\sqrt{1-\varepsilon^{2}}} \tag{i}
\end{equation*}
$$

And

$$
\varepsilon=\frac{c}{C_{c}}=\frac{15}{223.6}=0.0671
$$

$$
\mathrm{c}_{\mathrm{c}}=223.6 \mathrm{Ns} / \mathrm{m}
$$

Now, from equation (i), we get

$$
\delta=\frac{2 \times 3.14 \times 0.0671}{\sqrt{1-(0.0671)^{2}}}=0.422
$$

SOL 4.47 Option (C) is correct.
Given $I=8, j=9$
We know that, Degree of freedom,

$$
n=3(\mid-1)-2 j=3(8-1)-2 \times 9=3
$$

sol 4.48 Option (C) is correct.
The speed of sound in air $=332 \mathrm{~m} / \mathrm{s}$
For frequency of instrument of 144 Hz , length of sound wave

$$
\mathrm{L}_{1}=\frac{332}{144}=2.30 \mathrm{~m}
$$

For sample P of 64 Hz ,

$$
L_{p}=\frac{332}{64}=5.1875 \mathrm{~m}
$$

Q of $96 \mathrm{~Hz} \quad \mathrm{~L}_{\mathrm{Q}}=\frac{332}{96}=3.458 \mathrm{~m}$
R of $128 \mathrm{~Hz} \quad L_{R}=\frac{332}{128}=2.593 \mathrm{~m}$
S of $250 \mathrm{~Hz} \quad L_{s}=\frac{332}{256}=1.2968 \mathrm{~m}$
Here, the length of sound wave of sample $R\left(L_{R}=2.593 m\right)$ is most close to the length of sound wave of Instrument ($L_{\mid}=2.30 \mathrm{~m}$). Hence, sample R produce most perceptible induced vibration.

SOL 4.49 Option (B) is correct.
Given $N=300$ r.p.m
A ngular velocity of cam,

$$
\omega=\frac{2 \pi \mathrm{~N}}{60}=10 \pi \mathrm{rad} / \mathrm{sec}
$$

Time taken to move 30° is,

$$
\mathrm{t}=\frac{\frac{\pi}{180} \times 30}{10 \pi}=\frac{\frac{1}{6}}{10}=\frac{1}{60} \mathrm{sec}
$$

Now, Cam moves 30° with a constant acceleration \& then with a deceleration, so maximum speed of the follower is at the end of first 30° rotation of the cam and during this 30° rotation the distance covered is 10 mm , with initial velocity $\mathrm{u}=0$.
From Newton's second law of motion,

$$
\begin{aligned}
S & =u t+\frac{1}{2} a t^{2} \\
0.01 & =0+\frac{1}{2} \times a \times\left(\frac{1}{60}\right)^{2} \\
a & =0.01 \times 2 \times(60)^{2}=72 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

Maximum velocity,

$$
v_{\max }=u+\text { at }=72 \times \frac{1}{60}=1.2 \mathrm{~m} / \mathrm{sec}
$$

sol 4.50 Option (C) is correct.

Given $\mathrm{m}_{1}=\mathrm{m}_{2}=0.5 \mathrm{~kg}, \mathrm{r}_{1}=0.05 \mathrm{~m}, \mathrm{r}_{2}=0.06 \mathrm{~m}$
Balancing mass $\mathrm{m}=0.1 \mathrm{~kg}$
Let disc rotates with uniform angular velocity ω and $x \& y$ is the position of balancing mass along $X \& Y$ axis.
Resolving the forces in the x-direction, we get

$$
\begin{aligned}
\Sigma \mathrm{F}_{\mathrm{x}} & =0 \\
0.5\left[-0.06 \cos 30^{\circ}+0.05 \cos 0^{\circ}\right] \omega^{2} & =0.1 \times \mathrm{x} \times \omega^{2} \\
0.5 \times(-0.00196) & =0.1 \mathrm{x} \quad \mathrm{~F}_{\mathrm{c}}=\mathrm{mr} \omega^{2} \\
x & =-0.0098 \mathrm{~m}=-9.8 \mathrm{~mm}
\end{aligned}
$$

Similarly in y-direction,

$$
\Sigma F_{y}=0
$$

$$
0.5\left(0.06 \times \sin 30^{\circ}+0.05 \times \sin 0\right) \omega^{2}=0.1 \times y \times \omega^{2}
$$

$$
0.5 \times 0.03=0.1 \times y
$$

$$
\mathrm{y}=0.15 \mathrm{~m}=150 \mathrm{~mm}
$$

Position of balancing mass is given by, $r=\sqrt{x^{2}+y^{2}}=\sqrt{(-9.8)^{2}+(150)^{2}}$

$$
=150.31 \mathrm{~mm} \simeq 150 \mathrm{~mm}
$$

SOL 4.51
Option (C) is correct.
Given $\mathrm{m}=0.1 \mathrm{~kg}, \mathrm{k}=1 \mathrm{kN} / \mathrm{m}$

Let, ω_{d} be the frequency of damped vibration \& ω_{n} be the natural frequency of spring mass system.
Hence, $\quad \omega_{\mathrm{d}}=90 \%$ of $\omega_{\mathrm{n}}=0.9 \omega_{\mathrm{n}}$ (Given)
Frequency of damped vibration

$$
\begin{equation*}
\omega_{\mathrm{d}}=\sqrt{\left(1-\varepsilon^{2}\right)} \omega_{\mathrm{n}} \tag{ii}
\end{equation*}
$$

From equation (i) and equation (ii), we get

$$
\sqrt{\left(1-\varepsilon^{2}\right)} \omega_{\mathrm{n}}=0.9 \omega_{\mathrm{n}}
$$

On squaring both the sides, we get

$$
\begin{aligned}
1-\varepsilon^{2} & =(0.9)^{2}=0.81 \\
\varepsilon^{2} & =1-0.81=0.19 \\
\varepsilon & =\sqrt{0.19}=0.436
\end{aligned}
$$

A nd Damping ratio is given by,

$$
\begin{aligned}
& \varepsilon=\frac{c}{c_{\mathrm{c}}}=\frac{\mathrm{c}}{2 \sqrt{\mathrm{~km}}} \\
& c=2 \sqrt{\mathrm{~km}} \times \varepsilon=2 \sqrt{1000 \times 0.1} \times 0.436=8.72 \mathrm{Ns} / \mathrm{m} \simeq 8.7 \mathrm{Ns} / \mathrm{m}
\end{aligned}
$$

soL 4.52 Option (B) is correct.

From Triangle ABC,

$$
A B=\sqrt{(100)^{2}+(240)^{2}}=\sqrt{67600}=260 \mathrm{~mm}
$$

Length of shortest link $I_{1}=60 \mathrm{~mm}$
Length of longest link $I_{3}=260 \mathrm{~mm}$
From the Grashof's law,

$$
\begin{aligned}
I_{1}+I_{3} & \ngtr I_{2}+I_{4} \\
60+260 & \ngtr 160+240 \\
320 & \ngtr 400
\end{aligned}
$$

So, $\quad I_{1}+I_{3}<I_{2}+I_{4}$
Also, when the shortest link $\mathrm{O}_{2} \mathrm{~A}$ will make a complete revolution relative to other three links, if it satisfies the Grashof's law. Such a link is known as crank. The link $\mathrm{O}_{4} \mathrm{~B}$ which makes a partial rotation or oscillates is known as rocker. So, crank rocker mechanism is obtained.
Here,
$\mathrm{O}_{2} \mathrm{~A}=\mathrm{I}_{1}=60 \mathrm{~mm}$ is crank (fixed link)
A djacent link, $\mathrm{O}_{2} \mathrm{O}_{4}=240 \mathrm{~mm}$ is fixed
So, crank rocker mechanism will be obtained.
soL 4.53 Option (B) is correct.
Let, ω_{4} is the angular velocity of link $\mathrm{O}_{4} B$
From the triangle $A B C$,

$$
\begin{align*}
\tan \theta & =\frac{100}{240}=\frac{5}{12} \tag{i}\\
\theta & =\tan ^{-1}\left(\frac{5}{12}\right)=22.62^{\circ}
\end{align*}
$$

Also from the triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~A}$,

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{O}_{2} \mathrm{~A}}{\mathrm{O}_{1} \mathrm{O}_{2}} \\
& \mathrm{O}_{1} \mathrm{O}_{2}=\frac{\mathrm{O}_{2} \mathrm{~A}}{\tan \theta}=\frac{60}{\frac{5}{12}}=144 \mathrm{~mm}
\end{aligned}
$$

From the angular velocity ratio theorem.

$$
\begin{aligned}
\mathrm{V}_{24} & =\omega_{4} \times \mathrm{I}_{24} \mathrm{I}_{14}=\omega \times \mathrm{I}_{24} \mathrm{I}_{12} \\
\omega_{4} & =\frac{\mathrm{I}_{24} 1_{12}}{\left.\Gamma_{24}\right|_{14}} \times \omega=\frac{144}{(240+144)} \times 8=\frac{144}{384} \times 8=3 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

sol 4.54 Option (D) is correct.
From the given data the component of force at joint A along A_{2} is necessary to find the joint reaction at O_{2}. So, it is not possible to find the magnitude of the joint reaction at O_{2}.
soL 4.55 Option (D) is correct.

Mechanical advantage in the form of torque is given by,

$$
\text { M.A. }=\frac{T_{\text {output }}}{T_{\text {input }}}=\frac{\omega_{\text {input }}}{\omega_{\text {output }}}
$$

Here output link is a slider, So, $\omega_{\text {output }}=0$
Therefore,
M.A. $=\infty$
sol 4.56 Option (C) is correct.
Given $\frac{\omega}{\omega_{n}}=r=0.5$
And due to isolation damping ratio,

$$
\varepsilon=\frac{c}{c_{c}}=0
$$

For isolation $\mathrm{c}=0$
We know the transmissibility ratio of isolation is given by,

$$
\text { T.R. }=\frac{\sqrt{1+\left(2 \varepsilon \frac{\omega}{\omega_{n}}\right)^{2}}}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \varepsilon \frac{\omega}{\omega_{n}}\right]^{2}}}=\frac{\sqrt{1+0}}{\sqrt{\left[1-(0.5)^{2}\right]^{2}+0}}=\frac{1}{0.75}=\frac{4}{3}
$$

sol 4.57 Option (D) is correct.
Given planar mechanism has degree of freedom, $\mathrm{N}=1$ and two infinite parallel lines meet at infinity. So, the instantaneous centre I_{24} will be at N , but for single degree of freedom, system moves only in one direction.
Hence, I_{24} is located at infinity (∞).
soL 4.58 Option (A) is correct.
Given $\mathrm{N}_{2}=120 \mathrm{rpm}, \mathrm{v}_{1}=12 \mathrm{~m} / \mathrm{sec}$
So, coriolis component of the acceleration of link 1 is,

$$
\mathrm{a}_{12}^{\mathrm{c}}=2 \omega_{2} \mathrm{v}_{1}=2 \times \frac{2 \pi \times 120}{60} \times 12=301.44 \mathrm{~m} / \mathrm{s}^{2} \simeq 302 \mathrm{~m} / \mathrm{s}^{2}
$$

soL 4.59 Option (C) is correct.

Given $\mathrm{I}=300 \mathrm{~mm}=0.3 \mathrm{~m}, \mathrm{~W}=300 \mathrm{~N}$
Let, rod is twisted to the left, through an angle θ.
From the similar triangle OCD \& OAB,

$$
\tan \theta=\frac{y}{0.15}=\frac{x}{0.30}
$$

If θ is very very small, then $\tan \theta \simeq \theta=\frac{\mathrm{y}}{0.15}=\frac{\mathrm{x}}{0.30}$
$x=0.30 \theta$ and $y=0.15 \theta$
On taking moment about the hinged point 0

$$
\begin{aligned}
& \mathrm{kx} \times 300+\mathrm{W} \times \mathrm{y}=0 \\
& \mathrm{k}=-\frac{\mathrm{W} y}{300 \mathrm{x}}=-\frac{300}{300} \times\left(\frac{\mathrm{y}}{\mathrm{x}}\right)=-\frac{1}{2}=-0.5 \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

From equation (i) $\frac{y}{x}=\frac{0.15 \theta}{0.30 \theta}=-500 \mathrm{~N} / \mathrm{m}$
Negative sign shows that the spring tends to move to the point B.
In magnitude, $k=500 \mathrm{~N} / \mathrm{m}$

SOL 4.60 Option (C) is correct.

Types of M echanisms

P. Scott-R ussel M echanism
Q. Geneva Mechanism
R. Off-set slider-crank M echanism
S. Scotch Yoke M echanism

M otion A chieved

4. Straight Line M otion
5. Intermittent M otion
6. Quick Return Mechanism
7. Simple Harmonic M otion

So, correct pairs are, P-4, Q-1, R-2, S-3
sol 4.61 Option (C) is correct.

Types of J oint

P. Revolute
Q. Cylindrical
R. Spherical

D egree of constraints

2. Five
3. Four
4. Three

So, correct pairs are P-2, Q-3, R-1
sol 4.62 Option (A) is correct.
Given $M=20 \mathrm{~kg}, \mathrm{I}=1000 \mathrm{~mm}=1 \mathrm{~m}, \mathrm{~A}=25 \times 25 \mathrm{~mm}^{2}$
$\mathrm{E}_{\text {steel }}=200 \mathrm{GPa}=200 \times 10^{9} \mathrm{~Pa}$
M ass moment of inertia of a square section is given by,

$$
\mathrm{I}=\frac{\mathrm{b}^{4}}{12}=\frac{\left(25 \times 10^{-3}\right)^{4}}{12}=3.25 \times 10^{-8} \mathrm{~m}^{4}
$$

Deflection of a cantilever, Loaded with a point load placed at the free end is,

$$
\begin{gathered}
\delta=\frac{W \mathrm{I}^{3}}{3 \mathrm{EI}}=\frac{\mathrm{mgl}^{3}}{3 \mathrm{EI}}=\frac{20 \times 9.81 \times(1)^{3}}{3 \times 200 \times 10^{9} \times 3.25 \times 10^{-8}}=\frac{196.2}{19500}=0.01 \mathrm{~m} \\
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{g}}{\delta}}=\sqrt{\frac{9.81}{0.01}}=31.32 \mathrm{rad} / \mathrm{sec}
\end{gathered}
$$

Therefore, critical damping constant

$$
\begin{aligned}
c_{c} & =2 \mathrm{M} \omega_{\mathrm{n}}=2 \times 20 \times 31.32 \\
& =1252.8 \mathrm{Ns} / \mathrm{m} \simeq 1250 \mathrm{Ns} / \mathrm{m}
\end{aligned}
$$

sol 4.63 Option (B) is correct.

Let, Z is the number of teeth and motor rotates with an angular velocity ω_{1} in clockwise direction \& develops a torque T_{1}.
Due to the rotation of motor, the gear 2 rotates in anti-clockwise direction \& gear 3 rotates in clock wise direction with the same angular speed.
Let, T_{2} is the torque developed by gear.
Now, for two equal size big gears,
M odule

$$
\begin{aligned}
& m=\frac{D}{Z}=\frac{(\text { Pitch circle diameter })}{(\text { N o.of teeths })} \\
& D=m Z=2 \times 80=160 \mathrm{~mm}
\end{aligned}
$$

(Due to rotation of gear $2 \&$ gear 3 an equal force (F) is generated in the downward direction because teeth are same for both the gears)
For equilibrium condition, we have
Downward force = upward force

$$
\begin{aligned}
F+F & =1000 \\
F & =500 \mathrm{~N}
\end{aligned}
$$

And

$$
\eta=\frac{\text { Power Output }}{\text { P ower Input }}=\frac{2 \times \mathrm{T}_{2} \omega_{2}}{\mathrm{~T}_{1} \omega_{1}}
$$

Output power is generated by the two gears

$$
\begin{equation*}
=\frac{2 \times\left(F \times \frac{D}{2}\right) \omega_{2}}{T_{1} \omega_{1}} \tag{i}
\end{equation*}
$$

We know velocity ratio is given by

$$
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}} \quad \omega=\frac{2 \pi \mathrm{~N}}{60}
$$

From equation (i), $\eta=\frac{2 \times\left(F \times \frac{D}{2}\right)}{T_{1}} \times \frac{Z_{1}}{Z_{2}}$

$$
\mathrm{T}_{1}=\frac{\mathrm{F} \times \mathrm{D}}{\eta} \times\left(\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}\right)=\frac{500 \times 0.160}{0.8} \times \frac{20}{80}=25 \mathrm{~N}-\mathrm{m}
$$

soL 4.64 Option (C) is correct.

Given pressure angle $\phi=20^{\circ}, \mathrm{F}_{\mathrm{T}}=500 \mathrm{~N}$ from previous question.
From the given figure we easily see that force action along the line of action is F.
From the triangle $A B C$,

$$
\begin{aligned}
\cos \phi & =\frac{F_{T}}{F} \\
F & =\frac{F_{T}}{\cos \phi}=\frac{500}{\cos 20^{\circ}}=532 \mathrm{~N}
\end{aligned}
$$

sol 4.65 Option (D) is correct.

A single slider crank chain is a modification of the basic four bar chain. It is find, that four inversions of a single slider crank chain are possible. From these four inversions, crank and slotted lever quick return motion mechanism is used in shaping machines, slotting machines and in rotary internal combustion engines.
sol 4.66 Option (A) is correct.
Given $\mathrm{p}<\mathrm{q}<\mathrm{r}<\mathrm{s}$
"D ouble crank" mechanism occurs, when the shortest link is fixed. From the given pairs p is the shortest link. So, link of length p should be fixed.
sol 4.67 Option (B) is correct.

We clearly see from the figure that cylinder can either revolve about x-axis or slide along x-axis \& all the motions are restricted.
Hence, Number of degrees of freedom $=2 \&$ movability includes the six degrees of freedom of the device as a whole, as the ground link were not fixed. So, 4 degrees of freedom are constrained or arrested.

SOL 4.68 Option (B) is correct.
Given $\mathrm{N}=1200 \mathrm{rpm}, \Delta \mathrm{E}=2 \mathrm{~kJ}=2000 \mathrm{~J}, \mathrm{D}=1 \mathrm{~m}, \mathrm{C}_{\mathrm{s}}=0.02$
M ean angular speed of engine,

$$
\omega=\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \times 3.14 \times 1200}{60}=125.66 \mathrm{rad} / \mathrm{sec}
$$

Fluctuation of energy of the flywheel is given by,

$$
\begin{aligned}
& \Delta \mathrm{E}=\mathrm{I} \omega^{2} \mathrm{C}_{\mathrm{s}}=\frac{1}{2} \mathrm{mR}^{2} \omega^{2} \mathrm{C}_{\mathrm{s}} \quad \text { For solid disc } \mathrm{I}=\frac{\mathrm{mR}^{2}}{2} \\
\mathrm{~m}= & \frac{2 \Delta \mathrm{E}}{\mathrm{R}^{2} \omega^{2} \mathrm{C}_{\mathrm{s}}}=\frac{2 \times 2000}{\left(\frac{1}{2}\right)^{2} \times(125.66)^{2} \times 0.02} \\
= & \frac{4 \times 2 \times 2000}{(125.66)^{2} \times 0.02}=50.66 \mathrm{~kg} \simeq 51 \mathrm{~kg}
\end{aligned}
$$

SOL 4.69 Option (B) is correct.
Given $\mathrm{m}=10 \mathrm{~kg}, \mathrm{~d}=30 \mathrm{~mm}=0.03 \mathrm{~m}, \mathrm{I}=500 \mathrm{~mm}=0.5 \mathrm{~m}$,

We know that, static deflection due to 10 kg of M ass at the centre is given by,

$$
\begin{equation*}
\delta=\frac{W I^{3}}{48 E T}=\frac{\mathrm{mgl}^{3}}{48 \mathrm{EI}} \tag{i}
\end{equation*}
$$

The moment of inertia of the shaft,

$$
\begin{equation*}
\mathrm{I}=\frac{\pi}{64} \mathrm{~d}^{4}=\frac{\pi}{64}(0.03)^{4}=3.974 \times 10^{-8} \mathrm{~m}^{4} \tag{ii}
\end{equation*}
$$

Substitute values in equation (i), we get

$$
\begin{aligned}
\delta & =\frac{10 \times 9.81 \times(0.5)^{3}}{48 \times 2.1 \times 10^{11} \times 3.974 \times 10^{-8}} \\
& =\frac{12.2625}{400.58 \times 10^{3}}=3.06 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

If ω_{c} is the critical or whirling speed in r.p.s. then,

$$
\begin{aligned}
\omega_{\mathrm{c}} & =\sqrt{\frac{\mathrm{g}}{\delta}} \quad \Rightarrow 2 \pi \mathrm{f}_{\mathrm{c}}=\sqrt{\frac{\mathrm{g}}{\delta}} \\
\mathrm{f}_{\mathrm{c}} & =\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~g}}{\delta}}=\frac{1}{2 \times 3.14} \sqrt{\frac{9.81}{3.06 \times 10^{-5}}} \\
& =\frac{1}{6.28} \sqrt{\frac{9.81}{30.6 \times 10^{-6}}}=90.16 \mathrm{~Hz} \simeq 90 \mathrm{~Hz}
\end{aligned}
$$

sol 4.70 Option (C) is correct.
Given, the circular disc rotates about the point O at a uniform angular velocity ω.

Let v_{A} is the linear velocity of point $A \& v_{B}$ is the linear velocity of point B. $\mathrm{V}_{\mathrm{A}}=\omega \mathrm{r}_{\mathrm{A}}$ and $\mathrm{V}_{\mathrm{B}}=\omega \mathrm{r}_{\mathrm{B}}$.
Velocity of point B with respect to point A is given by,

$$
v_{B A}=v_{B}-v_{A}=\omega r_{B}-\omega r_{A}=\omega\left(r_{B}-r_{A}\right)
$$

From the given figure,

So,

$$
\begin{aligned}
r_{B} & >r_{A} \\
\omega r_{B} & >\omega r_{A} \\
v_{B} & >v_{A}
\end{aligned}
$$

Therefore, relative velocity $\omega\left(r_{B}-r_{A}\right)$ in the direction of point B.
sol 4.71 Option (D) is correct.
A cceleration of point B with respect to point A is given by,

$$
\begin{equation*}
a_{B A}=\omega V_{B A}=\omega \times \omega\left(r_{B}-r_{A}\right)=\omega^{2}\left(r_{B}-r_{A}\right) \tag{i}
\end{equation*}
$$

This equation (i) gives the value of centripetal acceleration which acts always towards the centre of rotation.
So, $a_{B A}$ acts towards to 0 i.e. its direction from Z to 0
sol 4.72 Option (A) is correct.

Given $\mathrm{m}=10 \mathrm{~kg}, \mathrm{k}=2 \mathrm{kN} / \mathrm{m}, \mathrm{c}=500 \mathrm{Ns} / \mathrm{m}, \mathrm{k}_{\theta}=1 \mathrm{kN} / \mathrm{m} / \mathrm{rad}$
$\mathrm{I}_{1}=0.5 \mathrm{~m}, \mathrm{I}_{2}=0.4 \mathrm{~m}$
Let, the rigid slender bar twist downward at the angle θ. Now spring \& damper exert a force $\mathrm{kx}_{1} \& \mathrm{Cx}_{2}$ on the rigid bar in the upward direction.
From similar triangle OAB \& OCD,

$$
\tan \theta=\frac{\mathrm{x}_{2}}{0.4}=\frac{\mathrm{x}_{1}}{0.5}
$$

Let θ be very very small, then $\tan \theta \simeq \theta$,

$$
\begin{align*}
\theta & =\frac{x_{2}}{0.4}=\frac{x_{1}}{0.5} \\
x_{2} & =0.4 \theta \text { or } x_{1}=0.5 \theta \tag{i}
\end{align*}
$$

On differentiating the above equation, we get

$$
\begin{equation*}
\dot{x}_{2}=0.4 \dot{\theta} \text { or } \dot{x}_{1}=0.5 \dot{\theta} \tag{ii}
\end{equation*}
$$

We know, the moment of inertia of the bar hinged at the one end is,

$$
\mathrm{I}=\frac{\left.\mathrm{m}\right|_{1} ^{2}}{3}=\frac{10 \times(0.5)^{2}}{3}=0.833 \mathrm{~kg}-\mathrm{m}^{2}
$$

As no external force acting on the system. So, governing equation of motion from the Newton's law of motion is,

$$
\begin{align*}
\mid \ddot{\theta}+c \dot{x}_{2} I_{2}+\mathrm{kx}_{1} I_{1}+\mathrm{k}_{\theta} \theta & =0 \\
0.833 \ddot{\theta}+500 \times 0.4 \dot{\mathrm{x}}_{2}+2000 \times(0.5) \mathrm{x}_{1}+1000 \theta & =0 \\
0.833 \ddot{\theta}+200 \dot{x}_{2}+1000 \mathrm{x}_{1}+1000 \theta & =0 \tag{iii}\\
0.833 \ddot{\theta}+200 \times 0.4 \dot{\theta}+1000 \times 0.5 \theta+1000 \theta & =0 \\
0.833 \ddot{\theta}+80 \dot{\theta}+1500 \theta & =0 \tag{iv}
\end{align*}
$$

On comparing equation (iv) with its general equation,

$$
\mathrm{I} \ddot{\theta}+\mathrm{c} \dot{\theta}+\mathrm{k} \theta=0
$$

We get, $\mathrm{I}=0.833, \mathrm{c}=80, \mathrm{k}=1500$
So, undamped natural frequency of oscillations is given by

$$
\omega_{\mathrm{n}}=\sqrt{\frac{k}{T}}=\sqrt{\frac{1500}{0.833}}=\sqrt{1800.72}=42.43 \mathrm{rad} / \mathrm{sec}
$$

sol 4.73 Option (C) is correct.
From the previous part of the question
Damping coefficient, $\quad \mathrm{c}=80 \mathrm{Nms} / \mathrm{rad}$
soL 4.74 Option (C) is correct.
From the K utzbach criterion the degree of freedom,

$$
n=3(I-1)-2 j-h
$$

For single degree of Freedom ($n=1$),

$$
\begin{align*}
1 & =3(I-1)-2 j-h \\
31-2 j-4-h & =0 \tag{i}
\end{align*}
$$

The simplest possible mechanisms of single degree of freedom is four-bar mechanism. For this mechanism $j=4, h=0$
From equation (i), we have

$$
31-2 \times 4-4-0=0 \Rightarrow 1=4
$$

sol 4.75 Option (B) is correct.
When a point on one link is sliding along another rotating link, such as in quick return motion mechanism, then the coriolis component of the acceleration must be calculated. Quick return motion mechanism is used in shaping machines, slotting machines and in rotary internal combustion engines.
sol 4.76 Option (C) is correct.
The deflection of a cantilever beam loaded at the free end is given by,

$$
\delta=\frac{\mathrm{M} \mathrm{gL}^{3}}{3 \mathrm{E} I}
$$

A nd natural frequency,

$$
\begin{equation*}
\omega_{\mathrm{n}}=\sqrt{\frac{g}{\delta}}=\sqrt{\frac{3 E I}{M L^{3}}} \tag{i}
\end{equation*}
$$

If the length of the cantilever beam is halved, then

$$
\omega_{n}^{\prime}=\sqrt{\frac{3 E I}{M \times\left(\frac{L}{2}\right)^{3}}}=\sqrt{8\left(\frac{3 E I}{M L^{3}}\right)}
$$

From equation (i)

$$
\omega_{\mathrm{n}}^{\prime}=\sqrt{8} \omega_{\mathrm{n}}
$$

So, natural frequency is increased by a factor $\sqrt{8}$.

SOL 4.77 Option (C) is correct.
For a spring loaded roller follower driven with a disc cam, the pressure angle should be large during rise as well as during return for ease of transmitting motion.
If pressure angle is large, then side thrust will be minimum. Pressure angles of up to about 30° to 35° are about the largest that can be used without causing difficulties.

SOL 4.78 Option (B) is correct.
Let initial length of the spring $=L$
Potential energy at A,

$$
P E_{A}=m g(L-\delta)
$$

and at $B, \quad P E_{B}=m g[L-(\delta+x)]+\frac{1}{2} k x^{2}$
So, change in potential energy from position A to position B is

$$
\begin{aligned}
\Delta P E_{A B} & =P E_{B}-P E_{A} \\
& =m g L-m g \delta-m g x+\frac{1}{2} k x^{2}-m g L+m g \delta \\
\Delta P E_{A B} & =\frac{1}{2} k x^{2}-m g x
\end{aligned}
$$

SOL 4.79 Option (A) is correct.
The mean speed of the engine is controlled by the governor. If load increases then fluid supply increases by the governor and vice-versa.
Flywheel stores the extra energy and delivers it when needed. So, Flywheel reduces speed fluctuations.

Flywheel reduce speed fluctuations during a cycle for a constant load, but Flywheel does not control the mean speed $\left(N=\frac{N_{1}+N_{2}}{2}\right)$ of the engine.

Option (B) is correct.
First make the table for the motion of the gears.
Take CW $=+$ ve, CCW $=-$ ve

S. No.	Condition of M otion	Arm	Sun Gear N_{S}	Planet Gear N_{P}	Ring Gear N_{G}
(i)	Arm is fixed \& sun gear rotates +1 rpm (CW)	0	+1	$-\frac{Z_{S}}{Z_{P}}$	$-\frac{Z_{S}}{Z_{R}}$
(ii)	Sun Gear rotates through $+x$ rpm (CW)	0	$+x$	$-x \frac{Z_{S}}{Z_{P}}$	$-x \frac{Z_{S}}{Z_{R}}$
(iii)	Add $+y$ revolution to all elements	$+y$	$+y$	$+y$	$+y$
(iv)	Total M otion	$+y$	$x+y$	$y-x \frac{Z_{S}}{Z_{P}}$	$y-x \frac{Z_{S}}{Z_{R}}$

Let Teethes and speed of the sum gear, planet gear and ring gear is represented by Z_{G}, Z_{P}, Z_{R} and N_{G}, N_{P}, N_{R} respectively.
Given sun gear is driven clockwise at 100 rpm . So, From the table

$$
\begin{equation*}
x+y=100 \tag{i}
\end{equation*}
$$

Ring gear is held stationary. From the table

$$
\begin{align*}
y-x \frac{Z_{S}}{Z_{p}} & =0 \\
y & =x \times \frac{20}{80} \\
y & =\frac{x}{4} \quad \Rightarrow x=4 y \tag{ii}
\end{align*}
$$

From equation on (i) and (ii)

$$
\begin{aligned}
4 y+y & =100 \\
y & =20 \mathrm{rpm}
\end{aligned}
$$

SOL 4.81 Option (D) is correct.
Give a small displacement θ to the assembly. So assembly oscillates about its mean position.

From this a restoring torque is acts along the line of oscillation.
Net restoring torque,

$$
\begin{aligned}
& \mathrm{T}=\mathrm{mg} \sin (\alpha+\theta) \times \mathrm{L}-\mathrm{mg} \sin (\alpha-\theta) \times \mathrm{L} \\
& \mathrm{~T}=\mathrm{mgL}[\sin \alpha \cos \theta+\cos \alpha \sin \theta-\sin \alpha \cos \theta+\cos \alpha \sin \theta] \\
& \mathrm{T}=2 \mathrm{mgL} \cos \alpha \sin \theta
\end{aligned}
$$

For very small deflection θ,

$$
\begin{aligned}
\sin \theta & \cong \theta \\
\mathrm{T} & =2 \mathrm{mgL} \theta \cos \alpha
\end{aligned}
$$

Now from newton's law,

$$
\begin{aligned}
\mathrm{I} \ddot{\theta}+\mathrm{T} & =0 \\
\mathrm{I} \ddot{\theta}+2 \mathrm{mgL} \theta \cos \alpha & =0
\end{aligned}
$$

$$
2 \mathrm{~mL}^{2} \frac{\mathrm{~d}^{2} \theta}{\mathrm{dt}^{2}}+(2 \mathrm{mgL} \cos \alpha) \theta=0 \quad \mathrm{I}=\mathrm{mL}^{2}+\mathrm{mL}^{2}
$$

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g \cos \alpha}{L} \theta=0
$$

On comparing with $\ddot{\theta}+\omega_{n}^{2} \theta=0$, we get

$$
\begin{aligned}
& \omega_{\mathrm{n}}^{2}=\frac{\mathrm{g} \cos \alpha}{\mathrm{~L}} \\
& \omega_{\mathrm{n}}=\sqrt{\frac{g \cos \alpha}{\mathrm{~L}}}
\end{aligned}
$$

CHAPTER 5

MACHINE DESIGN

YEAR 2012
TWO MARKS
MCQ 5.1 A fillet welded joint is subjected to transverse loading F as shown in the figure. Both legs of the fillets are of 10 mm size and the weld length is 30 mm . If the allowable shear stress of the weld is 94 MPa , considering the minimum throat area of the weld, the maximum allowable transverse load in kN is

(A) 14.44
(B) 17.92
(C) 19.93
(D) 22.16

MCQ 5.2 A force of 400 N is applied to the brake drum of 0.5 m diameter in a bandbrake system as shown in the figure, where the wrapping angle is 180°. If the coefficient of friction between the drum and the band is 0.25 , the braking torque applied, in Nm is

(A) 100.6
(B) 54.4
(C) 22.1
(D) 15.7

MCQ 5.3 A solid circular shaft needs to be designed to transmit a torque of 50 Nm . If
the allowable shear stress of the material is 140 M Pa , assuming a factor of safety of 2 , the minimum allowable design diameter is mm is
(A) 8
(B) 16
(C) 24
(D) 32

YEAR 2011
TWO MARKS
MCQ 5.4 T wo identical ball bearings P and Q are operating at loads 30 kN and 45 kN respectively. The ratio of the life of bearing P to the life of bearing Q is
(A) $\frac{81}{16}$
(B) $\frac{27}{8}$
(C) $\frac{9}{4}$
(D) $\frac{3}{2}$

YEAR 2010
TWO MARKS
MCQ 5.5 A band brake having band-width of 80 mm , drum diameter of 250 mm , coefficient of friction of 0.25 and angle of wrap of 270 degrees is required to exert a friction torque of 1000 Nm . The maximum tension (in kN) developed in the band is
(A) 1.88
(B) 3.56
(C) 6.12
(D) 11.56

MCQ 5.6 A bracket (shown in figure) is rigidly mounted on wall using four rivets. Each rivet is 6 mm in diameter and has an effective length of 12 mm .

Direct shear stress (in M Pa) in the most heavily loaded rivet is
(A) 4.4
(B) 8.8
(C) 17.6
(D) 35.2

MCQ 5.7 A lightly loaded full journal bearing has journal diameter of 50 mm , bush bore of 50.05 mm and bush length of 20 mm . If rotational speed of journal is 1200 rpm and average viscosity of liquid lubricant is 0.03 Pa s , the power loss (in W) will be
(A) 37
(B) 74
(C) 118
(D) 237

YEAR 2009 TWO MARKS

MCQ 5.8 A forged steel link with uniform diameter of 30 mm at the centre is subjected to an axial force that varies from 40 kN in compression to 160 kN in tension. The tensile $\left(\mathrm{S}_{u}\right)$, yield $\left(\mathrm{S}_{\mathrm{y}}\right)$ and corrected endurance $\left(\mathrm{S}_{\mathrm{e}}\right)$ strengths of the steel material are $600 \mathrm{M} \mathrm{Pa}, 420 \mathrm{MPa}$ and 240 M Pa respectively. The factor of safety against fatigue endurance as per Soderberg's criterion is
(A) 1.26
(B) 1.37
(C) 1.45
(D) 2.00

- Common Data For Q. 9 and Q. 10

A 20° full depth involute spur pinion of 4 mm module and 21 teeth is to transmit 15 kW at 960 rpm . Its face width is 25 mm .

MCQ 5.9 The tangential force transmitted (in N) is
(A) 3552
(B) 2611
(C) 1776
(D) 1305

MCQ 5.10 Given that the tooth geometry factor is 0.32 and the combined effect of dynamic load and allied factors intensifying the stress is 1.5; the minimum allowable stress (in MPa) for the gear material is
(A) 242.0
(B) 166.5
(C) 121.0
(D) 74.0

YEAR 2008
TWO MARKS
MCQ 5.11 A journal bearing has a shaft diameter of 40 mm and a length of 40 mm . The shaft is rotating at $20 \mathrm{rad} / \mathrm{s}$ and the viscosity of the lubricant is 20 mPa as . The clearance is 0.020 mm . The loss of torque due to the viscosity of the lubricant is approximately.
(A) $0.040 \mathrm{~N}-\mathrm{m}$
(B) $0.252 \mathrm{~N}-\mathrm{m}$
(C) $0.400 \mathrm{~N}-\mathrm{m}$
(D) $0.652 \mathrm{~N}-\mathrm{m}$

MCQ 5.12 A clutch has outer and inner diameters 100 mm and 40 mm respectively. Assuming a uniform pressure of 2 MPa and coefficient of friction of liner material is 0.4 , the torque carrying capacity of the clutch is
(A) $148 \mathrm{~N}-\mathrm{m}$
(B) $196 \mathrm{~N}-\mathrm{m}$
(C) $372 \mathrm{~N}-\mathrm{m}$
(D) $490 \mathrm{~N}-\mathrm{m}$

MCQ 5.13 A spur gear has a module of 3 mm , number of teeth 16 , a face width of 36 mm and a pressure angle of 20°. It is transmitting a power of 3 kW at $20 \mathrm{rev} / \mathrm{s}$. Taking a velocity factor of 1.5 and a form factor of 0.3 , the stress in the gear tooth is about.
(A) 32 MPa
(B) 46 MPa
(C) 58 MPa
(D) 70 MPa

MCQ 5.14 One tooth of a gear having 4 module and 32 teeth is shown in the figure. Assume that the gear tooth and the corresponding tooth space make equal intercepts on the pitch circumference. The dimensions 'a' and ' b ', respectively, are closest to

(A) $6.08 \mathrm{~mm}, 4 \mathrm{~mm}$
(B) $6.48 \mathrm{~mm}, 4.2 \mathrm{~mm}$
(C) $6.28 \mathrm{~mm}, 4.3 \mathrm{~mm}$
(D) $6.28 \mathrm{~mm}, 4.1 \mathrm{~mm}$

MCQ 5.15 M atch the type of gears with their most appropriate description.

Type of gear

P. Helical
Q. Spiral Bevel
C. Hypoid
S. Rack and pinion

Description

1. Axes non parallel and non intersecting
2. Axes parallel and teeth are inclined to the axis
3. A xes parallel and teeth are parallel to the axis
4. Axes are perpendicular and intersecting, and teeth are inclined to the axis.
5. A xes are perpendicular and used for large speed reduction
6. Axes parallel and one of the gears has infinite radius
(A) P-2, Q-4, R-1, S-6
(B) P-1, Q-4, R-5, S-6
(C) $\mathrm{P}-2, \mathrm{Q}-6, \mathrm{R}-4, \mathrm{~S}-2$
(D) P-6, Q-3, R-1, S-5

- Common Data For Q. 16 and Q. 17

A steel bar of $10 \times 50 \mathrm{~mm}$ is cantilevered with two M 12 bolts (P and Q) to support a static load of 4 kN as shown in the figure.

MCQ 5.16 The primary and secondary shear loads on bolt P, respectively, are
(A) $2 \mathrm{kN}, 20 \mathrm{kN}$
(B) $20 \mathrm{kN}, 2 \mathrm{kN}$
(C) $20 \mathrm{kN}, 0 \mathrm{kN}$
(D) $0 \mathrm{kN}, 20 \mathrm{kN}$

MCQ 5.17 The resultant shear stress on bolt P is closest to
(A) 132 MPa
(B) 159 MPa
(C) 178 MPa
(D) 195 MPa

YEAR 2007

ONE MARK

MCQ 5.18 A ball bearing operating at a load F has 8000 hours of life. The life of the bearing, in hours, when the load is doubled to 2 F is
(A) 8000
(B) 6000
(C) 4000
(D) 1000

MCQ 5.19 A thin spherical pressure vessel of 200 mm diameter and 1 mm thickness is subjected to an internal pressure varying form 4 to 8 MPa . Assume that the yield, ultimate and endurance strength of material are 600, 800 and 400 M Pa respectively. The factor of safety as per Goodman's relation is
(A) 2.0
(B) 1.6
(C) 1.4
(D) 1.2

MCQ 5.20 A natural feed journal bearing of diameter 50 mm and length 50 mm operating at 20 revolution/ second carries a load of 2 kN . The lubricant used has a viscosity of 20 mP as. The radial clearance is $50 \mu \mathrm{~m}$. The Sommerfeld number for the bearing is
(A) 0.062
(B) 0.125
(C) 0.250
(D) 0.785

MCQ 5.21 A bolted joint is shown below. The maximum shear stress, in MPa in the bolts at A and B, respectively are

(A) 242.6, 42.5
(B) 42.5, 242.6
(C) $42.5,42.5$
(D) $18.75,343.64$

MCQ 5.22 A block-brake shown below has a face width of 300 mm and a mean coefficient of friction of 0.25 . For an activating force of 400 N , the braking torque in Nm is

400 N

(A) 30
(B) 40
(C) 45
(D) 60

MCQ 5.23 The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is subjected to a compressive force of 10 kN due to the internal pressure. The end conditions for the rod may be assumed as guided at the piston end and hinged at the other end. The Young's modulus is 200 GPa . The factor of safety for the piston rod is
(A) 0.68
(B) 2.75
(C) 5.62
(D) 11.0

- Common Data For Q. 24 and Q. 26

A gear set has a pinion with 20 teeth and a gear with 40 teeth. The pinion runs at $30 \mathrm{rev} / \mathrm{s}$ and transmits a power of 20 kW . The teeth are on the 20° full-depth system and have a module of 5 mm . The length of the line of action is 19 mm .

MCQ 5.24 The center distance for the above gear set in mm is
(A) 140
(B) 150
(C) 160
(D) 170

MCQ 5.25 The contact ratio of the contacting tooth is
(A) 1.21
(B) 1.25
(C) 1.29
(D) 1.33

MCQ 5.26 The resultant force on the contacting gear tooth in N is
(A) 77.23
(B) 212.20
(C) 2258.1
(D) 289.43

YEAR 2006

TWO MARKS
MCQ 5.27 A disc clutch is required to transmit 5 kW at 2000 rpm . The disk has a friction lining with coefficient of friction equal to 0.25 . B ore radius of friction lining is equal to 25 mm . A ssume uniform contact pressure of 1 MPa . The value of outside radius of the friction lining is
(A) 39.4 mm
(B) 49.5 mm
(C) 97.9 mm
(D) 142.9 mm

MCQ 5.28 T wenty degree full depth involute profiled 19 tooth pinion and 37 tooth gear are in mesh. If the module is 5 mm , the centre distance between the gear pair will be
(A) 140 mm
(B) 150 mm
(C) 280 mm
(D) 300 mm

MCQ 5.29 A cylindrical shaft is subjected to an alternating stress of 100 MPa . Fatigue strength to sustain 1000 cycles is 490 MPa . If the corrected endurance strength is 70 M Pa , estimated shaft life will be
(A) 1071 cycles
(B) 15000 cycles
(C) 281914 cycles
(D) 928643 cycles

MCQ 5.30 A 60 mm long and 6 mm thick fillet weld carries a steady load of 15 kN along the weld. The shear strength of the weld material is equal to 200 MPa . The factor of safety is
(A) 2.4
(B) 3.4
(C) 4.8
(D) 6.8

YEAR 2005 ONE MARK

MCQ 5.31 Which one of the following is criterion in the design of hydrodynamic journal bearings ?
(A) Sommerfeld number
(B) R ating life
(C) Specific dynamic capacity
(D) Rotation factor

YEAR 2005
TWO MARKS

- Common Data For Q. 32 and Q. 33

A band brake consists of a lever attached to one end of the band. The other end of the band is fixed to the ground. The wheel has a radius of 200 mm and the wrap angle of the band is 270°. The braking force applied to the lever is limited to 100 N and the coefficient of friction between the band and the wheel is 0.5. No other information is given.

MCQ 5.32 The maximum tension that can be generated in the band during braking is
(A) 1200 N
(B) 2110 N
(C) 3224 N
(D) 4420 N

MCQ 5.33 The maximum wheel torque that can be completely braked is
(A) 200 Nm
(B) 382 Nm
(C) 604 Nm
(D) 844 Nm

YEAR 2004

ONE MARK
MCQ 5.34 T wo mating spur gears have 40 and 120 teeth respectively. The pinion rotates at 1200 rpm and transmits a torque of 20 Nm . The torque transmitted by the gear is
(A) 6.6 Nm
(B) 20 Nm
(C) 40 Nm
(D) 60 Nm

MCQ 5.35 In terms of theoretical stress concentration factor $\left(\mathrm{K}_{\mathrm{t}}\right)$ and fatigue stress concentration factor (K_{f}), the notch sensitivity ' q ' is expressed as
(A) $\frac{\left(\mathrm{K}_{\mathrm{f}}-1\right)}{\left(\mathrm{K}_{\mathrm{t}}-1\right)}$
(B) $\frac{\left(K_{f}-1\right)}{\left(K_{t}+1\right)}$
(C) $\frac{\left(K_{t}-1\right)}{\left(K_{f}-1\right)}$
(D) $\frac{\left(K_{f}+1\right)}{\left(K_{t}+1\right)}$

MCQ 5.36 The S-N curve for steel becomes asymptotic nearly at
(A) 10^{3} cycles
(B) 10^{4} cycles
(C) 10^{6} cycles
(D) 10^{9} cycles

YEAR 2004
TWO MARKS
MCQ 5.37 In a bolted joint two members are connected with an axial tightening force of 2200 N . If the bolt used has metric threads of 4 mm pitch, the torque required for achieving the tightening force is

(A) 0.7 Nm
(B) 1.0 Nm
(C) 1.4 Nm
(D) 2.8 Nm

MCQ 5.38 M atch the following

Type of gears
P. Bevel gears
Q. Worm gears
R. Herringbone gears
S. Hypoid gears

A rrangement of shafts

1. Non-parallel off-set shafts
2. Non-parallel intersecting shafts
3. Non-parallel, non-intersecting shafts
4. Parallel shafts
(A) P-4 $\mathrm{Q}-2 \quad \mathrm{R}-1 \quad \mathrm{~S}-3$
(B) $\quad \mathrm{P}-2 \quad \mathrm{Q}-3 \quad \mathrm{R}-4 \quad \mathrm{~S}-1$
(C) $\quad \mathrm{P}-3 \quad \mathrm{Q}-2 \quad \mathrm{R}-1 \quad \mathrm{~S}-4$
(D) P-1 $\quad \mathrm{Q}-3 \quad \mathrm{R}-4 \quad \mathrm{~S}-2$

YEAR 2003
ONE MARK
MCQ 5.39 A wire rope is designated as 6×19 standard hoisting. The numbers 6×19 represent
(A) diameter in millimeter \times length in meter
(B) diameter in centimeter \times length in meter
(C) number of strands \times numbers of wires in each strand
(D) number of wires in each strand \times number of strands

YEAR 2003

TWO MARKS
MCQ 5.40 Square key of side "d/4" each and length ' l ' is used to transmit torque "T" from the shaft of diameter " d " to the hub of a pulley. A ssuming the length of the key to be equal to the thickness of pulley, the average shear stress developed in the key is given by
(A) $\frac{4 \mathrm{~T}}{1 \mathrm{~d}}$
(B) $\frac{16 \mathrm{~T}}{1 \mathrm{~d}^{2}}$
(C) $\frac{8 \mathrm{~T}}{1 \mathrm{~d}^{2}}$
(D) $\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}$

MCQ 5.41 In a band brake the ratio of tight side band tension to the tension on the slack side is 3 . If the angle of overlap of band on the drum is 180°, the coefficient of friction required between drum and the band is
(A) 0.20
(B) 0.25
(C) 0.30
(D) 0.35

- Common Data For Q. 42 and Q. 43

The overall gear ratio in a 2 stage speed reduction gear box (with all spur gears) is 12. The input and output shafts of the gear box are collinear. The counter shaft which is parallel to the input and output shafts has a gear (Z_{2} teeth) and pinion ($Z_{3}=15$ teeth) to mesh with pinion ($Z_{1}=16$ teeth) on the input shaft and gear (Z_{4} teeth) on the output shaft respectively. It was decided to use a gear ratio of 4 with 3 module in the first stage and 4 module in the second stage.

MCQ $5.42 \quad Z_{2}$ and Z_{4} are
(A) 64 and 45
(B) 45 and 64
(C) 48 and 60
(D) 60 and 48

MCQ 5.43 The centre distance in the second stage is
(A) 90 mm
(B) 120 mm
(C) 160 mm
(D) 240 mm

YEAR 2002
ONE MARK
MCQ 5.44 The minimum number of teeth on the pinion to operate without interference in standard full height involute teeth gear mechanism with 20° pressure angle is
(A) 14
(B) 12
(C) 18
(D) 32

YEAR 2002
MCQ 5.45 The coupling used to connect two shafts with large angular misalignment is
(A) a flange coupling
(B) an Oldham's coupling
(C) a flexible bush coupling
(D) a Hooke's joint

MCQ 5.46 A static load is mounted at the centre of a shaft rotating at uniform angular velocity. This shaft will be designed for
(A) the maximum compressive stress (static)
(B) the maximum tensile (static)
(C) the maximum bending moment (static)
(D) fatigue loading

MCQ 5.47 Large speed reductions (greater than 20) in one stage of a gear train are possible through
(A) spur gearing
(B) worm gearing
(C) bevel gearing
(D) helical gearing

MCQ 5.48 If the wire diameter of a closed coil helical spring subjected to compressive load is increased from 1 cm to 2 cm , other parameters remaining same, the deflection will decrease by a factor of
(A) 16
(B) 8
(C) 4
(D) 2

YEAR 2001
ONE MARK
MCQ 5.49 Bars $A B$ and $B C$, each of negligible mass, support load P as shown in the figure. In this arrangement,

(A) bar $A B$ is subjected to bending but bar $B C$ is not subjected to bending.
(B) bar $A B$ is not subjected to bending but bar $B C$ is subjected to bending.
(C) neither bar $A B$ nor bar $B C$ is subjected to bending.
(D) both bars $A B$ and $B C$ are subjected to bending.

YEAR 2001
TWO MARKS
MCQ 5.50 Two helical tensile springs of the same material and also having identical mean coil diameter and weight, have wire diameters d and $d / 2$. The ratio of their stiffness is
(A) 1
(B) 4
(C) 64
(D) 128

SOLUTION

sol 5.1 Option (C) is correct.
Given: Width of fillets $\mathrm{S}=10 \mathrm{~mm}, \mathrm{I}=30 \mathrm{~mm}, \tau=94 \mathrm{MPa}$

The shear strength of the joint for single parallel fillet weld is,

$$
\begin{aligned}
\mathrm{P} & =\text { Throat A rea } \times \text { Allowable stress } \\
& =\mathrm{t} \times \mathrm{I} \times \tau \\
\mathrm{t} & =\mathrm{s} \sin 45^{\circ}=0.707 \mathrm{~s} \\
\mathrm{P} & =0.707 \times \mathrm{s} \times \mathrm{I} \times \tau \\
& =0.707 \times(0.01) \times(0.03) \times\left(94 \times 10^{6}\right) \\
& =19937 \mathrm{~N} \text { or } 19.93 \mathrm{kN}
\end{aligned}
$$

From figure
sol 5.2 Option (B) is correct.
Given: $\quad \mathrm{T}_{1}=400 \mathrm{~N}, \mu=0.25, \theta=180^{\circ}=180^{\circ} \times \frac{\pi}{180^{\circ}}=\pi \mathrm{rad}$.
$\mathrm{D}=0.5 \mathrm{~m}, \mathrm{r}=\frac{\mathrm{D}}{2}=0.25 \mathrm{~m}$
For the band brake, the limiting ratio of the tension is given by the relation,

$$
\begin{aligned}
\mathrm{T}_{1} & =\mathrm{e}^{\mu \theta} \\
\frac{400}{\mathrm{~T}_{2}} & =\mathrm{e}^{0.25 \times \pi}=2.19 \\
\mathrm{~T}_{2} & =\frac{400}{2.19}=182.68 \mathrm{~N}
\end{aligned}
$$

For Band-drum brake, Braking Torque is

$$
\begin{aligned}
\mathrm{T}_{\mathrm{B}} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \times \mathrm{r} \\
& =(400-182.68) \times 0.25=54.33 \mathrm{Nm} \cong 54.4 \mathrm{Nm}
\end{aligned}
$$

sol 5.3 Option (B) is correct.

$$
\text { F.O.S }=\frac{\text { Allowable shear stress }}{\text { Design shear stress }}
$$

Design shear stress for solid circular shaft

$$
\tau=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}=\frac{16 \times 50 \times 10^{3}}{\pi \mathrm{~d}^{3}} \quad \text { From } \frac{\mathrm{T}}{\mathrm{~J}}=\frac{\tau}{\mathrm{r}}
$$

Therefore

$$
\begin{aligned}
\mathrm{F.O.S} & =\frac{140 \times \pi \mathrm{d}^{3}}{16 \times 50 \times 10^{3}} \\
2 & =\frac{140 \times \pi \mathrm{d}^{3}}{16 \times 50 \times 10^{3}} \\
\mathrm{~d}^{3} & =\frac{2 \times 16 \times 50 \times 10^{3}}{140 \times \pi} \\
\mathrm{d} & =15.38 \mathrm{~mm} \cong 16 \mathrm{~mm}
\end{aligned}
$$

or,
soL 5.4 Option (B) is correct.
Given : $\mathrm{W}_{\mathrm{P}}=30 \mathrm{kN}, \mathrm{W}_{\mathrm{Q}}=45 \mathrm{kN}$
Life of bearing,

$$
\begin{aligned}
L & =\left(\frac{C}{W}\right)^{k} \times 10^{6} \text { revolutions } \\
C & =\text { B asic dynamic load rating }=\text { Constant }
\end{aligned}
$$

For ball bearing, $k=3$
So,

$$
\mathrm{L}=\left(\frac{\mathrm{C}}{\mathrm{~W}}\right)^{3} \times 10^{6} \text { revolutions }
$$

These are the identical bearings. So for the Life of P and Q.

$$
\left(\frac{L_{p}}{L_{Q}}\right)=\left(\frac{W_{Q}}{W_{p}}\right)^{3}=\left(\frac{45}{30}\right)^{3}=\left(\frac{3}{2}\right)^{3}=\frac{27}{8}
$$

SOL 5.5 Option (D) is correct.
Given : $\mathrm{b}=80 \mathrm{~mm}, \mathrm{~d}=250 \mathrm{~mm}, \mu=0.25, \theta=270^{\circ}, \mathrm{T}_{\mathrm{B}}=1000 \mathrm{~N}-\mathrm{m}$
Let,
$\mathrm{T}_{1} \rightarrow$ Tension in the tight side of the band (M aximum
Tension)
$\mathrm{T}_{2} \rightarrow$ Tension in the slack side of the band (M inimum Tension)
Braking torque on the drum,

$$
\begin{align*}
\mathrm{T}_{\mathrm{B}} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{r} \\
\mathrm{~T}_{1}-\mathrm{T}_{2} & =\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{r}}=\frac{1000}{0.125}=8000 \mathrm{~N} \tag{i}
\end{align*}
$$

We know that limiting ratio of the tension is given by,

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{e}^{\mu \theta}=\mathrm{e}^{\left(0.25 \times \frac{\pi}{180} \times 270\right)}=3.246 \\
& \mathrm{~T}_{2}=\frac{\mathrm{T}_{1}}{3.246}
\end{aligned}
$$

Substitute T_{2} in equation (i), we get

$$
\begin{aligned}
\mathrm{T}_{1}-\frac{\mathrm{T}_{1}}{3.246}=8000 & \Rightarrow 3.246 \mathrm{~T}_{1}-\mathrm{T}_{1}=25968 \\
2.246 \mathrm{~T}_{1}=25968 & \Rightarrow \mathrm{~T}_{1}=\frac{25968}{2.246}=11.56 \mathrm{kN}
\end{aligned}
$$

sol 5.6 Option (B) is correct.
Given : $d=6 \mathrm{~mm}, \mathrm{I}=12 \mathrm{~mm}, \mathrm{P}=1000 \mathrm{~N}$
E ach rivets have same diameter, So equal Load is carried by each rivet.
Primary or direct force on each rivet,

$$
F=\frac{P}{4}=\frac{1000}{4}=250 \mathrm{~N}
$$

Shear area of each rivet is,

$$
\mathrm{A}=\frac{\pi}{4}\left(6 \times 10^{-3}\right)^{2}=28.26 \times 10^{-6} \mathrm{~mm}^{2}
$$

Direct shear stress on each rivet,

$$
\tau=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{250}{28.26 \times 10^{-6}}=8.84 \times 10^{6} \simeq 8.8 \mathrm{M} \mathrm{~Pa}
$$

sol 5.7 Option (A) is correct.
Given : $\mathrm{d}=50 \mathrm{~mm}, \mathrm{D}=50.05 \mathrm{~mm}, \mathrm{I}=20 \mathrm{~mm}, \mathrm{~N}=1200 \mathrm{rpm}, \mu=0.03 \mathrm{~Pa} \mathrm{~s}$
Tangential velocity of shaft,

$$
\mathrm{u}=\frac{\pi \mathrm{dN}}{60}=\frac{3.14 \times 50 \times 10^{-3} \times 1200}{60}=3.14 \mathrm{~m} / \mathrm{sec}
$$

And R adial clearance, $\quad y=\frac{D-d}{2}=\frac{50.05-50}{2}=0.025 \mathrm{~mm}$
Shear stress from the Newton's law of viscosity,

$$
\tau=\mu \times \frac{\mathrm{u}}{\mathrm{y}}=0.03 \times \frac{3.14}{0.025 \times 10^{-3}}=3768 \mathrm{~N} / \mathrm{m}^{2}
$$

Shear force on the shaft,

$$
\begin{aligned}
\mathrm{F} & =\tau \times \mathrm{A}=3768 \times(\pi \times \mathrm{d} \times \mathrm{I}) \\
& =3768 \times 3.14 \times 50 \times 10^{-3} \times 20 \times 10^{-3}=11.83 \mathrm{~N}
\end{aligned}
$$

Torque, $\quad T=F \times \frac{d}{2}=11.83 \times \frac{50}{2} \times 10^{-3}=0.2957 \mathrm{~N}-\mathrm{m}$
We know that power loss,

$$
\begin{gathered}
P=\frac{2 \pi N T}{60}=\frac{2 \times 3.14 \times 1200 \times 0.2957}{60} \\
=37.13 \mathrm{~W} \simeq 37 \mathrm{~W}
\end{gathered}
$$

sol 5.8 Option (A) is correct.
Given: S_{u} or $\sigma_{\mathrm{u}}=600 \mathrm{MPa}, \mathrm{S}_{\mathrm{y}}$ or $\sigma_{\mathrm{y}}=420 \mathrm{MPa}, \mathrm{S}_{\mathrm{e}}$ or $\sigma_{\mathrm{e}}=240 \mathrm{MPa}$,
$\mathrm{d}=30 \mathrm{~mm} \mathrm{~F}_{\max }=160 \mathrm{kN}$ (Tension), $\mathrm{F}_{\min }=-40 \mathrm{kN}$ (Compression)
M aximum stress, $\quad \sigma_{\max }=\frac{\mathrm{F}_{\max }}{\mathrm{A}}=\frac{160 \times 10^{3}}{\frac{\pi}{4}(30)^{2}}=226.47 \mathrm{M} \mathrm{Pa}$
M inimum stress, $\quad \sigma_{\text {min }}=\frac{\mathrm{F}_{\text {min }}}{\mathrm{A}}=-\frac{40 \times 10^{3}}{\frac{\pi}{4} \times(30)^{2}}=-56.62 \mathrm{M} \mathrm{Pa}$

M ean stress,

$$
\begin{aligned}
\sigma_{\mathrm{m}} & =\frac{\sigma_{\max }+\sigma_{\min }}{2}=\frac{226.47-56.62}{2}=84.925 \mathrm{MPa} \\
\sigma_{\mathrm{v}} & =\frac{\sigma_{\max }-\sigma_{\min }}{2}=\frac{226.47-(-56.62)}{2} \\
& =141.545 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

Variable stress,

From the Soderberg's criterion,

$$
\begin{aligned}
& \frac{1}{\text { F.S. }}=\frac{\sigma_{\mathrm{m}}}{\sigma_{\mathrm{y}}}+\frac{\sigma_{\mathrm{v}}}{\sigma_{\mathrm{e}}} \\
& \frac{1}{\text { F.S. }}=\frac{84.925}{420}+\frac{141.545}{240}=0.202+0.589=0.791
\end{aligned}
$$

So,

$$
\text { F.S. }=\frac{1}{0.791}=1.26
$$

SOL 5.9 Option (A) is correct.
Given : $\mathrm{m}=4 \mathrm{~mm}, \mathrm{Z}=21, \mathrm{P}=15 \mathrm{~kW}=15 \times 10^{3} \mathrm{~W} \mathrm{~N}=960 \mathrm{rpm}$
$\mathrm{b}=25 \mathrm{~mm}, \phi=20^{\circ}$
Pitch circle diameter, $\quad D=m Z=4 \times 21=84 \mathrm{~mm}$
Tangential Force is given by,

$$
\begin{equation*}
\mathrm{F}_{\mathrm{T}}=\frac{\mathrm{T}}{\mathrm{r}} \tag{i}
\end{equation*}
$$

Power transmitted, $\quad P=\frac{2 \pi N T}{60} \Rightarrow T=\frac{60 P}{2 \pi N}$
Then

$$
\begin{aligned}
\mathrm{F}_{\mathrm{T}} & =\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}} \times \frac{1}{\mathrm{r}} \quad \mathrm{r}=\mathrm{P} \text { itch circle radius } \\
& =\frac{60 \times 15 \times 10^{3}}{2 \times 3.14 \times 960} \times \frac{1}{42 \times 10^{-3}} \\
& =3554.36 \mathrm{~N} \simeq 3552 \mathrm{~N}
\end{aligned}
$$

soL 5.10 Option (B) is correct.
From Lewis equation

$$
\begin{aligned}
& \left.\qquad \begin{array}{rl}
\sigma_{\mathrm{b}} & =\frac{\mathrm{F}_{\mathrm{T}} \mathrm{p}_{\mathrm{d}}}{\mathrm{by}}=\frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{~b} \times \mathrm{y} \times \mathrm{m}} \\
& =\frac{3552}{25 \times 10^{-3} \times 0.32 \times 4 \times 10^{-3}} \\
& \sigma_{\mathrm{b}}=111 \mathrm{MPa} \\
\mathrm{p}_{\mathrm{c}}
\end{array}\right) \quad \mathrm{p}_{\mathrm{d}}=\frac{\pi}{\pi \mathrm{m}}=\frac{1}{\mathrm{~m}}
\end{aligned}
$$

$$
\sigma_{\mathrm{w}}=\sigma_{\mathrm{b}} \times \mathrm{C}_{\mathrm{v}}=111 \times 1.5=166.5 \mathrm{MPa}
$$

sol 5.11 Option (A) is correct.
Given : $\mathrm{d}=40 \mathrm{~mm}, \mathrm{I}=40 \mathrm{~mm}, \omega=20 \mathrm{rad} / \mathrm{sec}$
$\mathrm{Z}(\mu)=20 \mathrm{mPa}-\mathrm{s}=20 \times 10^{-3} \mathrm{~Pa}-\mathrm{s}, \mathrm{c}(\mathrm{y})=0.020 \mathrm{~mm}$

Shear stress, $\quad \tau=\mu \frac{u}{y} \quad$ From the Newton's law of viscosity...(i)

$$
\begin{aligned}
& \mathrm{u}=\mathrm{r} \omega=0.020 \times 20=0.4 \mathrm{~m} / \mathrm{sec} \\
& \tau=\frac{20 \times 10^{-3} \times 0.4}{0.020 \times 10^{-3}}=400 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Shear force is generated due to this shear stress,

$$
\begin{aligned}
\mathrm{F} & =\tau \mathrm{A}=\tau \times \pi \mathrm{dl} \quad \mathrm{~A}=\pi \mathrm{dl}=\mathrm{A} \text { rea of shaft } \\
& =400 \times 3.14 \times 0.040 \times 0.040=2.0096 \mathrm{~N} \\
\text { Loss of torque, } \quad \mathrm{T} & =\mathrm{F} \times \mathrm{r}=2.0096 \times 0.020 \\
& =0.040192 \mathrm{~N}-\mathrm{m} \simeq 0.040 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

sol 5.12 Option (B) is correct.
Given: $d_{1}=100 \mathrm{~mm} \Rightarrow r_{1}=50 \mathrm{~mm}, d_{2}=40 \mathrm{~mm} \Rightarrow r_{1}=20 \mathrm{~mm}$
$\mathrm{p}=2 \mathrm{MPa}=2 \times 10^{6} \mathrm{~Pa}, \mu=0.4$
W hen the pressure is uniformly distributed over the entire area of the friction faces, then total frictional torque acting on the friction surface or on the clutch is given by,

$$
\begin{aligned}
\mathrm{T} & =2 \pi \mu \mathrm{p}\left[\frac{\left(r_{1}\right)^{3}-\left(r_{2}\right)^{3}}{3}\right] \\
& =\frac{2}{3} \times 3.14 \times 0.4 \times 2 \times 10^{6}\left[(50)^{3}-(20)^{3}\right] \times 10^{-9} \\
& =195.39 \mathrm{~N}-\mathrm{m} \simeq 196 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

sol 5.13 Option (B) is correct.
Given : $\mathrm{m}=3 \mathrm{~mm}, \mathrm{Z}=16, \mathrm{~b}=36 \mathrm{~mm}, \phi=20^{\circ}, \mathrm{P}=3 \mathrm{~kW}$
$\mathrm{N}=20 \mathrm{rev} / \mathrm{sec}=20 \times 60 \mathrm{rpm}=1200 \mathrm{rpm}, \mathrm{C}_{\mathrm{v}}=1.5, \mathrm{y}=0.3$
Module, $\quad m=\frac{D}{Z}$

$$
D=m \times Z=3 \times 16=48 \mathrm{~mm}
$$

Power, $\quad P=\frac{2 \pi N T}{60}$

$$
\begin{aligned}
\mathrm{T} & =\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}}=\frac{60 \times 3 \times 10^{3}}{2 \times 3.14 \times 1200} \\
& =23.88 \mathrm{~N}-\mathrm{m}=23.88 \times 10^{3} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

Tangential load, $W_{T}=\frac{T}{R}=\frac{2 T}{D}=\frac{2 \times 23.88 \times 10^{3}}{48}=995 \mathrm{~N}$
From the lewis equation B ending stress (B eam strength of G ear teeth)

$$
\begin{array}{rlr}
\sigma_{\mathrm{b}} & =\frac{\mathrm{W}_{\mathrm{T}} \mathrm{P}_{\mathrm{d}}}{\mathrm{by}}=\frac{\mathrm{W}_{\mathrm{T}}}{\mathrm{bym}} & {\left[\mathrm{P}_{\mathrm{d}}=\frac{\pi}{\mathrm{P}_{\mathrm{c}}}=\frac{\pi}{\pi \mathrm{m}}=\frac{1}{\mathrm{~m}}\right]} \\
& =\frac{995}{36 \times 10^{-3} \times 0.3 \times 3 \times 10^{-3}}
\end{array}
$$

$$
\sigma_{\mathrm{b}}=\frac{995}{3.24 \times 10^{-5}}=30.70 \times 10^{6} \mathrm{~Pa}=30.70 \mathrm{M} \mathrm{~Pa}
$$

Permissible working stress

$$
\sigma_{\mathrm{w}}=\sigma_{\mathrm{b}} \times \mathrm{C}_{\mathrm{v}}=30.70 \times 1.5=46.06 \mathrm{MPa} \cong 46 \mathrm{MPa}
$$

sol 5.14 Option (D) is correct.

Given : $m=4, Z=32$, Tooth space $=$ Tooth thickness $=\mathrm{a}$
We know that, $\quad m=\frac{D}{Z}$
Pitch circle diameter,
$D=m Z=4 \times 32=128 \mathrm{~mm}$
And for circular pitch, $\quad P_{c}=\pi \mathrm{m}=3.14 \times 4=12.56 \mathrm{~mm}$
We also know that circular pitch,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{c}} & =\mathrm{T} \text { ooth space }+\mathrm{T} \text { ooth thickness } \\
& =\mathrm{a}+\mathrm{a}=2 \mathrm{a} \\
\mathrm{a} & =\frac{\mathrm{P}_{\mathrm{c}}}{2}=\frac{12.56}{2}=6.28 \mathrm{~mm}
\end{aligned}
$$

From the figure, $\quad b=$ addendum $+P R$
or

And $\quad b=m+P R=4+0.1=4.1 \mathrm{~mm}$
Therefore, $a=6.28 \mathrm{~mm}$ and $b=4.1 \mathrm{~mm}$
sol 5.15 Option (A) is correct.

Types of Gear
P. Helical
Q. Spiral Bevel

D escription

2. Axes parallel and teeth are inclined to the axis
3. Axes are perpendicular and intersecting, and teeth are inclined to the axis
R. Hypoid
4. Axes non parallel and non-intersecting
S. Rack and pinion
5. A xes are parallel and one of the gear has infinite radius

So, correct pairs are P-2, Q-4, R-1, S-6
sol 5.16 Option (A) is correct.

In this figure W_{s} represent the primary shear load whereas $\mathrm{W}_{\mathrm{s} 1}$ and $\mathrm{W}_{\mathrm{s} 2}$ represent the secondary shear loads.
Given : $\mathrm{A}=10 \times 50 \mathrm{~mm}^{2}, \mathrm{n}=2, \mathrm{~W}=4 \mathrm{kN}=4 \times 10^{3} \mathrm{~N}$
We know that primary shear load on each bolt acting vertically downwards,

$$
\mathrm{W}_{\mathrm{s}}=\frac{\mathrm{W}}{\mathrm{n}}=\frac{4 \mathrm{kN}}{2}=2 \mathrm{kN}
$$

Since both the bolts are at equal distances from the centre of gravity G of the two bolts, therefore the secondary shear load on each bolt is same. For secondary shear load, taking the moment about point G,

$$
\begin{aligned}
W_{s 1} \times r_{1}+W_{s 2} \times r_{2} & =W \times e \\
r_{1} & =r_{2} \text { and } W_{s 1}=W_{s 2}
\end{aligned}
$$

So,

$$
\begin{aligned}
2 \mathrm{r}_{1} \mathrm{~W}_{\mathrm{s} 1} & =4 \times 10^{3} \times(1.7+0.2+0.1) \\
2 \times 0.2 \times \mathrm{W}_{\mathrm{s} 1} & =4 \times 10^{3} \times 2 \\
\mathrm{~W}_{\mathrm{s} 1} & =\frac{8}{2} \times 10^{3} \\
\times 0.2 & =20 \times 10^{3}=20 \mathrm{kN}
\end{aligned}
$$

sol 5.17 Option (B) is correct.
From the figure, resultant Force on bolt P is

$$
\mathrm{F}=\mathrm{W}_{\mathrm{s} 2}-\mathrm{W}_{\mathrm{s}}=20-2=18 \mathrm{kN}
$$

Shear stress on bolt P is,

$$
\tau=\frac{\mathrm{F}}{\text { Area }}=\frac{18 \times 10^{3}}{\frac{\pi}{4} \times\left(12 \times 10^{-3}\right)^{2}}=159.23 \mathrm{M} \mathrm{~Pa} \simeq 159 \mathrm{M} \mathrm{~Pa}
$$

sol 5.18 Option (D) is correct.
Given: $\mathrm{W}_{1}=\mathrm{F}, \mathrm{W}_{2}=2 \mathrm{~F}, \mathrm{~L}_{1}=8000 \mathrm{hr}$
We know that, life of bearing is given by

$$
\mathrm{L}=\left(\frac{\mathrm{C}}{\mathrm{~W}}\right)^{\mathrm{k}} \times 10^{6} \text { revolution }
$$

For ball bearing, $\mathrm{k}=3, \mathrm{~L}=\left(\frac{\mathrm{C}}{\mathrm{W}}\right)^{3} \times 10^{6}$ revolution
For initial condition life is,

$$
\begin{align*}
L_{1} & =\left(\frac{C}{F}\right)^{3} \times 10^{6} \\
8000 \mathrm{hr} & =\left(\frac{C}{F}\right)^{3} \times 10^{6} \tag{i}
\end{align*}
$$

For final load,

$$
\begin{aligned}
L_{2} & =\left(\frac{C}{2 F}\right)^{3} \times 10^{6}=\frac{1}{8} \times\left(\frac{C}{F}\right)^{3} \times 10^{6} \\
& =\frac{1}{8}(8000 \mathrm{hr})=1000 \mathrm{hr} \quad \text { From equation (i) }
\end{aligned}
$$

SOL 5.19 Option (B) is correct.
Given : $\mathrm{d}=200 \mathrm{~mm}, \mathrm{t}=1 \mathrm{~mm}, \sigma_{\mathrm{u}}=800 \mathrm{MPa}, \sigma_{\mathrm{e}}=400 \mathrm{M} \mathrm{Pa}$
Circumferential stress induced in spherical pressure vessel is,

$$
\sigma=\frac{\mathrm{p} \times \mathrm{r}}{2 \mathrm{t}}=\frac{\mathrm{p} \times 100}{2 \times 1}=50 \mathrm{pMPa}
$$

Given that, pressure vessel is subject to an internal pressure varying from 4 to 8 MPa .
So,

$$
\begin{aligned}
\sigma_{\min } & =50 \times 4=200 \mathrm{MPa} \\
\sigma_{\max } & =50 \times 8=400 \mathrm{MPa} \\
\sigma_{\mathrm{m}} & =\frac{\sigma_{\min }+\sigma_{\max }}{2}=\frac{200+400}{2}=300 \mathrm{MPa} \\
\sigma_{\mathrm{v}} & =\frac{\sigma_{\max }-\sigma_{\min }}{2}=\frac{400-200}{2}=100 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

M ean stress,
Variable stress,
From the Goodman method,

$$
\frac{1}{\text { F.S. }}=\frac{\sigma_{\mathrm{m}}}{\sigma_{\mathrm{u}}}+\frac{\sigma_{\mathrm{v}}}{\sigma_{\mathrm{e}}}=\frac{300}{800}+\frac{100}{400}=\frac{3}{8}+\frac{1}{4}=\frac{5}{8} \quad \Rightarrow \quad \text { F.S. }=\frac{8}{5}=1.6
$$

SOL 5.20 Option (B) is correct.
Given : $d=50 \mathrm{~mm}, \mathrm{I}=50 \mathrm{~mm}, \mathrm{~N}=20 \mathrm{rps}$,
$\mathrm{Z}=20 \mathrm{mPa}-\mathrm{sec}=20 \times 10^{-3} \mathrm{~Pa}-\mathrm{sec}$
Radial clearance $=50 \mu \mathrm{~m}=50 \times 10^{-3} \mathrm{~mm}$, Load $=2 \mathrm{kN}$
We know that,

$$
\begin{aligned}
\mathrm{p} & =\text { B earing Pressure on the projected bearing area } \\
& =\frac{\text { Load on the journal }}{1 \times \mathrm{d}}
\end{aligned}
$$

$$
=\frac{2 \times 10^{3}}{50 \times 50}=0.8 \mathrm{~N} / \mathrm{mm}^{2}=0.8 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

$\begin{array}{rl}\text { Sommerfeld } \text { Number }=\frac{\mathrm{ZN}}{\mathrm{p}}\left(\frac{\mathrm{d}}{\mathrm{c}}\right)^{2} & \mathrm{c}=\text { diameteral clearance } \\ & =2 \times \text { radial clearance }\end{array}$

$$
\begin{aligned}
\text { S.N. } & =\frac{20 \times 10^{-3} \times 20}{0.8 \times 10^{6}} \times\left(\frac{50}{100 \times 10^{-3}}\right)^{2} \\
& =\frac{20 \times 10^{-3} \times 60}{0.8 \times 10^{6}} \times\left(\frac{1}{2}\right)^{2} \times 10^{6}=0.125
\end{aligned}
$$

sol 5.21 Option (A) is correct.

Given : Diameter of bolt $\mathrm{d}=10 \mathrm{~mm}, \mathrm{~F}=10 \mathrm{kN}, \mathrm{No}$. of bolts $\mathrm{n}=3$
Direct or Primary shear load of each rivet

$$
\begin{aligned}
& F_{p}=\frac{F}{n}=\frac{10 \times 10^{3}}{3} \mathrm{~N} \\
& F_{p}=3333.33 \mathrm{~N}
\end{aligned}
$$

The centre of gravity of the bolt group lies at 0 (due to symmetry of figure).

$$
\mathrm{e}=150 \mathrm{~mm} \quad \text { (eccentricity given) }
$$

Turning moment produced by the load F due to eccentricity

$$
\begin{aligned}
& =\mathrm{F} \times \mathrm{e}=10 \times 10^{3} \times 150 \\
& =1500 \times 10^{3} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

Secondary shear load on bolts from fig. $r_{A}=r_{C}=40 \mathrm{~mm}$ and $r_{B}=0$
We know that $F \times e=\frac{F_{A}}{r_{A}}\left[\left(r_{A}\right)^{2}+\left(r_{B}\right)^{2}+\left(r_{C}\right)^{2}\right]$

$$
\begin{array}{rlr}
& =\frac{F_{A}}{r_{A}} \times\left[2\left(r_{A}\right)^{2}\right] & \left(r_{A}=r_{C} \text { and } r_{B}=0\right) \\
1500 \times 10^{3} & =\frac{F_{A}}{40} \times\left[2(40)^{2}\right]=80 F_{A} & \\
F_{A} & =\frac{1500 \times 10^{3}}{80}=18750 \mathrm{~N} &
\end{array}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{B}} & =0 \\
\mathrm{~F}_{\mathrm{C}} & =\mathrm{F}_{\mathrm{A}} \times \frac{\mathrm{r}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{A}}}=18750 \times \frac{40}{40} \\
& =18750 \mathrm{~N}
\end{aligned}
$$

$$
\left(r_{B}=0\right)
$$

From fig we find that angle between
F_{A} and $\mathrm{F}_{\mathrm{P}}=\theta_{\mathrm{A}}=90^{\circ}$
F_{B} and $\mathrm{F}_{\mathrm{P}}=\theta_{\mathrm{B}}=90^{\circ}$
F_{C} and $\mathrm{F}_{\mathrm{P}}=\theta_{\mathrm{C}}=90^{\circ}$
Resultant load on bolt A,

$$
\begin{aligned}
R_{A} & =\sqrt{\left(F_{P}\right)^{2}+\left(F_{A}\right)^{2}+2 F_{P} \times F_{A} \cos \theta_{A}} \\
& =\sqrt{(3333.33)^{2}+(18750)^{2}+2 \times 3333.33 \times 18750 \times \cos 90^{\circ}} \\
R_{A} & =19044 \mathrm{~N}
\end{aligned}
$$

M aximum shear stress at A

$$
\tau_{\mathrm{A}}=\frac{\mathrm{R}_{\mathrm{A}}}{\frac{\pi}{4}(\mathrm{~d})^{2}}=\frac{19044}{\frac{\pi}{4}(10)^{2}}=242.6 \mathrm{M} \mathrm{~Pa}
$$

Resultant load on B olt B,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{B}}=\mathrm{F}_{\mathrm{P}}=3333.33 \mathrm{~N} \tag{B}
\end{equation*}
$$

M aximum shear stress at B,

$$
\tau_{\mathrm{B}}=\frac{\mathrm{R}_{\mathrm{B}}}{\frac{\pi}{4}(\mathrm{~d})^{2}}=\frac{3333.33}{\frac{\pi}{4} \times(10)^{2}}=42.5 \mathrm{M} \mathrm{~Pa}
$$

sol 5.22 Option (C) is correct.

Given : $P=400 \mathrm{~N}, \mathrm{r}=\frac{300}{2} \mathrm{~mm}=150 \mathrm{~mm}, \mathrm{I}=600 \mathrm{~mm}$
$\mathrm{x}=200 \mathrm{~mm}, \mu=0.25$ and $2 \theta=45^{\circ}$
Let, $\quad R_{N} \rightarrow$ Normal force pressing the brake block on the wheel
$\mathrm{F}_{\mathrm{t}} \rightarrow$ Tangential braking force or the frictional force acting at the contact surface of the block \& the wheel.

Here the line of action of tangential braking force F_{t} passes through the fulcrum 0 of the lever and brake wheel rotates clockwise. Then for equilibrium, Taking the moment about the fulcrum 0 ,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{N}} \times \mathrm{x} & =\mathrm{P} \times \mathrm{I} \\
\mathrm{R}_{\mathrm{N}} & =\frac{\mathrm{P} \times \mathrm{I}}{\mathrm{X}}=\frac{400 \times 0.6}{0.2}=1200 \mathrm{~N}
\end{aligned}
$$

Tangential braking force on the wheel,

$$
\mathrm{F}_{\mathrm{t}}=\mu \mathrm{R}_{N}
$$

Braking Torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{B}} & =\mathrm{F}_{\mathrm{t}} \times \mathrm{r}=\mu \mathrm{R}_{\mathrm{N}} \times \mathrm{r} \\
& =0.25 \times 1200 \times 0.15=45 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

SOL 5.23 Option (C) is correct.
Given : $\mathrm{d}=20 \mathrm{~mm}, \mathrm{l}=700 \mathrm{~mm}$,
$\mathrm{E}=200 \mathrm{GPa}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
Compressive or working Load $=10 \mathrm{kN}$
According to Euler's theory, the crippling or buckling load (W_{cr}) under various end conditions is given by the general equation,

$$
\begin{equation*}
W_{\text {cr }}=\frac{\mathrm{C} \pi^{2} E \mathrm{I}}{\mathrm{I}^{2}} \tag{i}
\end{equation*}
$$

Given that one end is guided at the piston end and hinged at the other end.
So,

$$
c=2
$$

From equation (i),

$$
\begin{aligned}
W_{\text {cr }} & =\frac{2 \pi^{2} E I}{I^{2}}=\frac{2 \pi^{2} E}{I^{2}} \times \frac{\pi}{64} d^{4} \quad I=\frac{\pi}{64} d^{4} \\
& =\frac{2 \times 9.81 \times 200 \times 10^{3}}{(700)^{2}} \times \frac{3.14}{64} \times(20)^{4} \\
& =62864.08 \mathrm{~N}=62.864 \mathrm{kN}
\end{aligned}
$$

We know that, factor of safety (FOS)

$$
\text { FOS }=\frac{\text { Crippling Load }}{\text { W orking Load }}=\frac{62.864}{10}=6.28
$$

The most appropriate option is (C).
sol 5.24 Option (B) is correct.
Given: $Z_{P}=20, Z_{G}=40, N_{P}=30 \mathrm{rev} / \mathrm{sec}, \mathrm{P}=20 \mathrm{~kW}=20 \times 10^{3} \mathrm{~W}$, $\mathrm{m}=5 \mathrm{~mm}$

M odule,

$$
m=\frac{D}{Z}=\frac{D_{p}}{Z_{p}}=\frac{D_{G}}{Z_{G}}
$$

$$
D_{p}=m \times Z_{p}=5 \times 20=100 \mathrm{~mm}
$$

or,

$$
D_{G}=m \times Z_{G}=5 \times 40=200 \mathrm{~mm}
$$

Centre distance for the gear set,

$$
\mathrm{L}=\frac{\mathrm{D}_{\mathrm{P}}+\mathrm{D}_{G}}{2}=\frac{100+200}{2}=150 \mathrm{~mm}
$$

SOL 5.25 Option (C) is correct.
Given :
Length of line of action, $\mathrm{L}=19 \mathrm{~mm}$
Pressure angle,

$$
\phi=20^{\circ}
$$

Length of arc of contact $=\frac{\text { Length of path of contact (L) }}{\cos \phi}$

$$
=\frac{19}{\cos 20^{\circ}}=20.21 \mathrm{~mm}
$$

Contact ratio or number of pairs of teeth in contact,

$$
\begin{aligned}
& =\frac{\text { Length of arc of contact }}{\text { circular pitch }} \\
& =\frac{20.21}{\pi \mathrm{~m}}=\frac{20.21}{3.14 \times 5}=1.29
\end{aligned}
$$

SOL 5.26 Option (C) is correct.

Let, $\quad \mathrm{T} \rightarrow$ Torque transmitted in $\mathrm{N}-\mathrm{m}$
We know that power transmitted is,

$$
\begin{aligned}
\mathrm{P} & =\mathrm{T} \omega=\mathrm{T} \times \frac{2 \pi \mathrm{~N}}{60} \\
\mathrm{~T} & =\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}}=\frac{60 \times 20 \times 10^{3}}{2 \times 3.14 \times 1800}=106.157 \mathrm{~N}-\mathrm{m} \\
\mathrm{~F}_{\mathrm{T}} & =\frac{\mathrm{T}}{\mathrm{R}_{\mathrm{P}}} \quad \quad \text { Tangential load on } \\
& =\frac{106.157}{0.05}=2123.14 \mathrm{~N}
\end{aligned}
$$

From the geometry, total load due to power transmitted,

$$
F=\frac{F_{T}}{\cos \phi}=\frac{2123.14}{\cos 20^{\circ}} \simeq 2258.1 \mathrm{~N}
$$

SOL 5.27 Option (A) is correct.

Given : $\mathrm{P}=5 \mathrm{~kW}, \mathrm{~N}=2000 \mathrm{rpm}, \mu=0.25, \mathrm{r}_{2}=25 \mathrm{~mm}=0.025 \mathrm{~m}$, $p=1 M P a$
Power transmitted, $\quad P=\frac{2 \pi N T}{60}$
Torque,

$$
\mathrm{T}=\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}}=\frac{60 \times 5 \times 10^{3}}{2 \times 3.14 \times 2000}=23.885 \mathrm{~N}-\mathrm{m}
$$

When pressure is uniformly distributed over the entire area of the friction faces, then total frictional torque acting on the friction surface or on the clutch,

$$
\begin{aligned}
\mathrm{T} & =2 \pi \mu \mathrm{p}\left[\frac{\left(r_{1}\right)^{3}-\left(r_{2}\right)^{3}}{3}\right] \\
23.885 \times 3 & =2 \times 3.14 \times 0.25 \times 1 \times 10^{6} \times\left[r_{1}^{3}-(0.025)^{3}\right] \\
r_{1}^{3}-(0.025)^{3} & =\frac{23.885 \times 3}{2 \times 3.14 \times 0.25 \times 10^{6}} \\
r_{1}^{3}-1.56 \times 10^{-5} & =45.64 \times 10^{-6}=4.564 \times 10^{-5} \\
r_{1}^{3} & =(4.564+1.56) \times 10^{-5}=6.124 \times 10^{-5} \\
r_{1} & =\left(6.124 \times 10^{-5}\right)^{1 / 3}=3.94 \times 10^{-2} \mathrm{~m}=39.4 \mathrm{~mm}
\end{aligned}
$$

sol 5.28 Option (A) is correct.
Given: $Z_{P}=19, Z_{G}=37, m=5 \mathrm{~mm}$
Also,

$$
\mathrm{m}=\frac{\mathrm{D}}{\mathrm{Z}}
$$

For pinion, pitch circle diameter is,

$$
D_{p}=m \times Z_{p}=5 \times 19=95 \mathrm{~mm}
$$

A nd pitch circle diameter of the gear,

$$
\mathrm{D}_{G}=\mathrm{m} \times \mathrm{Z}_{\mathrm{G}}=5 \times 37=185 \mathrm{~mm}
$$

Now, centre distance between the gear pair (shafts),

$$
L=\frac{D_{P}}{2}+\frac{D_{G}}{2}=\frac{95+185}{2}=140 \mathrm{~mm}
$$

sol 5.29 Option (C) is correct.

We know that in S-N curve the failure occurs at 10^{6} cycles (at endurance strength)
We have to make the S-N curve from the given data, on the scale of $\log _{10}$. Now equation of line whose end point co-ordinates are

$$
\left(\log _{10} 1000, \log _{10} 490\right) \text { and }\left(\log _{10} 10^{6}, \log _{10} 70\right)
$$

or $\left(3, \log _{10} 490\right)$ and $\left(6, \log _{10} 70\right)$,

$$
\begin{align*}
\frac{y-\log _{10} 490}{x-3} & =\frac{\log _{10} 70-\log _{10} 490}{6-3} \\
\frac{y-2.69}{x-3} & =\frac{1.845-2.69}{3} \\
y-2.69 & =-0.281(x-3) \tag{i}
\end{align*} \quad\left(\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
$$

Given, the shaft is subject to an alternating stress of 100 M Pa
So,

$$
y=\log _{10} 100=2
$$

Substitute this value in equation (i), we get

$$
\text { And } \quad \log _{10} N=5.455
$$

$$
\begin{aligned}
2-2.69 & =-0.281(x-3) \\
-0.69 & =-0.281 x+0.843 \\
x & =\frac{-0.843-0.69}{-0.281}=5.455 \\
\log _{10} N & =5.455 \\
N & =10^{5.455}=285101
\end{aligned}
$$

The nearest shaft life is 281914 cycles.
sol 5.30 Option (B) is correct.

Given : $I=60 \mathrm{~mm}=0.06 \mathrm{~m}, \mathrm{~s}=6 \mathrm{~mm}=0.006 \mathrm{~m}, \mathrm{P}=15 \mathrm{kN}=15 \times 10^{3} \mathrm{~N}$ Shear strength $=200 \mathrm{MPa}$
We know that, if τ is the allowable shear stress for the weld metal, then the shear strength of the joint for single parallel fillet weld,

$$
\begin{aligned}
\mathrm{P} & =\mathrm{T} \text { hroat A rea } \times \text { Allowable shear stress } \\
& =\mathrm{t} \times \mathrm{I} \times \tau
\end{aligned}
$$

$$
\begin{array}{rl}
\mathrm{P} & =0.707 \mathrm{~s} \times \mathrm{I} \times \tau \\
\tau & =\frac{\mathrm{P}}{0.707 \times \mathrm{s} \times \mathrm{I}}=\mathrm{s} \sin 45^{\circ}=0.707 \mathrm{~s} \\
0.707 \times 0.006 \times 0.06 & 15 \times 10^{3} \\
0.98 \mathrm{M} \mathrm{~Pa}
\end{array}
$$

Factor of Safety,

$$
\mathrm{FOS}=\frac{\text { Shear strength }}{\text { Allowable shear stress }}=\frac{200 \mathrm{M} \mathrm{~Pa}}{58.93 \mathrm{M} \mathrm{~Pa}}=3.39 \simeq 3.4
$$

sol 5.31 Option (A) is correct.
The coefficient of friction for a full lubricated journal bearing is a function of three variables, i.e.

$$
\mu=\phi\left(\frac{\mathrm{ZN}}{\mathrm{p}}, \frac{\mathrm{~d}}{\mathrm{c}}, \frac{\mathrm{l}}{\mathrm{~d}}\right)
$$

Here, $\frac{Z N}{p}=$ B earing characteristic Number, $d=$ Diameter of the bearing
I = Length of the bearing, $\mathrm{c}=$ Diameteral clearance

$$
\text { Sommerfeld Number }=\frac{Z N}{p}\left(\frac{d}{c}\right)^{2}
$$

It is a dimensionless parameter used extensively in the design of journal bearing. i.e. sommerfeld number is also function of $\left(\frac{Z N}{p}, \frac{d}{c}\right)$. Therefore option (A) is correct.
sol 5.32 Option (B) is correct.

Given : $\mathrm{r}=200 \mathrm{~mm}=0.2 \mathrm{~m}, \theta=270^{\circ}=270 \times \frac{\pi}{180}=\frac{3 \pi}{2}$ radian, $\mu=0.5$
At the time of braking, maximum tension is generated at the fixed end of band near the wheel.
Let, $\quad \mathrm{T}_{2} \rightarrow$ Tension in the slack side of band
$\mathrm{T}_{1} \rightarrow$ Tension in the tight side of band at the fixed end
Taking the moment about the point 0 ,

$$
\mathrm{T}_{2} \times 1=100 \times 2 \quad \Rightarrow \mathrm{~T}_{2}=200 \mathrm{~N}
$$

For the band brake, the limiting ratio of the tension is given by the relation

$$
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \theta} \quad \Rightarrow \mathrm{T}_{1}=\mathrm{T}_{2} \times \mathrm{e}^{\mu \theta}
$$

$$
\begin{aligned}
\mathrm{T}_{1} & =200 \times \mathrm{e}^{0.5 \times \frac{3 \pi}{2}}=200 \times 10.54=2108 \mathrm{~N} \\
& \simeq 2110 \mathrm{~N}
\end{aligned}
$$

So, maximum tension that can be generated in the band during braking is equal to 2110 N

SOL 5.33 Option (B) is correct.
Maximum wheel torque or braking torque is given by,

$$
\mathrm{T}_{\mathrm{w}}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{r}=(2110-200) \times 0.2=382 \mathrm{~N}-\mathrm{m}
$$

sol 5.34 Option (D) is correct.

Given: $Z_{p}=40$ teeth, $Z_{G}=120$ teeth, $N_{P}=1200 \mathrm{rpm}, T_{P}=20 \mathrm{~N}-\mathrm{m}$
Velocity R atio, $\quad Z_{P} Z_{G}=\frac{N_{G}}{N_{P}}$

$$
N_{G}=\frac{Z_{P}}{Z_{G}} \times N_{P}=\frac{40}{120} \times 1200=400 \mathrm{rpm}
$$

Power transmitted is same for both pinion \& Gear.

$$
\begin{aligned}
P & =\frac{2 \pi N_{P} T_{P}}{60}=\frac{2 \pi N_{G} T_{G}}{60} \\
N_{P} T_{P} & =N_{G} T_{G} \\
T_{G} & =\frac{N_{P} T_{P}}{N_{G}}=\frac{1200}{400} \times 20=60 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

So, the torque transmitted by the Gear is $60 \mathrm{~N}-\mathrm{m}$

SOL 5.35 Option (A) is correct.
W hen the notch sensitivity factor q is used in cyclic loading, then fatigue stress concentration factor may be obtained from the following relation.

$$
\begin{aligned}
K_{f} & =1+q\left(K_{t}-1\right) \\
K_{f}-1 & =q\left(K_{t}-1\right) \\
q & =\frac{K_{f}-1}{K_{t}-1}
\end{aligned}
$$

SOL 5.36 Option (C) is correct.
The S-N curve for the steel is shown below:

We can easily see from the S-N curve that, steel becomes asymptotic nearly at 10^{6} cycles.
sol 5.37 Option (C) is correct.
Given : $F_{t}=2200 \mathrm{~N}, \mathrm{p}=4 \mathrm{~mm}=0.004 \mathrm{~m}$
Torque required for achieving the tightening force is,

$$
T=F_{t} \times r=F_{t} \times \frac{P \text { itch }}{2 \pi}=2200 \times \frac{0.004}{2 \times 3.14}=1.4 \mathrm{~N}-\mathrm{m}
$$

SOL 5.38 Option (B) is correct.

Type of Gears
P. Bevel gears
Q. Worm gears
R. Herringbone gears
S. Hypoid gears

A rrangement of shafts

2. Non-parallel intersecting shafts
3. Non-parallel, non-intersecting shafts
4. Parallel shafts
5. Non-parallel off-set shafts

So, correct pairs are P-2, Q-3, R-4, S-1.
sol 5.39 Option (C) is correct.
The wire ropes are designated by the number of strands multiplied by the number of wires in each strand. Therefore,
$6 \times 19=$ Number of strands \times Number of wires in each strand.

SOL 5.40
Option (C) is correct.
Given : Diameter of shaft $=\mathrm{d}$
Torque transmitted $=T$
Length of the key $=1$
We know that, width and thickness of a square key are equal.
i.e.

$$
\mathrm{w}=\mathrm{t}=\frac{\mathrm{d}}{4}
$$

Force acting on circumference of shaft

$$
\begin{equation*}
F=\frac{T}{r}=\frac{2 T}{d} \tag{r=d/2}
\end{equation*}
$$

Shearing A rea, $\quad A=$ width \times length $=\frac{d}{4} \times I=\frac{d l}{4}$
A verage shear stress, $\quad \tau=\frac{\text { Force }}{\text { shearing A rea }}=\frac{2 \mathrm{~T} / \mathrm{d}}{\mathrm{d} / / 4}=\frac{8 \mathrm{~T}}{\mid \mathrm{d}^{2}}$
sol 5.41 Option (D) is correct.
Let, $\quad \mathrm{T}_{1} \rightarrow$ Tension in the tight side of the band,
$\mathrm{T}_{2} \rightarrow$ Tension in the slack side of the band
$\theta \rightarrow$ A ngle of lap of the band on the drum
Given : $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=3, \theta=180^{\circ}=\frac{\pi}{180} \times 180=\pi$ radian
For band brake, the limiting ratio of the tension is given by the relation,

$$
\begin{aligned}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} & =\mathrm{e}^{\mu \theta} \text { or } 2.3 \log \left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)=\mu \theta \\
2.3 \times \log (3) & =\mu \times \pi \\
2.3 \times 0.4771 & =\mu \times 3.14 \\
\mu & =\frac{1.09733}{3.14}=0.349 \simeq 0.35
\end{aligned}
$$

sol 5.42 Option (A) is correct.

Let N_{1}, N_{2}, N_{3} and N_{4} are the speeds of pinion 1, gear 2, pinion 3 and gear 4 respectively.

Given: $Z_{1}=16$ teeth, $Z_{3}=15$ teeth and $Z_{4}=$?, $Z_{2}=$?
Velocity ratio

$$
\begin{align*}
\frac{N_{1}}{N_{4}} & =\frac{Z_{2} / Z_{1}}{Z_{3} / Z_{4}} \\
& =\frac{Z_{2}}{Z_{1}} \times \frac{Z_{4}}{Z_{3}}=12 \tag{i}
\end{align*}
$$

But for stage 1,

$$
\begin{equation*}
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}=4 \tag{ii}
\end{equation*}
$$

So,

$$
\begin{aligned}
4 \times \frac{Z_{4}}{Z_{3}} & =12 \\
Z_{4} & =3, \quad \text { from } \\
Z_{3} & \Rightarrow Z_{4}=3 \times 15=45 \text { teeth }
\end{aligned}
$$

from eq. (i)

From equation (ii), $\quad Z_{2}=4 \times Z_{1}=4 \times 16=64$ teeth
sol 5.43 Option (B) is correct.
Let centre distance in the second stage is D.

$$
\mathrm{D}=\mathrm{R}_{4}+\mathrm{R}_{3}=\frac{\mathrm{D}_{4}+\mathrm{D}_{3}}{2}
$$

But,

$$
\frac{D_{4}}{Z_{4}}=\frac{D_{3}}{Z_{3}}=4 \quad \mathrm{~m}=\mathrm{D} / \mathrm{Z} \text { module }
$$

$$
D_{4}=4 \times Z_{4}=4 \times 45=180
$$

Or,

$$
D_{3}=4 \times Z_{3}=4 \times 15=60
$$

So,

$$
D=\frac{180+60}{2}=120 \mathrm{~mm}
$$

sol 5.44 Option (C) is correct.
In standard full height involute teeth gear mechanism the arc of approach is not be less than the circular pitch, therefore
Maximum length of arc of approach $=$ Circular pitch
...(i)
where M aximum length of the arc of approach

$$
\begin{aligned}
& =\frac{M a x . \text { length of the path of approach }}{\cos \phi} \\
& =\frac{r \sin \phi}{\cos \phi}=r \tan \phi
\end{aligned}
$$

Circular pitch,

$$
\mathrm{P}_{\mathrm{C}}=\pi \mathrm{m}=\frac{2 \pi \mathrm{r}}{\mathrm{Z}}
$$

$$
m=\frac{2 r}{Z}
$$

Hence, from equation (i), we get

$$
\begin{aligned}
r \tan \phi & =\frac{2 \pi r}{Z} \\
Z & =\frac{2 \pi}{\tan \phi}=\frac{2 \pi}{\tan 20^{\circ}}=17.25 \simeq 18 \text { teeth }
\end{aligned}
$$

SOL 5.45 Option (D) is correct.
(A) Flange coupling :- It is used to connect two shaft having perfect coaxial alignment and no misalignment is allowed between them.
(B) Oldham's coupling :- It is used to join two shafts which have lateral misalignment.
(C) Flexible bush coupling :- It is used to join the abutting ends of shafts when they are not in exact alignment.
(D) Hook's joint :- It is used to connect two shafts with large angular misalignment.

SOL 5.46 Option (D) is correct.
When the shaft rotates, the bending stress at the upper fibre varies from maximum compressive to maximum tensile while the bending stress at the lower fibres varies from maximum tensile to maximum compressive. The specimen subjected to a completely reversed stress cycle. This is shown in the figure.

W hen shaft is subjected to repeated stress, then it will be designed for fatigue loading.
soL 5.47 Option (B) is correct.
For a worm gear the velocity ratio ranges between $10: 1$ to $100: 1$. So, Large speed reductions (greater than 20) in one stage of a gear train are possible through worm gearing.

SOL 5.48 Option (A) is correct.
For Helical spring, deflection is given by,

$$
\delta=\frac{64 P R^{3} n}{G d^{4}}=\frac{8 P D^{3} n}{G d^{4}}
$$

where,

$$
\mathrm{P}=\text { Compressive load }
$$

$\mathrm{d}=\mathrm{W}$ ire diameter
$\mathrm{R}=$ Coil diameter

$$
G=M \text { odulus of rigidity }
$$

From the given conditions

$$
\delta \propto \frac{1}{d^{4}}
$$

Given $d_{1}=1 \mathrm{~cm}$ and $d_{2}=2 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{\delta_{2}}{\delta_{1}}=\left(\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}\right)^{4} \\
& \frac{\delta_{2}}{\delta_{1}}=\left(\frac{1}{2}\right)^{4}=\frac{1}{16} \\
& \delta_{2}=\frac{\delta_{1}}{16}
\end{aligned}
$$

So, deflection will decrease by a factor of 16 .

SOL 5.49 Option (C) is correct.
B ars $A B$ and $B C$ have negligible mass. The support load P acting at the free end of bars $A B$ and $B C$. Due to this load P, In bar $A B$ compressive stress and in bar $B C$ tensile stress are induced.
However, none of these bars will be subjected to bending because there is no couple acting on the bars.
sol 5.50 Option (C) is correct.
Let $L_{1} \& L_{2}$ are lengths of the springs and $n_{1} \& n_{2}$ are the number of coils in both the springs.
Given: $\quad \mathrm{W}_{1}=\mathrm{W}_{2}$

$$
\begin{array}{ll}
\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{2} \mathrm{~g} & \mathrm{~m}=\rho \nu \\
\rho \nu_{1} \mathrm{~g} & =\rho \nu_{2} \mathrm{~g}
\end{array}
$$

$$
\mathrm{A}_{1} \times \mathrm{L}_{1} \times \rho \mathrm{g}=\mathrm{A}_{2} \times \mathrm{L}_{2} \times \rho \mathrm{g}
$$

$$
\frac{\pi}{4} \mathrm{~d}_{1}^{2} \times \pi \mathrm{D}_{1} \mathrm{n}_{1}=\frac{\pi}{4} \mathrm{~d}_{2}^{2} \times \pi \mathrm{D}_{2} \mathrm{n}_{2}
$$

$$
\mathrm{L}=\pi \mathrm{Dn}
$$

$$
\mathrm{d}_{1}^{2} \times \mathrm{n}_{1}=\mathrm{d}_{2}^{2} \times \mathrm{n}_{2}
$$

$$
\mathrm{D}_{1}=\mathrm{D}_{2}
$$

Given: $\quad d_{1}=d \& d_{2}=\frac{d}{2}$

$$
\mathrm{d}^{2} \times \mathrm{n}_{1}=\frac{\mathrm{d}^{2}}{4} \times \mathrm{n}_{2}
$$

or,

$$
\mathrm{n}_{1}=\frac{\mathrm{n}_{2}}{4}
$$

The deflection of helical spring is given by,

$$
\delta=\frac{8 P^{3} n}{G d^{4}}
$$

Spring stiffness, $\quad k=\frac{P}{\delta}=\frac{G d^{4}}{8 D^{3} n}$

From the given conditions, we get

So,

$$
\begin{aligned}
& \mathrm{k} \propto \frac{\mathrm{~d}^{4}}{\mathrm{n}} \\
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\left(\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}\right)^{4} \times\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right) \\
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\left(\frac{\mathrm{d}}{\mathrm{~d} / 2}\right)^{4} \times \frac{\mathrm{n}_{2}}{\mathrm{n}_{2} / 4} \\
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=16 \times 4=64
\end{aligned}
$$

CHAPTER 6

FLUID MECHANICS

YEAR 2012
ONE MARK
MCQ 6.1 Oil flows through a 200 mm diameter horizontal cast iron pipe (friction factor, $f=0.0225$) of length 500 m . The volumetric flow rate is $0.2 \mathrm{~m}^{3} / \mathrm{s}$. The head loss (in m) due to friction is (assume $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 116.18
(B) 0.116
(C) 18.22
(D) 232.36

MCQ 6.2 The velocity triangles at the inlet and exit of the rotor of a turbomachine are shown. V denotes the absolute velocity of the fluid, W denotes the relative velocity of the fluid and U denotes the blade velocity. Subscripts 1 and 2 refer to inlet and outlet respectively. If $V_{2}=W_{1}$ and $V_{1}=W_{2}$, then the degree of reaction is

(A) 0
(B) 1
(C) 0.5
(D) 0.25

YEAR 2012
MCQ 6.3 An incompressible fluid flows over a flat plate with zero pressure gradient. The boundary layer thickness is 1 mm at a location where the Reynolds number is 1000. If the velocity of the fluid alone is increased by a factor of 4, then the boundary layer thickness at the same location, in mm will be
(A) 4
(B) 2
(C) 0.5
(D) 0.25

MCQ 6.4 A large tank with a nozzle attached contains three immiscible, inviscide fluids as shown. A ssuming that the change in h_{1}, h_{2} and h_{3} are negligible, the instantaneous discharge velocity is

(A) $\sqrt{2 g h_{3}\left(1+\frac{\rho_{1}}{\rho_{3}} \mathrm{~h}_{1} \mathrm{~h}_{3}+\frac{\rho_{2}}{\rho_{3} \mathrm{~h}_{2}} \mathrm{~h}_{3}\right)}$
(B) $\sqrt{2 g\left(h_{1}+h_{2}+h_{3}\right)}$
(C) $\sqrt{2 g\left(\frac{\rho_{1} \mathrm{~h}_{1}+\rho_{2} \mathrm{~h}_{2}+\rho_{3} \mathrm{~h}_{3}}{\rho_{1}+\rho_{2}+\rho_{3}}\right)}$
(D) $\sqrt{2 g \frac{\rho_{1} h_{2} h_{3}+\rho_{2} h_{3} h_{1}+\rho_{3} h_{1} h_{2}}{\rho_{1} h_{1}+\rho_{2} h_{2}+\rho_{3} h_{3}}}$

YEAR 2011
ONE MARK
MCQ 6.5 A streamline and an equipotential line in a flow field
(A) are parallel to each other
(B) are perpendicular to each other
(C) intersect at an acute angle
(D) are identical

YEAR 2011
TWO MARKS
MCQ 6.6 Figure shows the schematic for the measurement of velocity of air (density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$) through a constant area duct using a pitot tube and a water tube manometer. The differential head of water (density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$) in the two columns of the manometer is 10 mm . Take acceleration due to gravity as $9.8 \mathrm{~m} / \mathrm{s}^{2}$. The velocity of air in m / s is

(A) 6.4
(B) 9.0
(C) 12.8
(D) 25.6

MCQ 6.7 A pump handing a liquid raises its pressure from 1 bar to 30 bar. Take the density of the liquid as $990 \mathrm{~kg} / \mathrm{m}^{3}$. The isentropic specific work done by the pump in $\mathrm{kJ} / \mathrm{kg}$ is
(A) 0.10
(B) 0.30
(C) 2.50
(D) 2.93

YEAR 2010

ONE MARK
MCQ 6.8 For the stability of a floating body, under the influence of gravity alone, which of the following is TRUE ?
(A) M etacenter should be below centre of gravity.
(B) M etacenter should be above centre of gravity.
(C) M etacenter and centre of gravity must lie on the same horizontal line.
(D) M etacenter and centre of gravity must lie on the same vertical line.

MCQ 6.9 The maximum velocity of a one-dimensional incompressible fully developed viscous flow, between two fixed parallel plates, is $6 \mathrm{~ms}^{-1}$. The mean velocity (in ms^{-1}) of the flow is
(A) 2
(B) 3
(C) 4
(D) 5

MCQ 6.10 A phenomenon is modeled using n dimensional variables with k primary dimensions. The number of non-dimensional variables is
(A) k
(B) n
(C) $n-k$
(D) $n+k$

MCQ 6.11 A hydraulic turbine develops 1000 kW power for a head of 40 m . If the head is reduced to 20 m , the power developed (in kW) is
(A) 177
(B) 354
(C) 500
(D) 707

YEAR 2010
TWO MARKS
MCQ 6.12 Velocity vector of a flow field is given as $\mathbf{V}=2 x y \mathbf{i}-x^{2} \mathbf{z} \mathbf{j}$. The vorticity vector at $(1,1,1)$ is
(A) $4 \mathbf{i}-\mathbf{j}$
(B) $4 \mathbf{i}-\mathbf{k}$
(C) $\mathbf{i}-4 \mathbf{j}$
(D) $\mathbf{i}-4 \mathbf{k}$

MCQ 6.13 A smooth pipe of diameter 200 mm carries water. The pressure in the pipe at section S_{1} (elevation : 10 m) is 50 kPa . At section S_{2} (elevation : 12 m) the pressure is 20 kPa and velocity is $2 \mathrm{~ms}^{-1}$. Density of water is $1000 \mathrm{kgm}^{-3}$
and acceleration due to gravity is $9.8 \mathrm{~ms}^{-2}$. Which of the following is TRUE
(A) flow is from S_{1} to S_{2} and head loss is 0.53 m
(B) flow is from S_{2} to S_{1} and head loss is 0.53 m
(C) flow is from S_{1} to S_{2} and head loss is 1.06 m
(D) flow is from S_{2} to S_{1} and head loss is 1.06 m

MCQ 6.14 M atch the following
P. Compressible flow
Q. Free surface flow
R. Boundary layer flow
S. Pipe flow
T. Heat convection
(A) P-U; Q-X;R-V; S-Z; T-W
(B) P-W; Q-X;R-Z; S-U;T-V
(C) P-Y; Q-W ; R-Z; S-U; T-X
(D) P-Y; Q-W ; R-Z; S-U; T-V
U. Reynolds number
V. Nusselt number
W. Weber number
X. Froude number
Y. Mach number
Z. Skin friction coefficient

MCQ 6.15 Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from 20 cm to 10 cm . The pressure in the 20 cm pipe just upstream of the reducer is 150 kPa . The fluid has a vapour pressure of 50 kPa and a specific weight of $5 \mathrm{kN} / \mathrm{m}^{3}$. N eglecting frictional effects, the maximum discharge (in $\mathrm{m}^{3} / \mathrm{s}$) that can pass through the reducer without causing cavitation is
(A) 0.05
(B) 0.16
(C) 0.27
(D) 0.38

MCQ 6.16 You are asked to evaluate assorted fluid flows for their suitability in a given laboratory application. The following three flow choices, expressed in terms of the two dimensional velocity fields in the $x y$-plane, are made available.
P: $\quad u=2 y, v=-3 x$
Q: $\quad u=3 x y, v=0$
R : $\quad u=-2 x, v=2 y$
Which flow(s) should be recommended when the application requires the flow to be incompressible and irrotational ?
(A) P and R
(B) Q
(C) Q and R
(D) R

MCQ 6.17 Water at $25^{\circ} \mathrm{C}$ is flowing through a 1.0 km long. G.I. pipe of 200 mm diameter at the rate of $0.07 \mathrm{~m}^{3} / \mathrm{s}$. If value of Darcy friction factor for this pipe is 0.02 and density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, the pumping power (in kW) required to maintain the flow is
(A) 1.8
(B) 17.4
(C) 20.5
(D) 41.0

MCQ 6.18 The velocity profile of a fully developed laminar flow in a straight circular pipe, as shown in the figure, is given by the expression

$$
u(r)=-\frac{R^{2}}{4 \mu}\left(\frac{d p}{d x}\right)\left(1-\frac{r^{2}}{R^{2}}\right)
$$

Where $\frac{d p}{d x}$ is a constant. The average velocity of fluid in the pipe is

(A) $-\frac{\mathrm{R}^{2}}{8 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)$
(B) $-\frac{\mathrm{R}^{2}}{4 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)$
(C) $-\frac{\mathrm{R}^{2}}{2 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)$
(D) $-\frac{\mathrm{R}^{2}}{\mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)$

YEAR 2008
ONE MARK
MCQ 6.19 For the continuity equation given by $\nabla \mathbf{V}=0$ to be valid, where \mathbf{V} is the velocity vector, which one of the following is a necessary condition ?
(A) steady flow
(B) irrotational flow
(C) inviscid flow
(D) incompressible flow

YEAR 2008
TWO MARKS
MCQ 6.20 Water, having a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$, issues from a nozzle with a velocity of $10 \mathrm{~m} / \mathrm{s}$ and the jet strikes a bucket mounted on a P elton wheel. The wheel rotates at $10 \mathrm{rad} / \mathrm{s}$. The mean diameter of the wheel is 1 m . The jet is split into two equal streams by the bucket, such that each stream is deflected by 120° as shown in the figure. Friction in the bucket may be neglected. M agnitude of the torque exerted by the water on the wheel, per unit mass flow rate of the incoming jet, is

(A) $0(\mathrm{~N}-\mathrm{m}) /(\mathrm{kg} / \mathrm{s})$
(B) 1.25 ($\mathrm{N}-\mathrm{m}$)/(kg / s)
(C) 2.5 ($\mathrm{N}-\mathrm{m}$)/ (kg/ s)
(D) 3.75 ($\mathrm{N}-\mathrm{m}$)/ (kg/s)

- Common Data For Q. 21 and Q. 22

The gap between a moving circular plate and a stationary surface is being continuously reduced, as the circular plate comes down at a uniform speed V towards the stationary bottom surface, as shown in the figure. In the process, the fluid contained between the two plates flows out radially. The fluid is assumed to be incompressible and inviscid.

MCQ 6.21 The radial velocity V_{r} at any radius r, when the gap width is h, is
(A) $V_{r}=\frac{V r}{2 h}$
(B) $V_{r}=\frac{V r}{h}$
(C) $V_{r}=\frac{2 V h}{r}$
(D) $V_{r}=\frac{V h}{r}$

MCQ 6.22 The radial component of the fluid acceleration at $r=R$ is
(A) $\frac{3 V^{2} R}{4 h^{2}}$
(B) $\frac{V^{2} R}{4 h^{2}}$
(C) $\frac{V^{2} R}{2 h^{2}}$
(D) $\frac{V^{2} h}{2 R^{2}}$

YEAR 2007
ONE MARK
MCQ 6.23 Consider an incompressible laminar boundary layer flow over a flat plate of length L, aligned with the direction of an incoming uniform free stream. If F is the ratio of the drag force on the front half of the plate to the drag force on the rear half, then
(A) $\mathrm{F}<1 / 2$
(B) $\mathrm{F}=1 / 2$
(C) $\mathrm{F}=1$
(D) $\mathrm{F}>1$

MCQ 6.24 In a steady flow through a nozzle, the flow velocity on the nozzle axis is given by $v=u_{0}(1+3 x / L)$, where x is the distance along the axis of the nozzle from its inlet plane and L is the length of the nozzle. The time required for a fluid particle on the axis to travel from the inlet to the exit plane of the nozzle is
(A) $\frac{L}{u_{0}}$
(B) $\frac{L}{3 \mathrm{u}_{0}} \ln 4$
(C) $\frac{L}{4 u_{0}}$
(D) $\frac{\mathrm{L}}{2.5 \mathrm{u}_{0}}$

MCQ 6.25 Consider steady laminar incompressible anti-symmetric fully developed viscous flow through a straight circular pipe of constant cross-sectional area at a Reynolds number of 5 . The ratio of inertia force to viscous force on a fluid particle is
(A) 5
(B) $1 / 5$
(C) 0
(D) ∞

YEAR 2007
TWO MARKS
MCQ 6.26 The inlet angle of runner blades of a Francis turbine is 90°. The blades are so shaped that the tangential component of velocity at blade outlet is zero. The flow velocity remains constant throughout the blade passage and is equal to half of the blade velocity at runner inlet. The blade efficiency of the runner is
(A) 25%
(B) 50%
(C) 80%
(D) 89%

MCQ 6.27 A model of a hydraulic turbine is tested at a head of $1 / 4^{\text {th }}$ of that under which the full scale turbine works. The diameter of the model is half of that of the full scale turbine. If N is the RPM of the full scale turbine, the RPM of the model will be
(A) $\mathrm{N} / 4$
(B) $\mathrm{N} / 2$
(C) N
(D) 2 N

MCQ 6.28 Which combination of the following statements about steady incompressible forced vortex flow is correct ?
P: Shear stress is zero at all points in the flow.
Q: Vorticity is zero at all points in the flow.
R: Velocity is directly proportional to the radius from the center of the vortex.

S: Total mechanical energy per unit mass is constant in the entire flow field.
(A) P and Q
(B) R and S
(C) P and R
(D) P and S

MCQ 6.29 M atch List-I with List-II and select the correct answer using the codes given below the lists :

List-I

P. Centrifugal compressor
Q. Centrifugal pump
R. Pelton wheel
S. K aplan turbine

List-II

1. Axial flow
2. Surging
3. Priming
4. Pure impulse

Codes:

	P	Q	R	S
(A)	2	3	4	1
(B)	2	3	1	4
(C)	3	4	1	2
(D)	1	2	3	4

- Common Data For Q. 30 and Q. 31 :

Consider a steady incompressible flow through a channel as shown below.

The velocity profile is uniform with a value of U_{0} at the inlet section A . The velocity profile at section B downstream is

$$
u= \begin{cases}V_{m} \frac{y}{\delta}, & 0 \leq y \leq \delta \\ V_{m}, & \delta \leq y \leq H-\delta \\ V_{m} \frac{H-y}{\delta}, & H-\delta \leq y \leq H\end{cases}
$$

MCQ 6.30 The ratio V_{m} / U_{0} is
(A) $\frac{1}{1-2(\delta / H)}$
(B) 1
(C) $\frac{1}{1-(\delta / H)}$
(D) $\frac{1}{1+(\delta / H)}$

MCQ 6.31 The ratio $\frac{\mathrm{p}_{A}-\mathrm{p}_{B}}{\frac{1}{2} \rho \cup_{0}^{2}}$ (where p_{A} and p_{B} are the pressures at section A and B) respectively, and ρ is the density of the fluid) is
(A) $\frac{1}{[1-(\delta / H)]^{2}}-1$
(B) $\frac{1}{[1-(\delta / H)]^{2}}$
(C) $\frac{1}{[1-(2 \delta / H)]^{2}}-1$
(D) $\frac{1}{1+(\delta / H)}$

YEAR 2006
ONE MARK
MCQ 6.32 For a Newtonian fluid
(A) Shear stress is proportional to shear strain
(B) R ate of shear stress is proportional to shear strain
(C) Shear stress is proportional to rate of shear strain
(D) R ate of shear stress is proportional to rate of shear strain

MCQ 6.33 In a two-dimensional velocity field with velocities u and v along the x and y directions respectively, the convective acceleration along the x-direction is given by
(A) $u \frac{\partial v}{\partial x}+v \frac{\partial u}{\partial y}$
(B) $u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}$
(C) $u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}$
(D) $v \frac{\partial u}{\partial x}+u \frac{\partial u}{\partial y}$

MCQ 6.34 In a Pelton wheel, the bucket peripheral speed is $10 \mathrm{~m} / \mathrm{s}$, the water jet velocity is $25 \mathrm{~m} / \mathrm{s}$ and volumetric flow rate of the jet is $0.1 \mathrm{~m}^{3} / \mathrm{s}$. If the jet deflection angle is 120° and the flow is ideal, the power developed is
(A) 7.5 kW
(B) 15.0 kW
(C) 22.5 kW
(D) 37.5 kW

MCQ 6.35 A two-dimensional flow field has velocities along the x and y directions given by $u=x^{2} t$ and $v=-2 x y t$ respectively, where t is time. The equation of stream line is
(A) $x^{2} y=$ constant
(B) $x y^{2}=$ constant
(C) $x y=$ constant
(D) not possible to determine

MCQ 6.36 The velocity profile in fully developed laminar flow in a pipe of diameter D is given by $u=u_{0}\left(1-4 r^{2} / D^{2}\right)$, where r is the radial distance from the center. If the viscosity of the fluid is μ, the pressure drop across a length L of the pipe is
(A) $\frac{\mu u_{0} L}{D^{2}}$
(B) $\frac{4 \mu u_{0} L}{D^{2}}$
(C) $\frac{8 \mu u_{0} L}{D^{2}}$
(D) $\frac{16 \mu u_{0} L}{D^{2}}$

MCQ 6.37 A siphon draws water from a reservoir and discharge it out at atmospheric pressure. Assuming ideal fluid and the reservoir is large, the velocity at point P in the siphon tube is

(A) $\sqrt{2 g h_{1}}$
(B) $\sqrt{2 g h_{2}}$
(C) $\sqrt{2 g\left(h_{2}-h_{1}\right)}$
(D) $\sqrt{2 g\left(h_{2}+h_{1}\right)}$

MCQ 6.38 A large hydraulic turbine is to generate 300 kW at 1000 rpm under a head of 40 m . For initial testing, a 1:4 scale model of the turbine operates under a head of 10 m . The power generated by the model (in kW) will be
(A) 2.34
(B) 4.68
(C) 9.38
(D) 18.75

MCQ 6.39 A horizontal-shaft centrifugal pump lifts water at $65^{\circ} \mathrm{C}$. The suction nozzle is one meter below pump center line. The pressure at this point equals 200 kPa gauge and velocity is $3 \mathrm{~m} / \mathrm{s}$. Steam tables show saturation pressure at $65^{\circ} \mathrm{C}$ is 25 kPa , and specific volume of the saturated liquid is 0.001020 $\mathrm{m}^{3} / \mathrm{kg}$. The pump Net Positive Suction Head (NPSH) in meters is

(A) 24
(B) 26
(C) 28
(D) 30

- Common Data For Q. 40 and Q. 41

A smooth flat plate with a sharp leading edge is placed along a gas stream flowing at $\mathrm{U}=10 \mathrm{~m} / \mathrm{s}$. The thickness of the boundary layer at section $\mathrm{r}-\mathrm{s}$ is 10 mm , the breadth of the plate is 1 m (into the paper) and the density of the gas $\rho=1.0 \mathrm{~kg} / \mathrm{m}^{3}$. Assume that the boundary layer is thin, twodimensional, and follows a linear velocity distribution, $u=U(y / \delta)$, at the section r-s, where y is the height from plate.

MCQ 6.40 The mass flow rate (in kg / s) across the section $\mathrm{q}-\mathrm{r}$ is
(A) zero
(B) 0.05
(C) 0.10
(D) 0.15

MCQ 6.41 The integrated drag force (in N) on the plate, between $p-s$, is
(A) 0.67
(B) 0.33
(C) 0.17
(D) zero

MCQ 6.42 The velocity components in the x and y directions of a two dimensional potential flow are u and v, respectively. Then $\partial u / \partial x$ is equal to
(A) $\frac{\partial v}{\partial x}$
(B) $-\frac{\partial v}{\partial x}$
(C) $\frac{\partial v}{\partial y}$
(D) $-\frac{\partial v}{\partial y}$

MCQ 6.43 A venturimeter of 20 mm throat diameter is used to measure the velocity of water in a horizontal pipe of 40 mm diameter. If the pressure difference between the pipe and throat sections is found to be 30 kPa then, neglecting frictional losses, the flow velocity is
(A) $0.2 \mathrm{~m} / \mathrm{s}$
(B) $1.0 \mathrm{~m} / \mathrm{s}$
(C) $1.4 \mathrm{~m} / \mathrm{s}$
(D) $2.0 \mathrm{~m} / \mathrm{s}$

MCQ 6.44 A U-tube manometer with a small quantity of mercury is used to measure the static pressure difference between two locations A and B in a conical section through which an incompressible fluid flows. At a particular flow rate, the mercury column appears as shown in the figure. The density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Which of the following is correct ?

(A) Flow direction is A to B and $p_{A}-p_{B}=20 \mathrm{kPa}$
(B) F low direction is B to A and $p_{A}-p_{B}=1.4 \mathrm{kPa}$
(C) Flow direction is A to B and $p_{B}-p_{A}=20 \mathrm{kPa}$
(D) Flow direction is B to A and $p_{B}-p_{A}=1.4 \mathrm{kPa}$

MCQ 6.45 A leaf is caught in a whirlpool. At a given instant, the leaf is at a distance of 120 m from the centre of the whirlpool. The whirlpool can be described by the following velocity distribution:

$$
\mathrm{V}_{\mathrm{r}}=-\left(\frac{60 \times 10^{3}}{2 \pi \mathrm{r}}\right) \mathrm{m} / \mathrm{s} \text { and } \mathrm{V}_{\theta}=\frac{300 \times 10^{3}}{2 \pi \mathrm{r}} \mathrm{~m} / \mathrm{s}
$$

Where r (in metres) is the distance from the centre of the whirlpool. W hat will be the distance of the leaf from the centre when it has moved through half a revolution ?
(A) 48 m
(B) 64 m
(C) 120 m
(D) 142 m

MCQ 6.46 An incompressible fluid (kinematic viscosity, $7.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$ while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascals on the surfaces of top plate is
(A) 0.651×10^{-3}
(B) 0.651
(C) 6.51
(D) 0.651×10^{3}

MCQ 6.47 A fluid flow is represented by the velocity field $\mathbf{V}=a x i+a y \mathbf{j}$, where a is a constant. The equation of stream line passing through a point $(1,2)$ is
(A) $x-2 y=0$
(B) $2 x+y=0$
(C) $2 x-y=0$
(D) $x+2 y=0$

YEAR 2004

TWO MARKS
MCQ 6.48 The following data about the flow of liquid was observed in a continuous chemical process plant:

Flow rate	7.5 to	7.7 to	7.9 to	8.1 to	8.3 to	8.5 to
(litres / sec)	7.7	7.9	8.1	8.3	8.5	8.7
Frequency	1	5	35	17	12	10

M ean flow rate of the liquid is
(A) 8.00 litres/ sec
(B) 8.06 litres/ sec
(C) 8.16 litres/ sec
(D) 8.26 litres/ sec

MCQ 6.49 For a fluid flow through a divergent pipe of length L having inlet and outlet radii of R_{1} and R_{2} respectively and a constant flow rate of Q, assuming the velocity to be axial and uniform at any cross-section, the acceleration at the exit is
(A) $\frac{2 Q\left(R_{1}-R_{2}\right)}{\pi L R_{2}^{3}}$
(B) $\frac{2 Q^{2}\left(R_{1}-R_{2}\right)}{\pi L R_{2}^{3}}$
(C) $\frac{2 Q^{2}\left(R_{1}-R_{2}\right)}{\pi^{2} L R_{2}^{5}}$
(D) $\frac{2 Q^{2}\left(R_{2}-R_{1}\right)}{\pi^{2} L R_{2}^{5}}$

MCQ 6.50 A closed cylinder having a radius R and height H is filled with oil of density ρ. If the cylinder is rotated about its axis at an angular velocity of ω, then thrust at the bottom of the cylinder is
(A) $\pi \mathrm{R}^{2} \rho \mathrm{gH}$
(B) $\pi R^{2} \frac{\rho \omega^{2} R^{2}}{4}$
(C) $\pi R^{2}\left(\rho \omega^{2} R^{2}+\rho g H\right)$
(D) $\pi \mathrm{R}^{2}\left(\frac{\rho \omega^{2} \mathrm{R}^{2}}{4}+\rho \mathrm{gH}\right)$

MCQ 6.51 For air flow over a flat plate, velocity (U) and boundary layer thickness (δ) can be expressed respectively, as

$$
\frac{U}{U_{\infty}}=\frac{3 y}{2 \delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3} ; \delta=\frac{4.64 \mathrm{x}}{\sqrt{R e_{\mathrm{x}}}}
$$

If the free stream velocity is $2 \mathrm{~m} / \mathrm{s}$, and air has kinematic viscosity of $1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and density of $1.23 \mathrm{~kg} / \mathrm{m}^{3}$, the wall shear stress at $\mathrm{x}=1 \mathrm{~m}$, is
(A) $2.36 \times 10^{2} \mathrm{~N} / \mathrm{m}^{2}$
(B) $43.6 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(C) $4.36 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(D) $2.18 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$

MCQ 6.52 A centrifugal pump is required to pump water to an open water tank situated 4 km away from the location of the pump through a pipe of diameter 0.2 m having Darcy's friction factor of 0.01 . The average speed of water in the pipe is $2 \mathrm{~m} / \mathrm{s}$. If it is to maintain a constant head of 5 m in the tank, neglecting other minor losses, then absolute discharge pressure at the pump exit is
(A) 0.449 bar
(B) 5.503 bar
(C) 44.911 bar
(D) 55.203 bar

MCQ 6.53 The pressure gauges G_{1} and G_{2} installed on the system show pressure of $\mathrm{p}_{\mathrm{G} 1}=5.00$ bar and $\mathrm{p}_{\mathrm{G} 2}=1.00$ bar. T he value of unknown pressure p is

(A) 1.01 bar
(B) 2.01 bar
(C) 5.00 bar
(D) 7.01 bar

MCQ 6.54 At a hydro electric power plant site, available head and flow rate are 24.5 m and $10.1 \mathrm{~m}^{3} / \mathrm{s}$ respectively. If the turbine to be installed is required to run at 4.0 revolution per second (rps) with an overall efficiency of 90%, the suitable type of turbine for this site is
(A) Francis
(B) K aplan
(C) Pelton
(D) Propeller

MCQ 6.55 M atch List-I with List-II and select the correct answer using the codes given below the lists:

List-I

P. Reciprocating pump
Q. Axial flow pump
R. Microhydel plant
S. Backward curved vanes

List-II

1. Plant with power output below 100 kW
2. Plant with power output between 100 kW to 1 M W
3. Positive displacement
4. Draft tube
5. High flow rate, low pressure ratio
6. Centrifugal pump impeller

Codes:

	P	Q	R	S
(A)	3	5	6	2
(B)	3	5	2	6
(C)	3	5	1	6
(D)	4	5	1	6

YEAR 2003 ONE MARK

MCQ 6.56 A cylindrical body of cross-sectional area A, height H and density ρ_{s}, is immersed to a depth h in a liquid of density ρ, and tied to the bottom with a string. The tension in the string is

(A) $\rho \mathrm{gh} \mathrm{A}$
(B) $\left(\rho_{s}-\rho\right) g h A$
(C) $\left(\rho-\rho_{s}\right) g h A$
(D) $\left(\rho \mathrm{h}-\rho_{\mathrm{s}} \mathrm{H}\right) \mathrm{gA}$

YEAR 2003
TWO MARKS
MCQ 6.57 A water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of Q; the velocity of the water when it hits the water surface is U. At a particular instant of time
the total mass of the container and water is m . The force registered by the weighing balance at this instant of time is
(A) $\mathrm{mg}+\rho \mathrm{QU}$
(B) $\mathrm{mg}+2 \rho \mathrm{QU}$
(C) $m g+\rho Q U^{2} / 2$
(D) $\rho Q U^{2} / 2$

MCQ 6.58 A ir flows through a venturi and into atmosphere. A ir density is ρ; atmospheric pressure is p_{a}; throat diameter is D_{t}; exit diameter is D and exit velocity is U. The throat is connected to a cylinder containing a frictionless piston attached to a spring. The spring constant is k. The bottom surface of the piston is exposed to atmosphere. Due to the flow, the piston moves by distance x. A ssuming incompressible frictionless flow, x is

(A) $\left(\rho U^{2} / 2 k\right) \pi D_{s}^{2}$
(B) $\left(\rho U^{2} / 8 \mathrm{k}\right)\left(\frac{\mathrm{D}^{2}}{\mathrm{D}_{\mathrm{t}}^{2}}-1\right) \pi \mathrm{D}_{\mathrm{s}}^{2}$
(C) $\left(\rho U^{2} / 2 k\right)\left(\frac{D^{2}}{D_{t}^{2}}-1\right) \pi D_{s}^{2}$
(D) $\left(\rho U^{2} / 8 k\right)\left(\frac{D^{4}}{D_{t}^{4}}-1\right) \pi D_{s}^{2}$

MCQ 6.59 A centrifugal pump running at 500 rpm and at its maximum efficiency is delivering a head of 30 m at a flow rate of 60 litres per minute. If the rpm is changed to 1000, then the head H in metres and flow rate Q in litres per minute at maximum efficiency are estimated to be
(A) $\mathrm{H}=60, \mathrm{Q}=120$
(B) $\mathrm{H}=120, \mathrm{Q}=120$
(C) $H=60, Q=480$
(D) $H=120, Q=30$

MCQ 6.60 Match List-I with the List-II and select the correct answer using the codes given below the lists:

List-I

P Curtis
Q Rateau
R K aplan
S Francis

List-II

1. Reaction steam turbine
2. Gas turbine
3. Velocity compounding
4. Pressure compounding
5. Impulse water turbine
6. A xial turbine
7. Mixed flow turbine
8. Centrifugal pump

Codes:

	P	Q	R	S
(A)	2	1	1	6
(B)	3	1	5	7
(C)	1	3	1	5
(D)	3	4	7	6

MCQ 6.61 A ssuming ideal flow, the force F in newtons required on the plunger to push out the water is
(A) 0
(B) 0.04
(C) 0.13
(D) 1.15

MCQ 6.62 Neglect losses in the cylinder and assume fully developed Iaminar viscous flow throughout the needle; the Darcy friction factor is $64 / \mathrm{Re}$. W here Re is the Reynolds number. Given that the viscosity of water is 1.0×10^{-3} $\mathrm{kg} / \mathrm{s}-\mathrm{m}$, the force F in newtons required on the plunger is
(A) 0.13
(B) 0.16
(C) 0.3
(D) 4.4

YEAR 2002 ONE MARK

MCQ 6.63 If there are m physical quantities and n fundamental dimensions in a particular process, the number of non-dimentional parameters is
(A) $m+n$
(B) $m \times n$
(C) $m-n$
(D) m / n

MCQ 6.64 If x is the distance measured from the leading edge of a flat plate, the laminar boundary layer thickness varies as
(A) $\frac{1}{x}$
(B) $x^{4 / 5}$
(C) x^{2}
(D) $x^{1 / 2}$

MCQ 6.65 Flow separation in flow past a solid object is caused by
(A) a reduction of pressure to vapour pressure
(B) a negative pressure gradient
(C) a positive pressure gradient
(D) the boundary layer thickness reducing to zero

MCQ 6.66 The value of B iot number is very small (less than 0.01) when
(A) the convective resistance of the fluid is negligible
(B) the conductive resistance of the fluid is negligible
(C) the conductive resistance of the solid is negligible
(D) None of the above

YEAR 2002
TWO MARKS
MCQ 6.67 The properties of mercury at 300 K are; density $=13529 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat at constant pressure $=0.1393 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$, dynamic viscosity $=0.1523 \times 10^{-2} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ and thermal conductivity $=8.540 \mathrm{~W} / \mathrm{m}-\mathrm{K}$. The Prandtl number of the mercury at 300 K is
(A) 0.0248
(B) 2.48
(C) 24.8
(D) 248

YEAR 2001

ONE MARK

MCQ 6.68 The SI unit of kinematic viscosity (v) is
(A) $\mathrm{m}^{2} / \mathrm{s}$
(B) $\mathrm{kg} / \mathrm{m}-\mathrm{s}$
(C) $\mathrm{m} / \mathrm{s}^{2}$
(D) $\mathrm{m}^{3} / \mathrm{s}^{2}$

MCQ 6.69 A static fluid can have
(A) non-zero normal and shear stress
(B) negative normal stress and zero shear stress
(C) positive normal stress and zero shear stress
(D) zero normal stress and non-zero shear stress

MCQ 6.70 Lumped heat transfer analysis of a solid object suddenly exposed to a fluid medium at a different temperature is valid when
(A) B iot number <0.1
(B) B iot number >0.1
(C) Fourier number <0.1
(D) Fourier number >0.1

YEAR 2001
TWO MARKS
MCQ 6.71 The horizontal and vertical hydrostatic forces F_{x} and F_{y} on the semi-circular gate, having a width w into the plane of figure, are

(A) $\mathrm{F}_{\mathrm{x}}=\rho$ ghrw and $\mathrm{F}_{\mathrm{y}}=0$
(B) $F_{x}=2 \rho$ ghrw and $F_{y}=0$
(C) $\mathrm{F}_{\mathrm{x}}=\rho$ ghrw and $\mathrm{F}_{\mathrm{y}}=\rho g \mathrm{gr}^{2} / 2$
(D) $\mathrm{F}_{\mathrm{x}}=2 \rho$ ghrw and $\mathrm{F}_{\mathrm{y}}=\pi \rho \mathrm{gwr} \mathrm{r}^{2} / 2$

MCQ 6.72 The two-dimensional flow with velocity $\mathbf{v}=(x+2 y+2) \mathbf{i}+(4-y) \mathbf{j}$ is
(A) compressible and irrotational
(B) compressible and not irrotational
(C) incompressible and irrotational
(D) incompressible and not irrotational

MCQ 6.73 Water (Prandtl number $=6$) flows over a flat plate which is heated over the entire length. Which one of the following relationships between the hydrodynamic boundary layer thickness (δ) and the thermal boundary layer thickness $\left(\delta_{t}\right)$ is true?
(A) $\delta_{t}>\delta$
(B) $\delta_{t}<\delta$
(C) $\delta_{t}=\delta$
(D) cannot be predicted

SOLUTION

sol 6.1 Option (A) is correct.
From Darcy Weischback equation head loss

$$
\begin{equation*}
h=f \times \frac{L}{D} \times \frac{V^{2}}{2 g} \tag{1}
\end{equation*}
$$

Given that $h=500 \mathrm{~m}, \mathrm{D}=\frac{200}{1000}=0.2 \mathrm{~m}, \mathrm{f}=0.0225$
Since volumetric flow rate

$$
\begin{aligned}
\dot{\nu} & =\text { A rea } \times \text { velocity of flow }(\mathrm{V}) \\
\mathrm{V} & =\frac{\dot{\nu}}{\text { Area }}=\frac{0.2}{\frac{\pi}{4} \times(0.2)^{2}}=6.37 \mathrm{~m} / \mathrm{s} \\
\mathrm{~h} & =0.0225 \times \frac{500}{0.2} \times \frac{(6.37)^{2}}{2 \times 9.81} \\
\mathrm{~h} & =116.33 \mathrm{~m} \simeq 116.18 \mathrm{~m}
\end{aligned}
$$

Hence,
sol 6.2 Option (C) is correct.
Degree of reaction

$$
R=1-\frac{\left(V_{1}^{2}-V_{2}^{2}\right)}{\left(V_{1}^{2}-V_{2}^{2}\right)+\left(U_{1}^{2}-U_{2}^{2}\right)+\left(W_{2}^{2}-W_{1}^{2}\right)}
$$

where
V_{1} and V_{2} are absolute velocities
W_{1} and W_{2} are relative velocities
U_{1} and $U_{2}=U$ for given figure
Given $\mathrm{W}_{2}=\mathrm{V}_{1}, \mathrm{~W}_{1}=\mathrm{V}_{2}$

Hence

$$
\begin{aligned}
\mathrm{R} & =1-\frac{\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}{\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)+\left(\mathrm{U}^{2}-\mathrm{U}^{2}\right)+\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)} \\
& =1-\frac{\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}{2\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}=1-\frac{1}{2}=0.5
\end{aligned}
$$

sol 6.3 Option (C) is correct.
For flat plate with zero pressure gradient and $\mathrm{Re}=1000$ (laminar flow).
Boundary layer thickness

$$
\begin{aligned}
\delta(\mathrm{x}) & =\frac{4.91 \mathrm{x}}{\sqrt{R \mathrm{e}_{\mathrm{x}}}}=\frac{4.91 \mathrm{x}}{\sqrt{\frac{V \mathrm{x}}{v}}}=\frac{4.91 \mathrm{x}^{1 / 2}}{\sqrt{\frac{V}{v}}} \\
\Rightarrow \quad & \propto \frac{x^{1 / 2}}{V^{1 / 2}} \quad \text { For a same location }(\mathrm{x}=1) \\
\delta & \propto(\mathrm{V})^{-1 / 2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{V} & =\text { velocity of fluid } \\
\frac{\delta_{1}}{\delta_{2}} & =\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{-1 / 2} \\
\delta_{2} & =\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{1 / 2} \times \delta_{1}=\left(\frac{\mathrm{V}_{1}}{4 \mathrm{~V}_{1}}\right)^{1 / 2} \times 1 \quad \mathrm{~V}_{2}=4 \mathrm{~V}_{1} \text { (Given) } \\
& =\left(\frac{1}{4}\right)^{1 / 2} \times 1=\frac{1}{2}=0.5
\end{aligned}
$$

sol 6.4 Option (A) is correct.
Takes point (1) at top and point (2) at bottom
By Bernoulli equation between (1) and (2)

$$
\mathrm{p}_{1}+\rho_{1} \mathrm{gh}_{1}+\rho_{2} \mathrm{gh}_{2}+\rho_{3} \mathrm{gh}_{3}+\frac{\mathrm{V}_{1}^{2}\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}\right)}{2 \mathrm{~g}}=\mathrm{p}_{\mathrm{atm} .}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}
$$

At R eference level (2) $Z_{2}=0$ and $V_{1}=0$ at point (1)
Therefore

$$
\begin{equation*}
\Rightarrow \quad \mathrm{p}_{1}+\rho_{1} \mathrm{gh}_{1}+\rho_{1} \mathrm{gh}_{2}+\rho_{3} \mathrm{gh}_{3}=\mathrm{patm.}^{+} \frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}} \tag{1}
\end{equation*}
$$

Since $\quad \mathrm{p}_{1}=$ atmospheric pressure (because tank is open)
Hence $\quad \mathrm{p}_{1}=\mathrm{p}_{\mathrm{atm}}$.
Therefore

$$
V_{2}=\sqrt{2 g \times\left[\rho_{1} g h_{1}+\rho_{2} g h_{2}+\rho_{3} g h_{3}\right]}
$$

By Rearranging

$$
\begin{aligned}
V_{2} & =\sqrt{2 g \times\left[\frac{\rho_{1} g h_{1}}{\rho_{3} g}+\frac{\rho_{2} g h_{2}}{\rho_{3} g}+h_{3}\right]} \\
& =\sqrt{2 g \times\left[\frac{\rho_{1} h_{1}}{\rho_{3}}+\frac{\rho_{2} h_{2}}{\rho_{3}}+h_{3}\right]}=\sqrt{2 g h_{3} \times\left[1+\frac{\rho_{1} h_{1}}{\rho_{3} h_{3}}+\frac{\rho_{2} h_{2}}{\rho_{3} h_{3}}\right]}
\end{aligned}
$$

sol 6.5 Option (B) is correct.
For Equipotential line, $\frac{d y}{d x}=-\frac{u}{v}=$ Slope of equipotential line
For stream function,

$$
\frac{d y}{d x}=\frac{v}{u}=\text { Slope of stream line }
$$

It is clear from equation (i) and (ii) that the product of slope of equipotential line and slope of the stream line at the point of intersection is equal to -1 .

$$
-\frac{u}{v} \times \frac{v}{u}=-1
$$

And, when $m_{1} m_{2}=-1$, Then lines are perpendicular, therefore the stream line and an equipotential line in a flow field are perpendicular to each other.
sol 6.6 Option (C) is correct.

Given: $p_{a}=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{x}=10 \times 10^{-3} \mathrm{~m}, \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ If the difference of pressure head ' h ' is measured by knowing the difference of the level of the manometer liquid say x. Then

$$
\begin{aligned}
h & =x\left[\frac{S . G_{w}}{S . G_{a}}-1\right]=x\left[\frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{a}}}-1\right] \\
& =10 \times 10^{-3}\left[\frac{1000}{1.2}-1\right]=8.32 \mathrm{~m}
\end{aligned}
$$

W here

$$
\text { S.G }=\frac{\text { W eight density of liquid }}{\text { W eight density of water }}
$$

$$
\text { S.G } \propto \text { Density of Liquid }
$$

Velocity of air $\quad V=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 9.8 \times 8.32}=12.8 \mathrm{~m} / \mathrm{sec}$
sol 6.7 Option (D) is correct.
Given : $\mathrm{p}_{1}=1$ bar, $\mathrm{p}_{2}=30$ bar, $\rho=990 \mathrm{~kg} / \mathrm{m}^{3}$
Isentropic work down by the pump is given by,

$$
\begin{aligned}
\mathrm{W} & =\nu \mathrm{dp}=\frac{\mathrm{m}}{\rho} \mathrm{dp} \\
\frac{\mathrm{~W}}{\mathrm{~m}} & =\frac{1}{\rho} \mathrm{dp}=\frac{1}{990} \times(30-1) \times 10^{5} \text { pascal } \\
& =2929.29 \mathrm{~J} / \mathrm{kg}=2.93 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

sOL 6.8 Option (B) is correct.

Fig. (I)
As shown in figure above. If point B^{\prime} is sufficiently far from B, these two forces (Gravity force and Buoyant force) create a restoring moment and return the body to the original position.
A measure of stability for floating bodies is the metacentric height GM , which is the distance between the centre of gravity G and the metacenter M (the intersection point of the lines of action of the buoyant force through the body before and after rotation.)
A floating body is stable if point M is above the point G, and thus $G M$ is
positive, and unstable if point M is below point G, and thus $G M$ is negative. Stable equilibrium occurs when M is above G.
sol 6.9 Option (C) is correct.
In case of two parallel plates, when flow is fully developed, the ratio of $\mathrm{V}_{\max }$ and $\mathrm{V}_{\text {avg }}$ is a constant.

$$
\begin{array}{ll}
\mathrm{V}_{\max } & =\frac{3}{2}
\end{array} \quad \mathrm{~V}_{\max }=6 \mathrm{~m} / \mathrm{sec}
$$

sol 6.10 Option (C) is correct.
From Buckingham's π-theorem
It states "If there are n variable (Independent and dependent variables) in a physical phenomenon and if these variables contain m fundamental dimensions (M, L, T), then variables are arranged into $(n-m)$ dimensionless terms.
Here $\quad n=$ dimensional variables

$$
k=\text { Primary dimensions }(M, L, T)
$$

So, non dimensional variables, $\Rightarrow \mathrm{n}-\mathrm{k}$
sol 6.11 Option (B) is correct.
Given: $\mathrm{P}_{1}=10^{3} \mathrm{~kW}, \mathrm{H}_{1}=40 \mathrm{~m}, \mathrm{H}_{2}=40-20=20 \mathrm{~m}$
If a turbine is working under different heads, the behavior of turbine can be easily known from the values of unit quantities i.e. from the unit power.
So

$$
\begin{aligned}
\mathrm{P}_{\mathrm{u}} & =\frac{\mathrm{P}}{\mathrm{H}^{3 / 2}} \\
\frac{\mathrm{P}_{1}}{\mathrm{H}_{1}^{3 / 2}} & =\frac{\mathrm{P}_{2}}{\mathrm{H}_{2}^{3 / 2}} \\
\mathrm{P}_{2} & =\left(\frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}\right)^{3 / 2} \times \mathrm{P}_{1}=\left(\frac{20}{40}\right)^{3 / 2} \times 1000=353.6 \approx 354 \mathrm{~kW}
\end{aligned}
$$

sol 6.12 Option (D) is correct.
Given: $\quad \mathbf{V}=2 x y \mathbf{i}-x^{2} z \mathbf{j} \quad P(1,1,1)$
The vorticity vector is defined as,

\quad Vorticity Vector	$=\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right\|$
Substitute, $\quad u$	$=2 \mathrm{xy}, \mathrm{v}=-\mathrm{x}^{2} z$,
So, $\left.\quad$$\mathbf{i}$ \mathbf{j} \mathbf{k} $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial y}$ $\frac{\partial}{\partial z}$ $2 x y$ $-\mathrm{x}^{2} z$ 0 \right\rvert\,	

$$
\begin{aligned}
& =\mathbf{i}\left[-\frac{\partial}{\partial z}\left(-x^{2} z\right)\right]-\mathbf{j}\left[-\frac{\partial}{\partial z}(2 x y)\right]+\mathbf{k}\left[\frac{\partial}{\partial x}\left(-x^{2} z\right)-\frac{\partial}{\partial y}(2 x y)\right] \\
& =x^{2} \mathbf{i}-0+\mathbf{k}[-2 x z-2 x]
\end{aligned}
$$

Vorticity vector at $\mathrm{P}(1,1,1), \quad=\mathbf{i}+\mathbf{k}[-2-2]=\mathbf{i}-4 \mathbf{k}$
sol 6.13 Option (C) is correct.
Given : $\mathrm{p}_{1}=50 \mathrm{kPa}, \mathrm{Z}_{1}=10 \mathrm{~m}, \mathrm{~V}_{2}=2 \mathrm{~m} / \mathrm{sec}, \mathrm{p}_{2}=20 \mathrm{kPa}, \mathrm{Z}_{2}=12 \mathrm{~m}$, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$

A pplying continuity equation at section S_{1} and S_{2},

$$
\begin{align*}
\mathrm{A}_{1} \mathrm{~V}_{1} & =\mathrm{A}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1} & =\mathrm{V}_{2} \tag{i}
\end{align*}
$$

$$
\mathrm{D}_{1}=\mathrm{D}_{2} \text { so } \mathrm{A}_{1}=\mathrm{A}_{2} \ldots
$$

A pplying Bernoulli's equation at section S_{1} and S_{2} with head loss h_{L},

$$
\begin{aligned}
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 g}+\mathrm{z}_{1} & =\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{L}} \\
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\mathrm{z}_{1} & =\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{L}} \quad \quad \quad \quad \text { From equation (i) } \\
\mathrm{h}_{\llcorner } & =\left(\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho \mathrm{~g}}\right)+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)=\frac{(50-20) \times 10^{3}}{(1000 \times 9.8)}+(10-12) \\
& =3.058-2=1.06 \mathrm{~m}
\end{aligned}
$$

Head at section $\left(\mathrm{S}_{1}\right)$ is given by,

$$
\mathrm{H}_{1}=\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\mathrm{Z}_{1}=\frac{50 \times 10^{3}}{10^{3} \times 9.8}+10=15.09 \mathrm{~m}
$$

Head at section S_{2},

$$
\mathrm{H}_{2}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\mathrm{Z}_{2}=\frac{20 \times 10^{3}}{10^{3} \times 9.8}+12=14.04 \mathrm{~m}
$$

From H_{1} and H_{2} we get $H_{1}>H_{2}$. So, flow is from S_{1} to S_{2}
sol 6.14 Option (D) is correct.

Here type of flow is related to the dimensionless numbers (Non-dimensional numbers). So
P. Compressible flow
Y. Mach number
Q. Free surface flow
W. Weber number
R. Boundary layer
Z. Skin friction coefficient
S. Pipe flow
U. Reynolds number
T. Heat convection
V. Nusselt number
So, correct pairs are P-Y, Q-W, R-Z, S-U, T-V
soL 6.15 Option (B) is correct.

Reducer
Given : $\mathrm{p}_{\mathrm{v}}=50 \mathrm{kPa}, \mathrm{w}=5 \mathrm{kN} / \mathrm{m}^{3}=\rho \mathrm{g}$
Consider steady, incompressible and irrotational flow and neglecting frictional effect. First of all applying continuity equation at section (1) and (2).

$$
\begin{aligned}
A_{1} V_{1} & =A_{2} V_{2} \\
\frac{\pi}{4}\left(d_{1}\right)^{2} \times V_{1} & =\frac{\pi}{4}\left(d_{2}\right)^{2} \times V_{2}
\end{aligned}
$$

Substitute the values of d_{1} and d_{2}, we get

$$
\begin{align*}
\frac{\pi}{4}(20)^{2} \times V_{1} & =\frac{\pi}{4}(10)^{2} \times V_{2} \\
400 V_{1} & =100 V_{2} \quad \Rightarrow V_{2}=4 V_{1} \tag{i}
\end{align*}
$$

Cavitation is the phenomenon of formation of vapor bubbles of a flowing liquid in a region where the pressure of liquid falls below the vapor pressure [$\mathrm{p}_{\mathrm{L}}<\mathrm{p} \mathrm{p}$]
So, we can say that maximum pressure in downstream of reducer should be equal or greater than the vapor pressure. For maximum discharge

$$
p_{v}=p_{2}=50 \mathrm{kPa}
$$

Applying Bernoulli's equation at point (1) and (2)

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}
$$

Here $\mathrm{z}_{1}=\mathrm{z}_{2}$ for horizontal pipe and $\mathrm{w}=\rho \mathrm{g}=5 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
\frac{150}{5}+\frac{V_{1}^{2}}{2 g} & =\frac{50}{5}+\frac{\left(4 \mathrm{~V}_{1}\right)^{2}}{2 g} \quad \quad \text { From equation (i) } \mathrm{V}_{2}=4 \mathrm{~V}_{1} \\
\frac{150}{5}-\frac{50}{5} & =\frac{16 \mathrm{~V}_{1}^{2}}{2 g}-\frac{\mathrm{V}_{1}^{2}}{2 g} \\
20 & =\frac{15 \mathrm{~V}_{1}^{2}}{2 g} \\
\mathrm{~V}_{1}^{2} & =\frac{40 \times 9.81}{15}=5.114 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

And $\quad V_{2}=4 V_{1}=4 \times 5.114=20.46 \mathrm{~m} / \mathrm{sec}$
M aximum discharge,

$$
\begin{aligned}
\mathrm{Q}_{\max } & =\mathrm{A}_{2} \mathrm{~V}_{2}=\frac{\pi}{4}\left(\mathrm{~d}_{2}\right)^{2} \mathrm{~V}_{2}=\frac{\pi}{4}\left(10 \times 10^{-2}\right)^{2} \times 20.46 \\
& =\frac{\pi}{4} \times 10^{-2} \times 20.46=0.16 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

SOL 6.16 Option (D) is correct.
Given :
$P: \quad u=2 y, V=-3 x$
Q: $\quad u=3 x y, V=0$
$R: \quad u=-2 x, V=2 y$
For incompressible fluid,

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{i}
\end{equation*}
$$

For irrotational flow $\zeta_{z}=0$,

$$
\begin{align*}
\zeta_{z} & =\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) & =0 \\
\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} & =0 \tag{ii}
\end{align*}
$$

From equation (i) and (ii), check P, Q and R
For $P: \quad u=2 y, \quad \frac{\partial u}{\partial x}=0, \frac{\partial u}{\partial y}=2$
$v=-3 x, \quad \frac{\partial v}{\partial y}=0, \frac{\partial v}{\partial x}=-3$
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \Rightarrow 0+0=0 \quad$ (Flow is incompressible)
Or, $\quad \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$

$$
-3-2=0 \quad \Rightarrow-5 \neq 0
$$

(Rotational flow)
For $Q: \quad u=3 x y \quad \frac{\partial u}{\partial x}=3 y, \frac{\partial u}{\partial y}=3 x$

	$\mathrm{v}=0$	$\frac{\partial v}{\partial y}=0, \frac{\partial v}{\partial x}=0$	
	$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$	$\Rightarrow 3 y \neq 0$	(Compressible flow)
Or,	$\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$		
	$0-3 x=0$	$\Rightarrow-3 x \neq 0$	(Rotational flow)
For R :	$u=-2 x$	$\frac{\partial u}{\partial x}=-2, \frac{\partial u}{\partial y}=0$	
	$\mathrm{v}=2 \mathrm{y}$	$\frac{\partial v}{\partial y}=2, \frac{\partial v}{\partial x}=0$	
	$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$		
	$-2+2=0$	$\Rightarrow 0=0$	(Incompressible flow)
Or,	$\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$		
	$0-0=0$	$\Rightarrow 0=0$	(Irrotational flow)

So, we can easily see that R is incompressible and irrotational flow.
sol 6.17 Option (A) is correct.
Given : $\mathrm{L}=1 \mathrm{~km}=1000 \mathrm{~m}, \mathrm{D}=200 \mathrm{~mm}=0.2 \mathrm{~m}, \mathrm{Q}=0.07 \mathrm{M}^{3} / \mathrm{sec}$

$$
\mathrm{f}=0.02, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

Head loss is given by,

$$
\begin{aligned}
h_{f} & =\frac{f L V^{2}}{D \times 2 g}=\frac{f L}{D \times 2 g}\left(\frac{4 Q}{\pi D^{2}}\right)^{2}=\frac{16 f L Q^{2}}{\pi^{2} D^{5} \times 2 g}=\frac{8 f L Q^{2}}{\pi^{2} D^{5} g} \quad Q=\frac{\pi D^{2}}{4} \times V \\
& =\frac{8 \times 0.02 \times 1000 \times(0.07)^{2}}{(3.14)^{2} \times(0.2)^{5} \times(9.81)} \\
& =\frac{0.784}{0.30}=2.61 \mathrm{~m} \text { of water Pumping power required, } \\
P & =\rho g Q \times h_{f}=1000 \times 9.81 \times 0.07 \times 2.61 \\
& =1752.287=1.752 \mathrm{~kW} \approx 1.8 \mathrm{~kW}
\end{aligned}
$$

sol 6.18 Option (A) is correct.

Fig. (I)
Fig. (II)

$$
u(r)=-\frac{R^{2}}{4 \mu}\left(\frac{d p}{d x}\right)\left(1-\frac{r^{2}}{R^{2}}\right)
$$

Therefore, the velocity profile in fully developed laminar flow in a pipe is parabolic with a maximum at the center line and minimum at the pipe wall. The average velocity is determined from its definition,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{avg}} & =\int_{0}^{\mathrm{R}} \mathrm{u}(\mathrm{r}) \mathrm{rdr}=-\frac{2}{\mathrm{R}^{2}} \int_{0}^{\mathrm{R}} \frac{\mathrm{R}^{2}}{4 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left(1-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right) \mathrm{rdr} \\
& =-\frac{1}{2 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right) \int_{0}^{\mathrm{R}}\left(\mathrm{r}-\frac{\mathrm{r}^{3}}{\mathrm{R}^{2}}\right) \mathrm{dr} \\
& =-\frac{1}{2 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left[\frac{\mathrm{r}^{2}}{2}-\frac{\mathrm{r}^{4}}{4 \mathrm{R}^{2}}\right]_{0}^{\mathrm{R}}=-\frac{1}{2 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left[\frac{\mathrm{R}^{2}}{2}-\frac{\mathrm{R}^{4}}{4 \mathrm{R}^{2}}\right] \\
& =-\frac{1}{2 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right) \times \frac{\mathrm{R}^{2}}{4}=-\frac{\mathrm{R}^{2}}{8 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)
\end{aligned}
$$

Alternate M ethod :

Now we consider a small element (ring) of pipe with thickness dr and radius r.

We find the flow rate through this elementary ring.

$$
\begin{aligned}
& d Q=(2 \pi r) \times d r \times u(r) \quad \text { Put the value of } u(r) \\
& d Q=(2 \pi r) \times d r \times\left(-\frac{R^{2}}{4 \mu}\right)\left(\frac{d p}{d x}\right)\left(1-\frac{r^{2}}{R^{2}}\right)
\end{aligned}
$$

Now for total discharge integrate both the rides within limit.

$$
\mathrm{Q} \Rightarrow 0 \text { toQ and } \mathrm{R} \Rightarrow 0 \text { to } \mathrm{R}
$$

So

$$
\begin{aligned}
& \int_{0}^{Q} d Q=-2 \pi \frac{R^{2}}{4 \mu}\left(\frac{d p}{d x}\right) \int_{0}^{R} r\left(1-\frac{r^{2}}{R^{2}}\right) d r \\
& {[Q]_{0}^{Q}=-2 \pi \frac{R^{2}}{4 \mu}\left(\frac{d p}{d x}\right)\left[\frac{r^{2}}{2}-\frac{r^{4}}{4 R^{2}}\right]_{0}^{R}}
\end{aligned}
$$

Now put the limits, we have

$$
\begin{aligned}
\mathrm{Q} & =-2 \pi \frac{\mathrm{R}^{2}}{4 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left[\frac{\mathrm{R}^{2}}{2}-\frac{\mathrm{R}^{4}}{4 \mathrm{R}^{2}}\right]=-2 \pi \frac{\mathrm{R}^{2}}{4 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left[\frac{\mathrm{R}^{2}}{2}-\frac{\mathrm{R}^{2}}{4}\right] \\
& =-2 \pi\left(\frac{\mathrm{R}^{2}}{4 \mu}\right)\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left[\frac{\mathrm{R}^{2}}{4}\right]=-\frac{\pi \mathrm{R}^{4}}{8 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right) \\
\mathrm{Q} & =\mathrm{A} \text { rea } \times \mathrm{A} \text { verage velocity }=\mathrm{A} \times \mathrm{V}_{\text {avg. }} \\
\mathrm{V}_{\text {avg. }} & =\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{-\pi \mathrm{R}^{4}}{8 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right) \times \frac{1}{\pi \mathrm{R}^{2}}=-\frac{\mathrm{R}^{2}}{8 \mu}\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)
\end{aligned}
$$

Now

SOL 6.19 Option (D) is correct.
The continuity equation in three dimension is given by,

$$
\frac{\partial}{\partial \mathbf{x}}(\rho \mathbf{u})+\frac{\partial}{\partial \mathbf{y}}(\rho \mathbf{v})+\frac{\partial}{\partial \mathbf{z}}(\rho \mathbf{w})=0
$$

For incompressible flow $\rho=$ Constant

$$
\begin{aligned}
\rho\left[\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right] & =0 \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} & =0 \\
\nabla \cdot \mathbf{V} & =0
\end{aligned}
$$

So, the above equation represents the incompressible flow.
sol 6.20 None of these is correct.

Given : $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~V}=10 \mathrm{~m} / \mathrm{sec}, \theta=180-120=60^{\circ}, \mathrm{R}=0.5 \mathrm{~m}$ Initial velocity in the direction of jet $=\mathrm{V}$
Final velocity in the direction of the jet $=-\mathrm{V} \cos \theta$.
Force exerted on the bucket

$$
\begin{aligned}
\mathrm{F}_{\mathrm{x}} & =\rho \mathrm{AV} \mathrm{~V}-(-\mathrm{V} \cos \theta)]=\rho \mathrm{AV}[1+\cos \theta] \mathrm{V} \\
& =\mathrm{Q}(1+\cos \theta) \mathrm{V} \quad \mathrm{M} \text { ass flow rate } \mathrm{Q}=\rho \mathrm{AV}
\end{aligned}
$$

Torque,

$$
\mathrm{T}_{\mathrm{x}}=\mathrm{F}_{\mathrm{x}} \times \mathrm{R}=\mathrm{QV}(1+\cos \theta) \mathrm{R}
$$

Torque per unit mass flow rate

$$
\begin{aligned}
\frac{\mathrm{T}_{\mathrm{x}}}{\mathrm{Q}} & =\mathrm{V}(1+\cos \theta) \mathrm{R}=10\left(1+\cos 60^{\circ}\right) \times 0.5 \\
& =7.5 \mathrm{~N}-\mathrm{m} / \mathrm{kg} / \mathrm{sec}
\end{aligned}
$$

And

$$
\mathrm{F}_{\mathrm{y}}=\rho \mathrm{AV}(0-\mathrm{V} \sin \theta)=-\mathrm{QV} \sin \theta
$$

Torque in y-direction

$$
\mathrm{T}_{\mathrm{y}}=\mathrm{F}_{\mathrm{y}} \times \mathrm{R}=0 \quad \mathrm{R}=0
$$

Total Torque will be

$$
\mathrm{T}=\sqrt{\mathrm{T}_{\mathrm{x}}^{2}+\mathrm{T}_{\mathrm{y}}^{2}}=\mathrm{T}_{\mathrm{x}}=7.5 \mathrm{~N}-\mathrm{m} / \mathrm{kg} / \mathrm{sec}
$$

sol 6.21 Option (A) is correct.

Here Gap between moving and stationary plates are continuously reduced, so we can say that
Volume of fluid moving out radially

$$
=\text { Volume of fluid displaced by moving plate within radius } r
$$

Volume displaced by the moving plate

$$
\begin{equation*}
=\text { Velocity of moving plate } \times \mathrm{Area}=\mathrm{V} \times \pi \mathrm{r}^{2} \tag{i}
\end{equation*}
$$

Volume of fluid which flows out at radius r

$$
\begin{equation*}
=V_{r} \times 2 \pi r \times h \tag{ii}
\end{equation*}
$$

Equating equation (i) and (ii),

$$
\begin{aligned}
V \times \pi r^{2} & =V_{r} \times 2 \pi r h \\
V r & =2 V_{r} h \Rightarrow V_{r}=\frac{V r}{2 h}
\end{aligned}
$$

Alternate M ethod :

A pply continuity equation at point (i) and (ii),

$$
\begin{aligned}
A_{1} V_{1} & =A_{2} V_{2} \\
\mathrm{~V} \times \pi r^{2} & =V_{r} \times 2 \pi \mathrm{rh} \\
\mathrm{~V}_{\mathrm{r}} & =\frac{\mathrm{Vr}}{2 \mathrm{~h}}
\end{aligned}
$$

sol 6.22 Option (B) is correct.
From previous part of question,

$$
V_{r}=\frac{V r}{2 h}
$$

A cceleration at radius r is given by

$$
\begin{array}{ll}
\quad a_{r}=V_{r} \times \frac{d V_{r}}{d r}=V_{r} \times \frac{d}{d r}\left[\frac{V r}{2 h}\right]=V_{r} \times \frac{V}{2 h} \\
\text { At } r=R \quad & a_{r}=\frac{V R}{2 h} \times \frac{V}{2 h}=\frac{V^{2} R}{4 h^{2}}
\end{array}
$$

sol 6.23 Option (D) is correct.

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \times \frac{\rho \mathrm{A} V^{2}}{2}=\frac{1.33}{\sqrt{R_{\mathrm{L}}}} \times \frac{\rho \mathrm{A} V^{2}}{2}
$$

$$
C_{D}=\frac{1.33}{\sqrt{R_{L}}}
$$

$$
\begin{array}{ll}
=\frac{1.33}{\sqrt{\frac{\rho V \mathrm{~L}}{\mu}}} \times \frac{1}{2} \rho \times \mathrm{bLV}^{2} & \mathrm{Re}_{\mathrm{L}}=\frac{\rho \mathrm{VL}}{\mu} \\
=\frac{1.33}{\sqrt{\frac{\rho V}{\mu}}} \times \frac{1}{2} \rho \mathrm{bV}^{2} \sqrt{\mathrm{~L}} & \ldots(\mathrm{i})
\end{array}
$$

So from equation (i)

$$
\begin{equation*}
F_{D} \propto \sqrt{L} \tag{ii}
\end{equation*}
$$

Drag force on front half of plate

$$
\mathrm{F}_{\mathrm{D} / 2}=\sqrt{\frac{L}{2}}=\frac{\mathrm{F}_{\mathrm{D}}}{\sqrt{2}}
$$

From Equation (ii)
Drag on rear half,

$$
F_{D / 2}^{\prime}=F_{D}-F_{D / 2}=\left(1-\frac{1}{\sqrt{2}}\right) F_{D}
$$

Now ratio of $F_{D / 2}$ and $F_{D / 2}^{\prime}$ is

$$
F=\frac{F_{D / 2}}{F_{D / 2}^{\prime}}=\frac{\frac{F_{D}}{\sqrt{2}}}{\left(1-\frac{1}{\sqrt{2}}\right) F_{D}}=\frac{1}{\sqrt{2}-1}>1
$$

sol 6.24 Option (B) is correct.
Given :

$$
\begin{aligned}
v & =u_{0}\left(1+\frac{3 x}{L}\right) \\
\frac{d x}{d t} & =u_{0}\left(1+\frac{3 x}{L}\right)=\frac{u_{0}}{L}(L+3 x) \\
d t & =\frac{L}{u_{0}} \times \frac{1}{(L+3 x)} d x
\end{aligned}
$$

On integrating both the sides within limits $t \Rightarrow 0$ tot and $x \Rightarrow 0$ to L, we get

$$
\begin{aligned}
\int_{0}^{\mathrm{t}} \mathrm{dt} & =\frac{\mathrm{L}}{\mathrm{u}_{0}} \int_{0}^{\mathrm{L}} \frac{1}{(\mathrm{~L}+3 \mathrm{x})} \mathrm{dx} \\
{[\mathrm{t}]_{0}^{\mathrm{t}} } & =\frac{\mathrm{L}}{3 \mathrm{u}_{0}}[\ln (\mathrm{~L}+3 \mathrm{x})]_{0}^{\mathrm{L}} \\
\mathrm{t} & =\frac{\mathrm{L}}{3 \mathrm{u}_{0}}[\ln 4 \mathrm{~L}-\ln \mathrm{L}]=\frac{\mathrm{L}}{3 \mathrm{u}_{0}} \ln 4
\end{aligned}
$$

SOL 6.25 Option (A) is correct.
Reynolds Number,

$$
\begin{aligned}
\text { Re } & =\frac{\text { Inertia force }}{\text { Viscous force }}=\frac{\rho \mathrm{AV}^{2}}{\mu \times \frac{\mathrm{V}}{\mathrm{~L}} \times \mathrm{A}} \\
& =\frac{\rho \mathrm{VL}}{\mu}=5=\frac{\text { I.F. }}{\text { V.F. }}
\end{aligned}
$$

sol 6.26 Option (C) is correct.

Given figure shows the velocity triangle for the pelton wheel.

Inlet triangle
Velocity triangle for Francis turbine
Given:
Flow velocity at Inlet $\mathrm{V}_{\mathrm{f}_{1}}=$ flow velocity at outlet $\mathrm{V}_{\mathrm{f}_{2}}$

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{f}_{1}} & =\mathrm{V}_{\mathrm{f}_{2}}=\frac{\mathrm{U}_{1}}{2} \text { (blade velocity) } \\
\mathrm{V}_{2} & =\mathrm{V}_{\mathrm{f}_{2}} \\
\mathrm{U}_{1} & =\mathrm{V}_{\mathrm{w}_{1}}
\end{array} \theta=90^{\circ}
$$

From Inlet triangle, $\quad V_{1}^{2}=\left(V_{f_{1}}\right)^{2}+\left(V_{w_{1}}\right)^{2}=\left(\frac{u_{1}}{2}\right)^{2}+\left(u_{1}\right)^{2}=\frac{5}{4} u_{1}^{2}$

$$
\begin{aligned}
\text { Blade efficiency } & =\frac{V_{1}^{2}-V_{2}^{2}}{V_{1}^{2}} \times 100=\frac{\frac{5}{4} u_{1}^{2}-\frac{u_{1}^{2}}{4}}{\frac{5}{4} u_{1}^{2}} \times 100 \\
& =\frac{u_{1}^{2}}{\frac{5}{4} u_{1}^{2}} \times 100=80 \%
\end{aligned}
$$

SOL 6.27 Option (C) is correct.

$$
\mathrm{u}=\frac{\pi \mathrm{DN}}{60}=\sqrt{2 \mathrm{gH}}
$$

From this equation, $\sqrt{H} \propto D N$

$$
\frac{\sqrt{H}}{D N}=\text { Constant }
$$

So using this relation for the given model or prototype,

$$
\begin{align*}
\left(\frac{\sqrt{H}}{D N}\right)_{p} & =\left(\frac{\sqrt{H}}{D N}\right)_{m} \\
N_{p} & =\sqrt{\frac{H_{p}}{H_{m}}} \times \frac{D_{m}}{D_{p}} \tag{i}
\end{align*}
$$

Given: $H_{m}=\frac{1}{4} H_{p}, D_{m}=\frac{1}{2} D_{p}, N_{p}=N$

$$
\begin{aligned}
& \frac{N}{N_{m}}=\sqrt{\frac{H_{p}}{\frac{1}{4} H_{p}}} \times \frac{\frac{1}{2} D_{p}}{D_{p}}=\sqrt{4} \times \frac{1}{2}=1 \\
& N_{m}=N
\end{aligned}
$$

So,
sol 6.28 Option (B) is correct.
For forced Vortex flow the relation is given by,

$$
\begin{equation*}
V=r \omega \tag{i}
\end{equation*}
$$

From equation (i) it is shown easily that velocity is directly proportional to the radius from the centre of the vortex (Radius of fluid particle from the axis of rotation)
And also for forced vortex flow,

$$
\begin{aligned}
\frac{1}{2} \rho \omega^{2}\left(r_{2}^{2}-r_{1}^{2}\right)-\rho g\left(z_{2}-z_{1}\right) & =0 \\
\Delta K . E .-\Delta P . E . & =0 \quad \Rightarrow \quad \Delta K . E=\Delta P . E .
\end{aligned}
$$

Now total mechanical energy per unit mass is constant in the entire flow field.
sol 6.29 Option (A) is correct.

List-I

P. Centrifugal compressor
Q. Centrifugal pump
R. Pelton wheel
S. K aplan Turbine

List-II

2. Surging
3. Priming
4. Pure Impulse
5. Axial Flow

So, correct pairs are P-2, Q-3, R-4, S-1

SOL 6.30 Option (C) is correct.
Let width of the channel $=\mathrm{b}$
From mass conservation
Flow rate at section $A=$ flow rate at B
or Velocity $A \times A$ rea of $A=V$ elocity at $B \times A$ rea of B

$$
\begin{aligned}
& \quad U_{0} \times(H \times b)=\text { Velocity for }(0 \leq y \leq \delta) \times d y \times b \\
& \quad+\text { velocity for }(\delta \leq y \leq H-\delta) \times d y \times b \\
& \quad+\text { velocity for }(H-\delta \leq y \leq H) \times d y \times b
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathrm{U}_{0} \times \mathrm{H}=\mathrm{V}_{\mathrm{m}} \frac{\delta}{2}+\mathrm{V}_{\mathrm{m}}(\mathrm{H}-2 \delta)+\frac{\mathrm{V}_{\mathrm{m}} \delta}{2} \\
& \mathrm{U}_{0} \times \mathrm{H}=\mathrm{V}_{\mathrm{m}} \delta+\mathrm{V}_{\mathrm{m}}(\mathrm{H}-2 \delta)=\mathrm{V}_{\mathrm{m}}(\delta+\mathrm{H}-2 \delta)
\end{aligned}
$$

or

$$
\begin{aligned}
\mathrm{V}_{\mathrm{m}} & =\frac{\mathrm{H}}{\delta+\mathrm{H}-2 \delta} \\
& =\frac{\mathrm{H}}{\mathrm{H}-\delta}=\frac{1}{1-\frac{\delta}{\mathrm{H}}}
\end{aligned}
$$

sol 6.31 Option (A) is correct.
Applying Bernoulli's Equation at the section A and B.

$$
\frac{p_{A}}{\rho g}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{p_{B}}{\rho g}+\frac{V_{B}^{2}}{2 g}+z_{B}
$$

Here, $\mathrm{z}_{\mathrm{A}}=\mathrm{Z}_{\mathrm{B}}=0$
So,

$$
\begin{aligned}
\frac{\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}}{\rho \mathrm{~g}} & =\frac{\mathrm{V}_{\mathrm{B}}^{2}-\mathrm{V}_{\mathrm{A}}^{2}}{2 g} \\
\frac{\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}}{\rho} & =\frac{\mathrm{V}_{\mathrm{B}}^{2}-\mathrm{V}_{\mathrm{A}}^{2}}{2}=\frac{\mathrm{V}_{\mathrm{m}}^{2}-\mathrm{U}_{0}^{2}}{2} \quad \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{m}} \text { and } \mathrm{V}_{\mathrm{A}}=U_{0} \\
& =\frac{\mathrm{U}_{0}^{2}\left[\frac{\mathrm{~V}_{m}^{2}}{\mathrm{U}_{0}^{2}}-1\right]}{2} \\
\frac{\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}}{\frac{1}{2} \rho \mathrm{U}_{0}^{2}} & =\frac{\mathrm{V}_{\mathrm{m}}^{2}}{\mathrm{U}_{0}^{2}}-1=\left(\mathrm{V}_{\mathrm{m}}\right)^{2}-1
\end{aligned}
$$

Substitute,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{m}} & =\frac{1}{1-\frac{\delta}{\mathrm{H}}} \quad \text { From previous part of question } \\
\frac{\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}}{\frac{1}{2} \rho \mathrm{U}_{0}^{2}} & =\frac{1}{[1-\delta / \mathrm{H}]^{2}}-1
\end{aligned}
$$

sol 6.32 Option (C) is correct.

Velocity variation
near a body
From the Newton'slaw of V iscosity, the shear stress (τ) is directly proportional to the rate of shear strain (du/dy).

So, $\quad \tau \propto \frac{\mathrm{du}}{\mathrm{dy}}=\mu \frac{\mathrm{du}}{\mathrm{dy}}$
Where $\mu=$ Constant of proportionality and it is known as coefficient of Viscosity.
sol 6.33 Option (C) is correct.
Convective Acceleration is defined as the rate of change of velocity due to the change of position of fluid particles in a fluid flow.
In Cartesian coordinates, the components of the acceleration vector along the x-direction is given by.

$$
a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}
$$

In above equation term $\partial \mathrm{u} / \partial \mathrm{t}$ is known as local acceleration and terms other then this, called convective acceleration.
Hence for given flow.
Convective acceleration along x -direction.

$$
\mathrm{a}_{\mathrm{x}}=\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{u}}{\partial \mathrm{y}} \quad[\mathrm{w}=0]
$$

SOL 6.34 Option (C) is correct.
The velocity triangle for the pelton wheel is given below.

Given : $u=u_{1}=u_{2}=10 \mathrm{~m} / \mathrm{sec}, \mathrm{V}_{1}=25 \mathrm{~m} / \mathrm{sec}, \mathrm{Q}=0.1 \mathrm{~m}^{3} / \mathrm{sec}$
J et deflection angle $=120^{\circ} \mathrm{C}$

From velocity triangle,

$$
\begin{align*}
\phi & =180^{\circ}-120^{\circ}=60^{\circ} \\
\mathrm{P} & =\frac{\rho \mathrm{Q}\left[\mathrm{~V}_{\mathrm{w}_{1}}+\mathrm{V}_{\mathrm{w}_{2}}\right] \times \mathrm{u}}{1000} \mathrm{~kW} \tag{i}
\end{align*}
$$

$$
\begin{array}{rr}
\mathrm{V}_{\mathrm{w}_{1}} & =\mathrm{V}_{1}=25 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~V}_{\mathrm{w}_{2}} & =\mathrm{V}_{\mathrm{r}_{2}} \cos \phi-\mathrm{u}_{2} \\
& =15 \cos 60^{\circ}-10 \\
& =\frac{15}{2}-10=-2.5 \mathrm{~m} / \mathrm{sec}
\end{array} \quad \begin{array}{r}
\\
\mathrm{V}_{\mathrm{r}_{2}}=\mathrm{V}_{\mathrm{r}_{1}}=\mathrm{V}_{1}-\mathrm{u}_{1} \\
\end{array}
$$

Now put there values in equation (i)

$$
P=\frac{1000 \times 0.1[25-2.5] \times 10}{1000} \mathrm{~kW}=22.5 \mathrm{~kW}
$$

SOL 6.35 Option (D) is correct.
Given : $u=x^{2} t, v=-2 x y t$
The velocity component in terms of stream function are

$$
\begin{align*}
& \frac{\partial \psi}{\partial x}=v=-2 x y t \tag{i}\\
& \frac{\partial \psi}{\partial y}=-u=-x^{2} t \tag{ii}
\end{align*}
$$

Integrating equation (i), w.r.t ' x ', we get

$$
\begin{align*}
\psi & =\int(-2 x y t) d x \\
& =-x^{2} y t+K \tag{iii}
\end{align*}
$$

W here, K is a constant of integration which is independent of ' x ' but can be a function of ' y '
Differentiate equation (iii) w.r.t y, we get

$$
\frac{\partial \psi}{\partial y}=-x^{2} t+\frac{\partial K}{\partial y}
$$

But from equation (ii),

$$
\frac{\partial \psi}{\partial y}=-x^{2} t
$$

Comparing the value of $\frac{\partial \psi}{\partial \mathrm{y}}$, we get

$$
\begin{aligned}
-\mathrm{x}^{2} \mathrm{t}+\frac{\partial \mathrm{K}}{\partial \mathrm{y}} & =-\mathrm{x}^{2} \mathrm{t} \\
\frac{\partial \mathrm{~K}}{\partial \mathrm{y}} & =0 \\
\mathrm{~K} & =\operatorname{Constant}\left(\mathrm{K}_{1}\right)
\end{aligned}
$$

From equation (iii)

$$
\psi=-x^{2} y t+K_{1}
$$

The line for which stream function ψ is zero called as stream line.
So, $\quad-x^{2} y t+K_{1}=0$

$$
\mathrm{K}_{1}=\mathrm{x}^{2} \mathrm{yt}
$$

If ' t ' is constant then equation of stream line is,

$$
x^{2} y=\frac{K_{1}}{t}=K_{2}
$$

But in the question, there is no condition for t is constant. Hence, it is not possible to determine equation of stream line.

SOL 6.36 Option (D) is correct.
Given :

$$
u=u_{0}\left(1-\frac{4 r^{2}}{D^{2}}\right)=u_{0}\left(1-\frac{r^{2}}{R^{2}}\right)
$$

Drop of pressure for a given length (L)of a pipe is given by,

$$
\begin{equation*}
\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\frac{32 \mu \overline{\mathrm{u}} \mathrm{~L}}{\mathrm{D}^{2}} \tag{i}
\end{equation*}
$$

(From the Hagen poiseuille formula)
W here

$$
\bar{u}=\text { average velocity }
$$

And

$$
\begin{aligned}
\bar{u} & =\frac{2}{R^{2}} \int_{0}^{R} u(r) r d r=\frac{2}{R^{2}} \int_{0}^{R} u_{0}\left(1-\frac{r^{2}}{R^{2}}\right) r d r \\
& =\frac{2 u_{0}}{R^{2}} \int_{0}^{R}\left(r-\frac{r^{3}}{R^{2}}\right) d r=\frac{2 u_{0}}{R^{2}}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4 R^{2}}\right]_{0}^{R} \\
& =\frac{2 u_{0}}{R^{2}}\left[\frac{R^{2}}{2}-\frac{R^{4}}{4 R^{2}}\right]_{0}^{R}=\frac{2 u_{0}}{R^{2}}\left[\frac{R^{2}}{4}\right] \\
\bar{u} & =\frac{u_{0}}{2}
\end{aligned}
$$

Substitute the value of \bar{u} in equation(1)
So, $\quad \Delta \mathrm{p}=\frac{32 \mu \mathrm{~L}}{\mathrm{D}^{2}} \times \frac{\mathrm{u}_{0}}{2}=\frac{16 \mu \mathrm{u}_{0} \mathrm{~L}}{\mathrm{D}^{2}}$
Note: The average velocity in fully developed laminar pipe flow is one-half of the maximum velocity.
sol 6.37 Option (C) is correct.

In a steady and ideal flow of incompressible fluid, the total energy at any point of the fluid is constant. So applying the Bernoulli's Equation at section (1) and (2)

$$
\begin{aligned}
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1} & =\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2} \\
\mathrm{~V}_{1} & =0=\text { Initial velocity at point }(1) \\
\mathrm{Z}_{2} & =0=\text { At the bottom surface }
\end{aligned}
$$

And

$$
\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}
$$

So,

$$
\mathrm{z}_{1}=\mathrm{h}_{2}-\mathrm{h}_{1}
$$

$$
\begin{aligned}
\mathrm{h}_{2}-\mathrm{h}_{1} & =\frac{\mathrm{V}_{2}^{2}}{2 g} \\
\mathrm{~V}_{2}^{2} & =2 \mathrm{~g}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) \\
\mathrm{V}_{2} & =\sqrt{2 g\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)}
\end{aligned}
$$

So, velocity of fluid is same inside the tube

$$
V_{p}=V_{2}=\sqrt{2 g\left(h_{2}-h_{1}\right)}
$$

SOL 6.38 Option (A) is correct.
Given : $\mathrm{P}_{1}=300 \mathrm{~kW}, \mathrm{~N}_{1}=1000 \mathrm{rpm}, \mathrm{H}_{1}=40 \mathrm{~m}$

$$
\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}=\frac{1}{4}, \mathrm{H}_{2}=10 \mathrm{~m}
$$

Specific power for similar turbine is same. So from the relation, we have

$$
\frac{\mathrm{P}}{\mathrm{~d}^{2} \mathrm{H}^{3 / 2}}=\text { Constant }
$$

For both the cases,

$$
\begin{aligned}
\frac{\mathrm{P}_{1}}{\mathrm{~d}_{1}^{2} \mathrm{H}_{1}^{3 / 2}} & =\frac{\mathrm{P}_{2}}{\mathrm{~d}_{2}^{2} \mathrm{H}_{2}^{3 / 2}} \\
\mathrm{P}_{2} & =\left(\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}\right)^{2}\left(\frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}\right)^{3 / 2} \times \mathrm{P}_{1}=\left(\frac{1}{4}\right)^{2}\left(\frac{10}{40}\right)^{3 / 2} \times 300=2.34
\end{aligned}
$$

SOL 6.39 Option (A) is correct.
Net positive suction head, (NPSH) = Pressure head + static head
Pressure difference, $\quad \Delta \mathrm{p}=200-(-25)=225 \mathrm{kPa}$
(Negative sign shows that the pressure acts on liquid in opposite direction)

$$
\begin{aligned}
& \Delta \mathrm{p}=225 \times 10^{3} \mathrm{~Pa}=2.25 \text { bar }=\frac{2.25 \times 10.33}{1.013} \mathrm{~m}=22.95 \mathrm{~m} \text { of water } \\
& \text { Static head }=1 \mathrm{~m}(\text { G iven }) \\
& \text { Now, NPSH }=22.95+1=23.95 \simeq 24 \mathrm{~m} \text { of water }
\end{aligned}
$$

SOL 6.40 Option (B) is correct.

Given : $\mathrm{U}=10 \mathrm{~m} / \mathrm{sec}, \delta=10 \mathrm{~mm}=10^{-2}$ meter, $\rho=1.0 \mathrm{~kg} / \mathrm{m}^{3}$,
$\mathrm{B}=1 \mathrm{~m}$ and $\mathrm{u}=\mathrm{U}\left(\frac{\mathrm{y}}{\delta}\right)$
From the figure we easily find that mass entering from the side qp
$=M$ ass leaving from the side $q r+M$ ass Leaving from the side $r s$

$$
m_{p q}=\left(m_{p q}-m_{r s}\right)+m_{r s}
$$

So, firstly M ass flow rate entering from the side pq is

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{pq}} & =\rho \times \mathrm{V} \text { olume }=\rho \times(\mathrm{A} \times \mathrm{U}) \\
& =1 \times(\mathrm{B} \times \delta) \times \mathrm{U}
\end{aligned}
$$

Substitute the values, we get

$$
\dot{\mathrm{m}}_{\mathrm{pq}}=1 \times\left(1 \times 10^{-2}\right) \times 10=0.1 \mathrm{~kg} / \mathrm{sec}
$$

For mass flow through section $r-s$, we have to take small element of $d y$ thickness.
Then M ass flow rate through this element,

$$
\begin{aligned}
\mathrm{dm} & =\rho \times \mathrm{V} \text { olume }=\rho \times(\mathrm{A} \times \mathrm{u}) \\
& =\rho \times \mathrm{u} \times \mathrm{B} \times(\mathrm{dy})=\rho \mathrm{BU}\left(\frac{\mathrm{y}}{\delta}\right) \mathrm{dy}
\end{aligned}
$$

For total M ass leaving from rs , integrating both sides within the limits,

$$
\begin{aligned}
\mathrm{dm} & \Rightarrow 0 \text { to } \mathrm{m} \\
\mathrm{y} & \Rightarrow 0 \text { to } \delta \\
\int_{0}^{\mathrm{m}} \mathrm{dm} & =\int_{0}^{\delta} \mathrm{y}\left(\frac{\rho \cup \mathrm{~B}}{\delta}\right) \mathrm{dy} \\
{[\dot{\mathrm{~m}}]_{0}^{\mathrm{m}} } & =\frac{\rho \cup \mathrm{B}}{\delta}\left[\frac{\mathrm{y}^{2}}{2}\right]_{0}^{\delta} \\
\dot{\mathrm{m}} & =\frac{\rho \cup \mathrm{B}}{\delta} \times \frac{\delta^{2}}{2}=\frac{1}{2} \rho \cup \mathrm{~B} \delta
\end{aligned}
$$

So,

$$
\dot{\mathrm{m}}_{\mathrm{rs}}=\frac{1}{2} \times 10^{-2} \times 10 \times 1 \times 1=5 \times 10^{-2}=0.05 \mathrm{~kg} / \mathrm{sec}
$$

M ass leaving from qr

$$
\dot{\mathrm{m}}_{\mathrm{qr}}=\dot{\mathrm{m}}_{\mathrm{pq}}-\dot{\mathrm{m}}_{\mathrm{rs}}=0.1-0.05=0.05 \mathrm{~kg} / \mathrm{sec}
$$

sol 6.41 Option (D) is correct.
Von K arman momentum Integral equation for boundary layer flows is,

$$
\frac{\tau_{0}}{\rho \mathrm{U}^{2}}=\frac{\partial \theta}{\partial \mathbf{x}}
$$

and

$$
\theta=\text { momentum thickness }
$$

$$
=\int_{0}^{\delta} \frac{u}{U}\left[1-\frac{u}{U}\right] d y
$$

So,

$$
\frac{\tau_{0}}{\rho U^{2}}=\frac{\partial}{\partial \mathrm{x}}\left[\int_{0}^{\delta} \frac{\mathrm{u}}{\mathrm{U}}\left(1-\frac{\mathrm{u}}{\boldsymbol{U}}\right) \mathrm{dy}\right]
$$

$$
\frac{u}{U}=\frac{y}{\delta}
$$

$$
=\frac{\partial}{\partial \mathrm{x}}\left[\int_{0}^{\delta} \frac{\mathrm{y}}{\delta}\left(1-\frac{\mathrm{y}}{\delta}\right) \mathrm{dy}\right]=\frac{\partial}{\partial \mathrm{x}}\left[\int_{0}^{\delta}\left(\frac{\mathrm{y}}{\delta}-\frac{\mathrm{y}^{2}}{\delta^{2}}\right) \mathrm{dy}\right]
$$

Integrating this equation, we get

$$
\begin{aligned}
& =\frac{\partial}{\partial \mathrm{x}}\left[\left(\frac{\mathrm{y}^{2}}{2 \delta}-\frac{\mathrm{y}^{3}}{3 \delta^{2}}\right)_{0}^{\delta}\right]=\frac{\partial}{\partial \mathrm{x}}\left[\left(\frac{\delta^{2}}{2 \delta}-\frac{\delta^{3}}{3 \delta^{2}}\right)\right]=\frac{\partial}{\partial \mathrm{x}}\left[\frac{\delta}{6}\right]=0 \\
\tau_{0} & =0
\end{aligned}
$$

And drag force on the plate of length L is,

$$
\mathrm{F}_{\mathrm{D}}=\int_{0}^{\mathrm{L}} \tau_{0} \times \mathrm{b} \times \mathrm{dx}=0
$$

SOL 6.42 Option (D) is correct.
We know that potential flow (ideal flow) satisfy the continuity equation.
The continuity equation for two dimensional flow for incompressible fluid is given by,

$$
\begin{aligned}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \\
\frac{\partial u}{\partial x} & =-\frac{\partial v}{\partial y}
\end{aligned}
$$

sol 6.43 Option (D) is correct.

Given : $\mathrm{d}_{2}=20 \mathrm{~mm}=0.020 \mathrm{~m}, \mathrm{~d}_{1}=40 \mathrm{~mm}=0.040 \mathrm{~m}$

$$
\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=30 \mathrm{kPa}
$$

A pplying continuity equation at section (1) and (2),

$$
\begin{align*}
\mathrm{A}_{1} \mathrm{~V}_{1} & =\mathrm{A}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1} & =\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right) \mathrm{V}_{2}=\frac{\frac{\pi}{4} \mathrm{~d}_{2}^{2}}{\frac{\pi}{4} \mathrm{~d}_{1}^{2}} \times \mathrm{V}_{2} \\
& =\frac{\mathrm{d}_{2}^{2}}{\mathrm{~d}_{1}^{2}} \times \mathrm{V}_{2}=\left(\frac{20}{40}\right)^{2} \mathrm{~V}_{2}=\frac{\mathrm{V}_{2}}{4} \\
\mathrm{~V}_{2} & =4 \mathrm{~V}_{1} \tag{i}
\end{align*}
$$

Now applying Bernoulli's equation at section (1) and (2),

$$
\begin{array}{rlr}
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1} & =\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2} & \text { For horizontal pipe } \mathrm{z}_{1}=\mathrm{z}_{2} \\
\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho \mathrm{~g}} & =\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} & \\
\frac{\Delta \mathrm{p}}{\rho} & =\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2} & \quad \text { From equation (i) } \\
\frac{30 \times 10^{3}}{1000} & =\frac{\left(4 \mathrm{~V}_{1}\right)^{2}-\mathrm{V}_{1}^{2}}{2} \\
30 & =\frac{16 \mathrm{~V}_{1}^{2}-\mathrm{V}_{1}^{2}}{2}=\frac{15 \mathrm{~V}_{1}^{2}}{2} \\
\mathrm{~V}_{1}^{2} & =\frac{30 \times 2}{15}=4 \quad \Rightarrow \mathrm{~V}_{1}=2 \mathrm{~m} / \mathrm{sec}
\end{array}
$$

sol 6.44 Option (A) is correct.
It is a U-tube differential M anometer.
In this manometer A and B at different level and the liquid contain in manometer has the same specific gravity (only mercury is fill in the manometer)
Given : $\rho_{\text {mercury }}=13600 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}, \Delta \mathrm{~h}=150 \mathrm{~mm}=0.150$ meter Static pressure difference for U-tube differential manometer is given by,

$$
\begin{aligned}
\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}} & =\rho \mathrm{g}\left(\mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}\right)=\rho \mathrm{g} \Delta \mathrm{~h} \\
& =13600 \times 9.81 \times 0.150 \\
& =20.01 \times 10^{3} \mathrm{~Pa}=20.01 \mathrm{kPa} \approx 20 \mathrm{kPa}
\end{aligned}
$$

Hence $p_{A}-p_{B}$ is positive and $p_{A}>p_{B}$, Flow from A to B.
sol 6.45 Option (B) is correct.
Given : $\quad V_{r}=-\left(\frac{60 \times 10^{3}}{2 \pi r}\right) \mathrm{m} / \mathrm{sec}$
And

$$
\begin{equation*}
\mathrm{V}_{\theta}=\frac{300 \times 10^{3}}{2 \pi \mathrm{r}} \mathrm{~m} / \mathrm{sec} \tag{i}
\end{equation*}
$$

Dividing equation (i) by equation (ii), we get

$$
\begin{align*}
& \frac{V_{r}}{V_{\theta}}=-\frac{60 \times 10^{3}}{2 \pi r} \times \frac{2 \pi r}{300 \times 10^{3}}=-\frac{1}{5} \\
& V_{r}=-\frac{V_{\theta}}{5} \tag{iii}
\end{align*}
$$

In this equation (iii)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{r}}=\text { Radial Velocity }=\frac{\mathrm{dr}}{\mathrm{dt}} \\
& \mathrm{~V}_{\theta}=\text { A ngular Velocity }=\mathrm{r} \omega=\mathrm{r} \frac{\mathrm{~d} \theta}{\mathrm{dt}}
\end{aligned}
$$

So, $\quad \frac{d r}{d t}=-\frac{1}{5} r \frac{d \theta}{d t}$

$$
\frac{d r}{r}=-\frac{1}{5} d \theta
$$

On integrating both the sides and put limits, between $r \Rightarrow 120$ tor and $\theta \Rightarrow 0$ to π (for half revolution).

$$
\begin{aligned}
\int_{120}^{r} \frac{\mathrm{dr}}{\mathrm{r}} & =-\frac{1}{5} \int_{0}^{\pi} \mathrm{d} \theta \\
{[\ln r]_{120}^{r} } & =-\frac{1}{5}[\theta]_{0}^{\pi} \\
\ln r-\ln 120 & =-\frac{1}{5}[\pi-0]=-\frac{\pi}{5} \\
\ln \frac{r}{120} & =-\frac{\pi}{5} \\
\frac{r}{120} & =\mathrm{e}^{-\pi / 5}=0.533 \\
r & =0.533 \times 120=64 \text { meter }
\end{aligned}
$$

SOL 6.46 Option (B) is correct.

Given : $v=7.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}, \mathrm{S}=0.88, \mathrm{y}=0.5 \mathrm{~mm}=0.5 \times 10^{-3}$ meter Density of liquid $=S \times$ density of water

$$
=0.88 \times 1000=880 \mathrm{~kg} / \mathrm{m}^{3}
$$

K inematic Viscosity

$$
\begin{aligned}
v & =\frac{\mu}{\rho}=\frac{\text { Dynamic viscosity }}{\text { Density of liquid }} \\
\mu & =v \times \rho=7.4 \times 10^{-7} \times 880 \\
& =6.512 \times 10^{-4} \mathrm{~Pa} \text {-s }
\end{aligned}
$$

From the Newton's law of viscosity,

$$
\begin{aligned}
\tau & =\mu \times \frac{\mathrm{u}}{\mathrm{y}}=6.512 \times 10^{-4} \times \frac{0.5}{0.5 \times 10^{-3}}=0.6512 \mathrm{~N} / \mathrm{m}^{2} \\
& =0.651 \mathrm{~Pa}
\end{aligned}
$$

sol 6.47 Option (C) is correct.

$$
\begin{equation*}
\text { Given : } \quad \mathbf{V}=a x \mathbf{i}+a y \mathbf{j} \tag{i}
\end{equation*}
$$

The equation of stream line is,

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{u}_{\mathrm{x}}}=\frac{\mathrm{dy}}{\mathrm{u}_{\mathrm{y}}}=\frac{\mathrm{dz}}{\mathrm{u}_{\mathrm{z}}} \tag{ii}
\end{equation*}
$$

From equation (i), $\mathrm{u}_{\mathrm{x}}=\mathrm{ax}, \mathrm{u}_{\mathrm{y}}=$ ay and $\mathrm{u}_{\mathrm{z}}=0$
Substitute there values in equation (ii), we get

$$
\begin{aligned}
& \frac{d x}{a x}=\frac{d y}{a y} \\
& \frac{d x}{x}=\frac{d y}{y}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{align*}
& \int \frac{d x}{x}=\int \frac{d y}{y} \\
& \log x=\log y+\log c=\log y c \Rightarrow x=y c \tag{iii}
\end{align*}
$$

At point (1, 2),

$$
1=2 c \Rightarrow c=\frac{1}{2}
$$

From equation (iii),

$$
x=\frac{y}{2} \Rightarrow 2 x-y=0
$$

sol 6.48 Option (C) is correct.
In this question we have to make the table for calculate mean flow rate :

F low rate litres/ sec.	M ean flow rate $x=\left(\frac{x_{i}+x_{f}}{2}\right)$	Frequency f	fx
7.5 to 7.7	7.6	1	7.6
7.7 to 7.9	7.8	5	39
7.9 to 8.1	8.0	35	280
8.1 to 8.3	8.2	17	139.4
8.3 to 8.5	8.4	12	100.8
8.5 to 8.7	8.6	10	86
		$\Sigma \mathrm{f}=80$	$\Sigma f x=652.8$

M ean flow rate, $\quad \bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{652.8}{80}=8.16$ litres/ sec
SOL 6.49 Option (C) is correct.

Flow rate, $\quad \mathrm{Q}=\mathrm{AV}$
Inlet velocity, $\quad \mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{A}_{1}}=\frac{\mathrm{Q}}{\frac{\pi}{4}\left(2 \mathrm{R}_{1}\right)^{2}}=\frac{\mathrm{Q}}{\pi \mathrm{R}_{1}^{2}}$
$\mathrm{A}_{1}=\frac{\pi}{4} \mathrm{~d}_{1}^{2}$
Outlet Velocity, $V_{2}=\frac{Q}{A_{2}}=\frac{Q}{\pi R_{2}^{2}}$
Therefore, resultant velocity will be,

$$
\mathrm{dV}=\mathrm{V}_{2}-\mathrm{V}_{1}=\frac{\mathrm{Q}}{\pi}\left[\frac{1}{\mathrm{R}_{2}^{2}}-\frac{1}{\mathrm{R}_{1}^{2}}\right]
$$

A cceleration at the exit section,
$a=\frac{d V}{d t}=V \frac{d V}{d x}$
In this case

$$
\mathrm{dV}=\mathrm{V}_{2}-\mathrm{V}_{1}
$$

$$
V=V_{2}
$$

And $\quad d x=L$
So,

$$
\begin{aligned}
a & =\frac{\mathrm{Q}}{\pi \mathrm{R}_{2}^{2}} \times \frac{\mathrm{Q}}{\pi \mathrm{~L}}\left[\frac{1}{\mathrm{R}_{2}^{2}}-\frac{1}{\mathrm{R}_{1}^{2}}\right]=\frac{\mathrm{Q}^{2}}{\pi^{2} \mathrm{R}_{2}^{2} \mathrm{~L}}\left[\frac{\mathrm{R}_{1}^{2}-\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}^{2} \mathrm{R}_{2}^{2}}\right] \\
& =\frac{\mathrm{Q}^{2}}{\pi^{2} \mathrm{R}_{2}^{2} \mathrm{~L}}\left[\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)}{\mathrm{R}_{1}^{2} \mathrm{R}_{2}^{2}}\right]
\end{aligned}
$$

Considering limiting case $R_{1} \rightarrow R_{2}$
Then, $\quad a=\frac{Q^{2}}{\pi^{2} R_{2}^{2} L}\left[\frac{\left(R_{1}-R_{2}\right) 2 R_{2}}{R_{2}^{2} R_{2}^{2}}\right]=\frac{2 Q^{2}}{\pi^{2} R_{2}^{5} L}\left[R_{1}-R_{2}\right]=\frac{2 Q^{2}\left(R_{1}-R_{2}\right)}{\pi^{2} R_{2}^{5} L}$
sol 6.50 Option (D) is correct.

Total thrust at the bottom of cylinder = Weight of water in cylinder + Pressure force on the cylinder
For rotating motion,

$$
\frac{\partial \mathrm{p}}{\partial \mathrm{r}}=\frac{\rho \bigvee^{2}}{\mathrm{r}}=\frac{\rho \mathrm{r}^{2} \omega^{2}}{\mathrm{r}}=\rho \omega^{2} \mathrm{r}
$$

$$
\mathrm{p}=\text { Pressure }, \mathrm{V}=\mathrm{r} \omega
$$

And

$$
\partial \mathrm{p}=\rho \omega^{2} r d r
$$

Integrating both the sides within limits p between 0 to p and r between 0 to r,

$$
\begin{aligned}
\int_{0}^{p} \partial p & =\int_{0}^{r} \rho \omega^{2} r d r \\
{[p]_{0}^{p} } & =\rho \omega^{2}\left[\frac{r^{2}}{2}\right]_{0}^{r}
\end{aligned}
$$

For calculating the total pressure on the cylinder,

$$
p=\rho \omega^{2} \times\left[\frac{r^{2}}{2}-0\right]=\frac{\rho \omega^{2} r^{2}}{2}
$$

Dividing whole area of cylinder in the infinite small rings with thickness dr,
Force on elementary ring
Pressure intensity \times A rea of ring $=\frac{\rho \omega^{2} r^{2}}{2} \times 2 \pi r d r$
Total force,

$$
\begin{aligned}
F & =\int_{0}^{R} \frac{\rho \omega^{2} r^{2}}{2} \times 2 \pi r d r=\pi \rho \omega^{2} \int_{0}^{R} r^{3} d r \\
& =\pi \rho \omega^{2}\left[\frac{r^{4}}{4}\right]_{0}^{R}=\pi \rho \omega^{2} \frac{R^{4}}{4}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { W eight of water } & =\mathrm{mg}=\rho \nu \mathrm{g} & \mathrm{~m}=\rho \nu \\
& =\rho \pi \mathrm{R}^{2} \times \mathrm{Hg}=\rho \mathrm{gH} \pi \mathrm{R}^{2} & \mathrm{~A}=\pi \mathrm{R}^{2}
\end{array}
$$

So, \quad Net force $=\rho \mathrm{gH} \pi \mathrm{R}^{2}+\rho \omega^{2} \frac{\pi \mathrm{R}^{4}}{4}=\pi \mathrm{R}^{2}\left[\frac{\rho \omega^{2} \mathrm{R}^{2}}{4}+\rho \mathrm{gH}\right]$
sol 6.51 Option (C) is correct.
Given relation is,
$\frac{U}{U_{\infty}}=\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{\mathrm{y}}{\delta}\right)^{3}$ and $\delta=\frac{4.64 \mathrm{x}}{\sqrt{\mathrm{Rex}_{\mathrm{x}}}}$
$\mathrm{U}_{\infty}=\mathrm{U}=2 \mathrm{~m} / \mathrm{sec}, \mathrm{v}=1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~L}=\mathrm{x}=1$
Kinematic viscosity,

$$
\begin{aligned}
v & =\frac{\mu}{\rho} \\
\mu & =v \times \rho=1.5 \times 10^{-5} \times 1.23 \\
& =1.845 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \mathrm{sec}
\end{aligned}
$$

Reynolds Number is given as,

$$
\begin{aligned}
R \mathrm{e}_{\mathrm{x}} & =\frac{\rho \mathrm{Ux}}{\mu}=\frac{1.23 \times 2 \times 1}{1.845 \times 10^{-5}}=1.33 \times 10^{5} \\
\delta & =\frac{4.64 \times 1}{\sqrt{1.33 \times 10^{5}}}=0.0127
\end{aligned}
$$

And

$$
\frac{U}{U_{\infty}}=\frac{3 y}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3}
$$

$$
\begin{aligned}
& \frac{\mathrm{dU}}{\mathrm{dy}}= \mathrm{U}_{\infty} \frac{\mathrm{d}}{\mathrm{dy}}\left[\frac{3 y}{2} \frac{\mathrm{y}}{\delta}-\frac{1}{2}\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right]=\mathrm{U}_{\infty}\left[\frac{3}{2} \times \frac{1}{\delta}-\frac{3}{2} \frac{\mathrm{y}^{2}}{\delta^{3}}\right] \\
& \quad \text { where } U_{\infty}=\text { Free stream velocity }=U \\
&\left(\frac{\mathrm{dU}}{\mathrm{dy}}\right)_{y=0}=U_{\infty}\left[\frac{3}{2 \delta}\right]=\frac{3 U_{\infty}}{2 \delta}
\end{aligned}
$$

We know that shear stress by the Newton's law of viscosity,

$$
\tau_{0}=\mu\left(\frac{\mathrm{dU}}{\mathrm{dy}}\right)_{\mathrm{y}=0}=1.845 \times 10^{-5} \times \frac{3 \mathrm{U}_{\infty}}{2 \delta}
$$

Substitute the values of U_{∞} and δ, we get

$$
\begin{aligned}
& =1.845 \times 10^{-5} \times \frac{3 \times 2}{2 \times 0.0127} \\
& =435.82 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}=4.36 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

SOL 6.52 Option (B) is correct.
Given : $\mathrm{L}=4 \mathrm{~km}=4 \times 1000=4000 \mathrm{~m}, \mathrm{~d}=0.2 \mathrm{~m} \quad \mathrm{f}=0.01, \mathrm{~V}=2 \mathrm{~m} / \mathrm{sec}$, H = 5 meter
Head loss due to friction in the pipe,

$$
h_{f}=\frac{f L V^{2}}{2 g d}=\frac{0.01 \times 4000 \times(2)^{2}}{2 \times 9.81 \times 0.2}=40.77 \mathrm{~m} \text { of water }
$$

Now total pressure (absolute discharge pressure) to be supplied by the pump at exit $=$ Pressure loss by pipe + Head pressure of tank + Atmospheric pressure head
Total pressure, $\quad \mathrm{p}=\rho \mathrm{gh}_{\mathrm{f}}+\rho \mathrm{gH}+\rho \mathrm{gh}_{\mathrm{atm}}$

$$
\begin{aligned}
\mathrm{p} & =\rho \mathrm{g}\left[\mathrm{~h}_{\mathrm{f}}+\mathrm{H}+\mathrm{h}_{\mathrm{atm}}\right] \text { Pressure head, } \frac{\mathrm{p}}{\rho \mathrm{~g}}=\mathrm{H} \Rightarrow \mathrm{p}=\mathrm{H} \rho \mathrm{~g} \\
& =1000 \times 9.81[40.77+5+10.3] \\
& =5.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=5.5 \text { bar } \quad \text { For water } \mathrm{h}_{\mathrm{atm}}=10.3 \mathrm{~m}
\end{aligned}
$$

SOL 6.53 Option (D) is correct.
Given : $\mathrm{p}_{\mathrm{G}_{1}}=5.00$ bar, $\mathrm{p}_{\mathrm{G}_{2}}=1.00 \mathrm{bar}, \mathrm{patm}=1.01$ bar
A bsolute pressure of $\mathrm{G}_{2}=$ Atmospheric pressure + Gauge pressure

$$
=1.01+1.00=2.01 \mathrm{bar}
$$

A bsolute pressure of $G_{1}=p_{G_{1}}+p_{\text {abs }\left(G_{2}\right)}=5.00+2.01=7.01 \mathrm{bar}$

SOL 6.54 Option (A) is correct.
Given : $\mathrm{H}=24.5 \mathrm{~m}, \mathrm{Q}=10.1 \mathrm{~m}^{3} / \mathrm{sec}, \eta_{0}=90 \%$,
$N=4 \mathrm{rps}=4 \times 60=240 \mathrm{rpm}$

$$
\eta_{0}=\frac{\text { Shaft P ower in kW }}{\text { W ater P ower in kW }}=\frac{\mathrm{P}}{\left(\frac{\rho \times \mathrm{g} \times \mathrm{Q} \times \mathrm{H}}{1000}\right)}
$$

$$
\begin{aligned}
\mathrm{P} & =\frac{\eta_{0} \times \rho \times \mathrm{g} \times \mathrm{Q} \times \mathrm{H}}{1000} \\
& =\frac{0.90 \times 1000 \times 9.81 \times 10.1 \times 24.5}{1000} \\
& =2184.74 \mathrm{~kW} \quad \quad \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

For turbine Specific speed,

$$
N_{S}=\frac{N \sqrt{P}}{H^{5 / 4}}=\frac{240 \sqrt{2184.74}}{(24.5)^{5 / 4}}=205.80 \mathrm{rpm}
$$

Hence,

$$
51<\mathrm{N}_{\mathrm{S}}<255 \text { for francis turbine. }
$$

sol 6.55 Option (B) is correct.

List-I

P. Reciprocating pump
Q. Axial flow pump
R. Microhydel plant
S. Backward curved vanes

List-II

3. Positive Displacement
4. High Flow rate, low pressure ratio
5. Plant with power output between 100 kW to 1 MW
6. Centrifugal pump impeller

So, correct pairs are P-3, Q-5, R-2, S-6
sol 6.56 Option (D) is correct.
Given :
Cross section area of body $=\mathrm{A}$
Height of body $=\mathrm{H}$
Density of body $=\rho_{5}$
Density of liquid $=\rho$
Tension in the string $=T$
We have to make the FBD of the block.
$B=B u o y a n c y$ force

From the principal of buoyancy,
Downward force $=$ Buoyancy force $\mathrm{m}=\rho \nu$

$$
\mathrm{T}+\mathrm{mg}=\rho \mathrm{h} \mathrm{Ag}
$$

$$
\begin{aligned}
\mathrm{T}+\rho_{\mathrm{s}} \nu \mathrm{~g} & =\rho \mathrm{hAg} & \nu=\mathrm{A} \times \mathrm{H} \\
\mathrm{~T}+\rho_{\mathrm{s}} \mathrm{AHg} & =\rho \mathrm{h} \mathrm{~g} & \\
\mathrm{~T} & =\rho \mathrm{h} \mathrm{~g}-\rho_{\mathrm{s}} \mathrm{AHg}=\mathrm{Ag}\left(\rho \mathrm{~h}-\rho_{\mathrm{s}} \mathrm{H}\right) &
\end{aligned}
$$

SOL 6.57 Option (A) is correct.

Given: \quad Flow rate $=\mathrm{Q}$
Velocity of water when it strikes the water surface $=U$
Total Mass (container + water) $=\mathrm{m}$
Force on weighing balance due to water strike $=$ Change in momentum

$$
\begin{aligned}
\Delta \mathbf{P} & =\text { Initial } \mathbf{M} \text { omentum }-\mathbf{F} \text { inal momentum } \\
& =\rho \mathbf{Q U}-\rho \mathbf{Q}(0)=\rho \mathbf{Q U} \quad \text { F inal velocity is zero }
\end{aligned}
$$

Weighing balance also experience the weight of the container and water.
So, Weight of container and water $=\mathrm{mg}$
Therefore, total force on weighing B alance $=\rho \mathbf{Q U}+\mathrm{mg}$

SOL 6.58 Option (D) is correct.

First of all we have to take two section (1) and (2)
A pplying Bernoulli's equation at section (1) and (2).

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}
$$

$$
\begin{align*}
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2} & =\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2} \tag{1}\\
\mathrm{p}_{1}-\mathrm{p}_{2} & =\frac{\rho}{2}\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right) \tag{i}
\end{align*}
$$

A pply continuity equation, we get

$$
\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}
$$

$$
\begin{align*}
\frac{\pi}{4} D_{t}^{2} V_{1} & =\frac{\pi}{4} D^{2} U \quad V_{2}=U . \text { Let at point (1) velocity }=V_{1} \\
V_{1} & =\left(\frac{D}{D_{t}}\right)^{2} \times U \tag{ii}
\end{align*}
$$

Substitute the value of V_{1} from equation (ii) into the equation (i),

$$
\begin{equation*}
\mathrm{p}_{1}-\mathrm{p}_{2}=\frac{\rho}{2}\left[U^{2}-\left(\frac{\mathrm{D}}{\mathrm{D}_{\mathrm{t}}}\right)^{4} \mathrm{U}^{2}\right]=\frac{\rho}{2} \mathrm{U}^{2}\left[1-\left(\frac{\mathrm{D}}{\mathrm{D}_{\mathrm{t}}}\right)^{4}\right] \tag{iii}
\end{equation*}
$$

From the figure, we have

$$
\begin{aligned}
\text { Spring force } & =\text { Pressure force due to air } \\
-k x & =A_{s}\left(p_{1}-p_{2}\right)=\frac{\pi}{4} D_{s}^{2} \times\left(p_{1}-p_{2}\right) \\
& =\frac{\pi}{4} D_{s}^{2} \times \frac{\rho}{2} U^{2}\left[1-\left(\frac{D}{D_{t}}\right)^{4}\right] \quad \text { From equation (iii) } \\
k x & =\frac{\pi}{8} D_{s}^{2} \rho U^{2}\left[\left(\frac{D}{D_{t}}\right)^{4}-1\right] \\
x & =\frac{\rho U^{2}}{8 k}\left[\left(\frac{D}{D_{t}}\right)^{4}-1\right] \pi D_{s}^{2}
\end{aligned}
$$

sol 6.59 Option (B) is correct.
Given : $\mathrm{N}_{1}=500 \mathrm{rpm}, \mathrm{H}_{1}=30$ meter, $\mathrm{N}_{2}=1000 \mathrm{rpm}, \mathrm{Q}_{1}=60$ litres per minute
From the general relation,

$$
\begin{aligned}
& U=\frac{\pi \mathrm{DN}}{60}=\sqrt{2 \mathrm{gH}} \\
& D N \propto \sqrt{\mathrm{H}} \quad \Rightarrow \mathrm{~N} \propto \frac{\sqrt{\mathrm{H}}}{\mathrm{D}}
\end{aligned}
$$

Centrifugal pump is used for both the cases. So $D_{1}=D_{2}$

$$
\begin{aligned}
\mathrm{N} & \propto \sqrt{\mathrm{H}} \\
\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}} & =\frac{\mathrm{N}_{1}^{2}}{\mathrm{~N}_{2}^{2}} \\
\mathrm{H}_{2} & =\frac{\mathrm{N}_{2}^{2}}{\mathrm{~N}_{1}^{2}} \times H_{1}=\frac{(1000)^{2}}{(500)^{2}} \times 30=120 \mathrm{~m}
\end{aligned}
$$

The specific speed will be constant for centrifugal pump and relation is,

$$
N_{\mathrm{s}}=\frac{\mathrm{N} \sqrt{\mathrm{Q}}}{\mathrm{H}^{3 / 4}}=\text { Constant }
$$

So, $\quad \frac{N_{1} \sqrt{Q_{1}}}{H_{1}^{3 / 4}}=\frac{N_{2} \sqrt{Q_{2}}}{H_{2}^{3 / 4}}$
For both cases

$$
\begin{aligned}
\sqrt{Q_{2}} & =\frac{N_{1}}{N_{2}} \times\left(\frac{H_{2}}{H_{1}}\right)^{3 / 4} \times \sqrt{Q_{1}}=\frac{500}{1000} \times\left(\frac{120}{30}\right)^{3 / 4} \times \sqrt{60} \\
& =\frac{1}{2} \times(2)^{3 / 2} \times \sqrt{60}
\end{aligned}
$$

Squaring both sides

$$
\mathrm{Q}_{2}=\frac{1}{4} \times 8 \times 60=120 \text { litre } / \mathrm{min}
$$

Alternate :

From unit quantities unit speed
or

$$
\begin{aligned}
N_{u} & =\frac{N_{1}}{\sqrt{H_{1}}}=\frac{N_{2}}{\sqrt{H_{2}}} \frac{N_{1}}{\sqrt{H_{1}}}=\frac{N_{2}}{\sqrt{H_{2}}} \\
\sqrt{\mathrm{H}_{2}} & =\frac{N_{2} \sqrt{H_{1}}}{N_{1}} \\
H_{2} & =\frac{N_{2}^{2} \times H_{1}}{N_{1}^{2}}=\frac{(1000)^{2} \times 30}{(500)^{2}}=120 \mathrm{~m}
\end{aligned}
$$

Unit discharge $Q_{u}=\frac{Q_{1}}{\sqrt{H_{1}}}=\frac{Q_{2}}{\sqrt{H_{2}}}$

$$
\frac{Q_{1}}{\sqrt{\mathrm{H}_{1}}}=\frac{\mathrm{Q}_{2}}{\sqrt{\mathrm{H}_{2}}}
$$

or

$$
\mathrm{Q}_{2}=\frac{\mathrm{Q}_{1} \sqrt{\mathrm{H}_{2}}}{\sqrt{\mathrm{H}_{1}}}=\frac{60 \times \sqrt{120}}{\sqrt{30}}=120 \mathrm{litre} / \mathrm{min}
$$

SOL 6.60 None of these is correct.

List-I

P. Curtis
Q. Rateau
R. Kaplan
S. Francis

List-II

3. Velocity compounding
4. Pressure compounding
5. Axial flow turbine
6. Mixed flow turbine

So, correct pairs are P-3, Q-4, R-6, S-7.
sol 6.61 Option (B) is correct.
Given : $\mathrm{L}=100 \mathrm{~mm}, \mathrm{~d}=1 \mathrm{~mm}, \mathrm{D}=10 \mathrm{~mm}, \mathrm{~V}_{1}=10 \mathrm{~mm} / \mathrm{sec}$
We have to take the two sections of the system (1) and (2).

A pply continuity equation on section (1) and (2),

$$
\begin{aligned}
\mathrm{A}_{1} \mathrm{~V}_{1} & =\mathrm{A}_{2} \mathrm{~V}_{2} \quad \mathrm{Q}=\mathrm{AV}, \mathrm{Q}=\text { flow rate } \\
\mathrm{V}_{2} & =\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right) \times \mathrm{V}_{1}=\frac{\pi / 4(0.01)^{2}}{\pi / 4(0.001)^{2}} \times 0.010=1 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

A gain applying the Bernoulli's equation at section (1) and (2),

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}
$$

The syringe and the plunger is situated on the same plane so $z_{1}=z_{2}$,
Take

$$
\begin{aligned}
\mathrm{p}_{2} & =0=\text { Atmospheric pressure (O utside the needle) } \\
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}} & =\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} \\
\mathrm{p}_{1} & =\frac{\rho}{2}\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right)=\frac{1000}{2}\left[(1)^{2}-(0.01)^{2}\right]=499.95 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Force required on plunger,

$$
F=p_{1} \times A_{1}=499.95 \times \frac{\pi}{4}(0.01)^{2}=0.04 \mathrm{~N}
$$

sol 6.62 Option (C) is correct.
Given : $\mathrm{f}=\frac{64}{\mathrm{Re}^{2}}, \mu=1 \times 10^{-3} \mathrm{~kg} / \mathrm{s}-\mathrm{m}$

$$
\operatorname{Re}=\frac{\rho \mathrm{V} \mathrm{~d}}{\mu}=\frac{\rho \mathrm{V}_{2} \mathrm{~d}_{2}}{\mu}=\frac{1000 \times 1 \times 0.001}{1 \times 10^{-3}}=1000 \quad \text { For Needle }
$$

A nd

$$
f=\frac{64}{\operatorname{Re}}=\frac{64}{1000}=0.064
$$

From the help of f we have to find Head loss in needle,

$$
h_{f}=\frac{f L V_{2}^{2}}{2 g d_{2}}=\frac{0.064 \times 0.1 \times(1)^{2}}{2 \times 9.81 \times 0.001}=0.3265 \mathrm{~m} \text { of water }
$$

A pplying Bernoulli's equation at section (1) and (2) with the head loss in account.

And

$$
\begin{aligned}
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1} & =\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}} \\
\mathrm{z}_{1} & =\mathrm{z}_{2} \quad \text { At the sam } \\
\mathrm{p}_{2} & =0 \quad \text { Atmospheric } \\
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}} & =\left(\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}\right)+\mathrm{h}_{\mathrm{f}} \\
\mathrm{p}_{1} & =\frac{\rho}{2}\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right)+\rho \mathrm{gh}_{\mathrm{f}} \\
& =\frac{1000}{2}\left[(1)^{2}-(0.01)^{2}\right]+1000 \times 9.81 \times 0.3265 \\
& =499.95+3202.965=3702.915 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Force required on plunger,

$$
F=p_{1} \times A_{1}=3702.915 \times \frac{\pi}{4} \times(0.01)^{2}=0.3 \mathrm{~N}
$$

sol 6.63 Option (C) is correct.
From Buckingham's π-theorem,
"If there are m variables (Indepenent and dependent variables) in a physical phenomenon and if these variables contain n fundamental dimensions (M, L, T) then variables are arranged into ($\mathrm{m}-\mathrm{n}$) dimensionless terms. So, non dimensional variables, $\Rightarrow \mathrm{m}-\mathrm{n}$.

SOL 6.64 Option (D) is correct.
The laminar boundary layer generation along a flat plate for this flow, is

$$
\frac{\delta}{\mathrm{L}} \sim \frac{1}{\sqrt{\mathrm{Re}_{\mathrm{L}}}}
$$

If we substitute x for L and for a laminar boundary layer on a flat plate, where $\mathrm{V}(\mathrm{x})=\mathrm{V}=$ constant, then δ grows like the square root of x .

$$
\begin{aligned}
\frac{\delta}{x} & \sim \frac{1}{\sqrt{\frac{V x}{v}}} \\
\frac{\delta}{\sqrt{x}} & \sim \frac{1}{\sqrt{\frac{V}{v}}} \Rightarrow \delta \propto \sqrt{x}
\end{aligned}
$$

sol 6.65 Option (C) is correct.
The pressure is minimum at point C. Along the region CSD of the curved surface, the area of flow increases and hence velocity of flow along the direction of Fluid decreases.

Due to decrease of velocity, the pressure increases in the direction of flow and pressure gradient $d p / d x$ is positive or $\frac{d p}{d x}>0$

SOL 6.66 Option (C) is correct.
B iot Number $\quad \mathrm{Bi}=\frac{\mathrm{hl}}{\mathrm{k}}$
where
$h=$ Convective heat transfer coefficient
$\mathrm{k}=$ thermal conductivity
I = linear dimension
Biot Number gives an indication of the ratio of internal (conduction) resistance to the surface (convection) resistance.
A small value of Bi implies that the fluid has a small conduction resistance i.e.

Conduction resistance \ll C onvection resistance

SOL 6.67 Option (A) is correct.
Given: $\quad C_{p}=0.1393 \mathrm{k}-\mathrm{J} / \mathrm{kg}-\mathrm{K}$

$$
\begin{aligned}
& \mu=0.1523 \times 10^{-2} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2} \\
& \mathrm{k}=8.540 \mathrm{~W} / \mathrm{m}-\mathrm{K}
\end{aligned}
$$

Prandtl Number $\operatorname{Pr}=\frac{\mu \mathrm{C}_{p}}{\mathrm{k}}$

$$
\begin{aligned}
& \operatorname{Pr}=\frac{0.1523 \times 10^{-2} \times 0.1393 \times 10^{3}}{8.540} \\
& \operatorname{Pr}=0.0248
\end{aligned}
$$

sol 6.68 Option (A) is correct.
The SI unit of kinematic viscosity is $\mathrm{m}^{2} / \mathrm{sec}$.

$$
\begin{aligned}
& v=\frac{\mu}{\rho}=\frac{\tau \frac{\mathrm{dy}}{\mathrm{du}}}{\rho} \\
& v=\frac{\frac{\mathrm{F}}{\mathrm{~A}} \times \frac{\mathrm{dy}}{\mathrm{du}}}{\rho}
\end{aligned}
$$

Substitute the units of all the parameters

$$
\begin{aligned}
v & =\frac{\frac{\text { Newton }}{\mathrm{m}^{2}} \times \frac{\mathrm{m}}{\mathrm{~m} / \mathrm{sec}}}{\mathrm{~kg} / \mathrm{m}^{3}} \\
v & =\frac{\frac{\mathrm{kgm} \mathrm{~m} \mathrm{sec}}{\mathrm{sec}^{2} \mathrm{~m}^{2}} \frac{\mathrm{~m}}{\mathrm{~kg} / \mathrm{m}^{3}}}{\mathrm{~N}=\frac{\mathrm{kgm}}{\mathrm{sec}^{3}}}
\end{aligned}
$$

$$
v=\frac{\frac{\mathrm{kg}}{\mathrm{secm}}}{\mathrm{~kg} / \mathrm{m}^{3}}=\frac{\mathrm{m}^{2}}{\mathrm{sec}}
$$

SOL 6.69 Option (C) is correct.
F luid static deals with problems associated with fluids at rest. In static fluid, there is no relative motion between adjacent fluid layers and thus there are no shear (tangential) stresses in the fluid trying to deform it.
The only stress in static fluid is the normal stress, which is the pressure and the variation of pressure is due only to the weight of the fluid and it is always positive.
Therefore, the topic of fluid statics has significance only in gravity field.
sol 6.70 Option (A) is correct.
Biot number gives an indication of internal (conduction) resistance to the surface (convection) resistance.

$$
\mathrm{Bi}=\frac{\mathrm{hl}}{\mathrm{k}}
$$

If the value of Biot number is less than 0.1, then lumped that transfer analysis is valid.
i.e. Biot Number < 0.1.
sol 6.71 Option (D) is correct.

Here $\quad F_{1}=$ weight of water column above the top surface.
$\mathrm{F}_{2}=$ weight of water column above the bottom surface.
At the depth h, pressure is given by,

$$
\mathrm{p}=\rho \mathrm{gh}
$$

then horizontal force,

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{A} \times \mathrm{p}=(2 \mathrm{r} \times \mathrm{w}) \times \rho \mathrm{gh}
$$

where $\quad A=$ Normal area, when viewed in the direction of F_{x}
$\mathrm{F}_{\mathrm{x}}=2 \rho \mathrm{ghrw}$
$\mathrm{F}_{\mathrm{y}}=\mathrm{F}_{2}-\mathrm{F}_{1}=$ weight of water contained in volume of semi
circular gate.
$\mathrm{F}_{\mathrm{y}}=\mathrm{mg}=\left(\frac{\pi}{2} \mathrm{r}^{2} \times \mathrm{w}\right) \rho \mathrm{g} \quad \mathrm{m}=\rho \mathrm{V}$ and $\mathrm{v}=\mathrm{A} \times \mathrm{w}$

$$
\mathrm{F}_{\mathrm{y}}=\frac{\pi \rho g \mathrm{gr}^{2}}{2}
$$

sol 6.72 Option (D) is correct.
Given :

$$
\begin{aligned}
\mathbf{v} & =(x+2 y+2) \mathbf{i}+(4-y) \mathbf{j} & \\
u & =x+2 y+2, \quad v=4-y & \\
\frac{\partial u}{\partial x} & =1 ; \frac{\partial u}{\partial y}=2 & \frac{\partial v}{\partial y}=-1 ; \frac{\partial v}{\partial x}=0
\end{aligned}
$$

where

We know, for Incompressive flow

$$
\begin{aligned}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \\
1-1 & =0
\end{aligned}
$$

So, flow is incompressible.
And for irrotational flow, $\zeta_{z}=0$

$$
\begin{aligned}
\zeta_{z} & =\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=0 \\
\Rightarrow \quad \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} & =0 \\
0-2 & =0 \\
-2 & =0
\end{aligned}
$$

So, flow is not irrotational.
sOL 6.73 Option (B) is correct.
The non-dimensional Prandtl Number for thermal boundary layer is given by,

$$
\frac{\delta}{\delta_{\mathrm{t}}}=(\operatorname{Pr})^{1 / 3}
$$

where $\quad \delta=$ hydrodynamic boundary layer thickness
$\delta_{t}=$ thermal boundary layer thickness
Given, $\operatorname{Pr}=6 \quad \frac{\delta}{\delta_{\mathrm{t}}}=(6)^{1 / 3}=1.82$

$$
\delta=1.82 \delta_{\mathrm{t}}
$$

$$
\delta=1.82 \delta_{\mathrm{t}}
$$

So, $\quad \delta>\delta_{t}$ or $\delta_{t}<\delta$

CHAPTER 7

HEAT TRANSFER

YEAR 2012
MCQ 7.1 For an opaque surface, the absorptivity (α), transmissivity (τ) and reflectivity (ρ) are related by the equation :
(A) $\alpha+\rho=\tau$
(B) $\rho+\alpha+\tau=0$
(C) $\alpha+\rho=1$
(D) $\alpha+\rho=0$

MCQ 7.2 W hich one of the following configurations has the highest fin effectiveness ?
(A) Thin, closely spaced fins
(B) Thin, widely spaced fins
(C) Thick, widely spaced fins
(D) Thick, closely spaced fins

YEAR 2012
TWO MARKS
MCQ 7.3 Consider two infinitely long thin concentric tubes of circular cross section as shown in the figure. If D_{1} and D_{2} are the diameters of the inner and outer tubes respectively, then the view factor F_{22} is give by

(A) $\left(\frac{D_{2}}{D_{1}}\right)-1$
(B) zero
(C) $\left(\frac{D_{1}}{D_{2}}\right)$
(D) $1-\left(\frac{D_{1}}{D_{2}}\right)$

MCQ 7.4 Water ($C_{p}=4.18 \mathrm{~kJ} / \mathrm{kgK}$) at $80^{\circ} \mathrm{C}$ enters a counter flow heat exchanger with a mass flow rate of $0.5 \mathrm{~kg} / \mathrm{s}$. Air ($\mathrm{c}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kgK}$) enters at $30^{\circ} \mathrm{C}$ with a mass flow rate of $2.09 \mathrm{~kg} / \mathrm{s}$. If the effectiveness of the heat exchanger is 0.8 ,
the LMTD (in $\left.{ }^{\circ} \mathrm{C}\right)$ is
(A) 40
(B) 20
(C) 10
(D) 5

YEAR 2011
ONE MARK
MCQ 7.5 In a condenser of a power plant, the steam condenses at a temperatures of $60^{\circ} \mathrm{C}$. The cooling water enters at $30^{\circ} \mathrm{C}$ and leaves at $45^{\circ} \mathrm{C}$. The logarithmic mean temperature difference (LMTD) of the condenser is
(A) $16.2^{\circ} \mathrm{C}$
(B) $21.6^{\circ} \mathrm{C}$
(C) $30^{\circ} \mathrm{C}$
(D) $37.5^{\circ} \mathrm{C}$

MCQ 7.6 A pipe of 25 mm outer diameter carries steam. The heat transfer coefficient between the cylinder and surroundings is $5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. It is proposed to reduce the heat loss from the pipe by adding insulation having a thermal conductivity of $0.05 \mathrm{~W} / \mathrm{m} \mathrm{K}$. W hich one of the following statements is TRUE ?
(A) The outer radius of the pipe is equal to the critical radius.
(B) The outer radius of the pipe is less than the critical radius.
(C) Adding the insulation will reduce the heat loss.
(D) Adding the insulation will increases the heat loss.

YEAR 2011
TWO MARKS
MCQ 7.7 A spherical steel ball of 12 mm diameter is initially at 1000 K . It is slowly cooled in surrounding of 300 K . The heat transfer coefficient between the steel ball and the surrounding is $5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The thermal conductivity of steel is $20 \mathrm{~W} / \mathrm{mK}$. The temperature difference between the centre and the surface of the steel ball is
(A) large because conduction resistance is far higher than the convective resistance.
(B) large because conduction resistance is far less than the convective resistance.
(C) small because conduction resistance is far higher than the convective resistance.
(D) small because conduction resistance is far less than the convective resistance.

MCQ 7.8 The ratios of the laminar hydrodynamic boundary layer thickness to thermal boundary layer thickness of flows of two fluids P and Q on a flat plate are $1 / 2$ and 2 respectively. The R eynolds number based on the plate length for
both the flows is 10^{4}. The Prandtl and Nusselt numbers for P are $1 / 8$ and 35 respectively. The Prandtl and Nusselt numbers for Q are respectively
(A) 8 and 140
(B) 8 and 70
(C) 4 and 40
(D) 4 and 35

YEAR 2010
TWO MARKS
MCQ 7.9 A fin has 5 mm diameter and 100 mm length. The thermal conductivity of fin material is $400 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. One end of the fin is maintained at $130^{\circ} \mathrm{C}$ and its remaining surface is exposed to ambient air at $30^{\circ} \mathrm{C}$. If the convective heat transfer coefficient is $40 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$, the heat loss (in W) from the fin is
(A) 0.08
(B) 5.0
(C) 7.0
(D) 7.8

YEAR 2009
ONE MARK
MCQ 7.10 A coolant fluid at $30^{\circ} \mathrm{C}$ flows over a heated flat plate maintained at constant temperature of $100^{\circ} \mathrm{C}$. The boundary layer temperature distribution at a given location on the plate may be approximated as $T=30+70 \exp (-y)$ where y (in m) is the distance normal to the plate and T is in ${ }^{\circ} \mathrm{C}$. If thermal conductivity of the fluid is $1.0 \mathrm{~W} / \mathrm{mK}$, the local convective heat transfer coefficient (in $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$) at that location will be
(A) 0.2
(B) 1
(C) 5
(D) 10

YEAR 2009
TWO MARKS
MCQ 7.11 In a parallel flow heat exchanger operating under steady state, the heat capacity rates (product of specific heat at constant pressure and mass flow rate) of the hot and cold fluid are equal. The hot fluid, flowing at $1 \mathrm{~kg} / \mathrm{s}$ with $\mathrm{C}_{\mathrm{p}}=4 \mathrm{~kJ} / \mathrm{kgK}$, enters the heat exchanger at $102^{\circ} \mathrm{C}$ while the cold fluid has an inlet temperature of $15^{\circ} \mathrm{C}$. The overall heat transfer coefficient for the heat exchanger is estimated to be $1 \mathrm{~kW} / \mathrm{m}^{2} \mathrm{~K}$ and the corresponding heat transfer surface area is $5 \mathrm{~m}^{2}$. Neglect heat transfer between the heat exchanger and the ambient. The heat exchanger is characterized by the following relations:

$$
2 \varepsilon=-\exp (-2 \text { NTU })
$$

The exit temperature (in ${ }^{\circ} \mathrm{C}$) for the cold fluid is
(A) 45
(B) 55
(C) 65
(D) 75

MCQ 7.12 Consider steady-state conduction across the thickness in a plane composite wall (as shown in the figure) exposed to convection conditions on both sides.

Given : $h_{i}=20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~h}_{0}=50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} ; \mathrm{T}_{\infty, i}=20^{\circ} \mathrm{C} ; \mathrm{T}_{\infty, 0}=-2^{\circ} \mathrm{C}$, $\mathrm{k}_{1}=20 \mathrm{~W} / \mathrm{mK} ; \mathrm{k}_{2}=50 \mathrm{~W} / \mathrm{mK} ; \mathrm{L}_{1}=0.30 \mathrm{~m}$ and $\mathrm{L}_{2}=0.15 \mathrm{~m}$.
Assuming negligible contact resistance between the wall surfaces, the interface temperature, T (in ${ }^{\circ} \mathrm{C}$), of the two walls will be
(A) -0.50
(B) 2.75
(C) 3.75
(D) 4.50

- Common Data For Q. 13 and Q. 14

Radiative heat transfer is intended between the inner surfaces of two very large isothermal parallel metal plates. W hile the upper plate (designated as plate 1) is a black surface and is the warmer one being maintained at $727^{\circ} \mathrm{C}$, the lower plate (plate 2) is a diffuse and gray surface with an emissivity of 0.7 and is kept at $227^{\circ} \mathrm{C}$.

A ssume that the surfaces are sufficiently large to form a two-surface enclosure and steady-state conditions to exits. Stefan-Boltzmann constant is given as $5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

MCQ 7.13 The irradiation (in $\mathrm{kW} / \mathrm{m}^{2}$) for the plate (plate 1) is
(A) 2.5
(B) 3.6
(C) 17.0
(D) 19.5

MCQ 7.14 If plate 1 is also diffuse and gray surface with an emissivity value of 0.8 , the net radiation heat exchange (in $\mathrm{kW} / \mathrm{m}^{2}$) between plate 1 and plate 2 is
(A) 17.0
(B) 19.5
(C) 23.0
(D) 31.7

MCQ 7.15 For flow of fluid over a heated plate, the following fluid properties are known Viscosity $=0.001 \mathrm{~Pa}$-s;

Specific heat at constant pressure $=1 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
Thermal conductivity $=1 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
The hydrodynamic boundary layer thickness at a specified location on the plate is 1 mm . The thermal boundary layer thickness at the same location is
(A) 0.001 mm
(B) 0.01 mm
(C) 1 mm
(D) 1000 mm

YEAR 2008
TWO MARKS
MCQ 7.16 The logarithmic mean temperature difference (LMTD) of a counter flow heat exchanger is $20^{\circ} \mathrm{C}$. The cold fluid enters at $20^{\circ} \mathrm{C}$ and the hot fluid enters at $100^{\circ} \mathrm{C}$. M ass flow rate of the cold fluid is twice that of the hot fluid. Specific heat at constant pressure of the hot fluid is twice that of the cold fluid. The exit temperature of the cold fluid
(A) is $40^{\circ} \mathrm{C}$
(B) is $60^{\circ} \mathrm{C}$
(C) is $80^{\circ} \mathrm{C}$
(D) cannot be determined

MCQ 7.17 For the three-dimensional object shown in the figure below, five faces are insulated. The sixth face (PQRS), which is not insulated, interacts thermally with the ambient, with a convective heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The ambient temperature is $30^{\circ} \mathrm{C}$. Heat is uniformly generated inside the object at the rate of $100 \mathrm{~W} / \mathrm{m}^{3}$. A ssuming the face PQRS to be at uniform temperature, its steady state temperature is

(A) $10^{\circ} \mathrm{C}$
(B) $20^{\circ} \mathrm{C}$
(C) $30^{\circ} \mathrm{C}$
(D) $40^{\circ} \mathrm{C}$

MCQ 7.18 A hollow enclosure is formed between two infinitely long concentric cylinders of radii 1 m and 2 m , respectively. Radiative heat exchange takes place between the inner surface of the larger cylinder (surface-2) and the outer surface of the smaller cylinder (surface-1). The radiating surfaces are diffuse and the medium in the enclosure is non-participating. The fraction of the thermal radiation leaving the larger surface and striking itself is

(A) 0.25
(B) 0.5
(C) 0.75
(D) 1

MCQ 7.19 Steady two-dimensional heat conduction takes place in the body shown in the figure below. The normal temperature gradients over surfaces P and Q can be considered to be uniform. The temperature gradient $\partial \mathrm{T} / \partial \mathrm{x}$ at surface Q is equal to $10 \mathrm{~K} / \mathrm{m}$. Surfaces P and Q are maintained at constant temperature as shown in the figure, while the remaining part of the boundary is insulated. The body has a constant thermal conductivity of $0.1 \mathrm{~W} / \mathrm{mK}$. The values of $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial y}$ at surface P are

(A) $\frac{\partial T}{\partial x}=20 \mathrm{~K} / \mathrm{m}, \frac{\partial T}{\partial y}=0 \mathrm{~K} / \mathrm{m}$
(B) $\frac{\partial T}{\partial x}=0 \mathrm{~K} / \mathrm{m}, \frac{\partial T}{\partial y}=10 \mathrm{~K} / \mathrm{m}$
(C) $\frac{\partial T}{\partial x}=10 \mathrm{~K} / \mathrm{m}, \frac{\partial T}{\partial \mathrm{y}}=10 \mathrm{~K} / \mathrm{m}$
(D) $\frac{\partial T}{\partial x}=0 \mathrm{~K} / \mathrm{m}, \frac{\partial T}{\partial y}=20 \mathrm{~K} / \mathrm{m}$

MCQ 7.20 The temperature distribution within the thermal boundary layer over a heated isothermal flat plate is given by

$$
\frac{T-T_{w}}{T_{\infty}-T_{w}}=\frac{3}{2}\left(\frac{y}{\delta_{t}}\right)-\frac{1}{2}\left(\frac{y}{\delta_{t}}\right)^{3},
$$

where T_{w} and T_{∞} are the temperature of plate and free stream respectively, and y is the normal distance measured from the plate. The local Nusselt number based on the thermal boundary layer thickness δ_{t} is given by
(A) 1.33
(B) 1.50
(C) 2.0
(D) 4.64

MCQ 7.21 In a counter flow heat exchanger, hot fluid enters at $60^{\circ} \mathrm{C}$ and cold fluid leaves at $30^{\circ} \mathrm{C}$. Mass flow rate of the fluid is $1 \mathrm{~kg} / \mathrm{s}$ and that of the cold fluid is $2 \mathrm{~kg} / \mathrm{s}$. Specific heat of the hot fluid is $10 \mathrm{~kJ} / \mathrm{kgK}$ and that of the cold fluid is $5 \mathrm{~kJ} / \mathrm{kgK}$. The Log M ean Temperature Difference (LMTD) for the heat exchanger in ${ }^{\circ} \mathrm{C}$ is
(A) 15
(B) 30
(C) 35
(D) 45

MCQ 7.22 The average heat transfer co-efficient on a thin hot vertical plate suspended in still air can be determined from observations of the change in plate temperature with time as it cools. Assume the plate temperature to be uniform at any instant of time and radiation heat exchange with the surroundings negligible. The ambient temperature is $25^{\circ} \mathrm{C}$, the plat has a total surface area of $0.1 \mathrm{~m}^{2}$ and a mass of 4 kg . The specific heat of the plate material is $2.5 \mathrm{~kJ} / \mathrm{kgK}$. The convective heat transfer co-efficient in $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$, at the instant when the plate temperature is $225^{\circ} \mathrm{C}$ and the change in plate temperature with time dT / dt $=-0.02 \mathrm{~K} / \mathrm{s}$, is
(A) 200
(B) 20
(C) 15
(D) 10

- Common Data For Q. 23 and Q. 24

Consider steady onedimensional heat flow in a plate of 20 mm thickness with a uniform heat generation of $80 \mathrm{MW} / \mathrm{m}^{3}$. The left and right faces are kept at constant temperatures of $160^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$ respectively. The plate has a constant thermal conductivity of $200 \mathrm{~W} / \mathrm{mK}$.
MCQ 7.23 The location of maximum temperature within the plate from its left face is
(A) 15 mm
(B) 10 mm
(C) 5 mm
(D) 0 mm

MCQ 7.24 The maximum temperature within the plate in ${ }^{\circ} \mathrm{C}$ is
(A) 160
(B) 165
(C) 200
(D) 250

MCQ 7.25 In a composite slab, the temperature at the interface ($\mathrm{T}_{\text {inter }}$) between two material is equal to the average of the temperature at the two ends. A ssuming steady one-dimensional heat conduction, which of the following statements is true about the respective thermal conductivities?

(A) $2 \mathrm{k}_{1}=\mathrm{k}_{2}$
(B) $k_{1}=k_{2}$
(C) $2 \mathrm{k}_{1}=3 \mathrm{k}_{2}$
(D) $\mathrm{k}_{1}=2 \mathrm{k}_{2}$

YEAR 2006
MCQ 7.26 A 100 W electric bulb was switched on in a $2.5 \mathrm{~m} \times 3 \mathrm{~m} \times 3 \mathrm{~m}$ size thermally insulated room having a temperature of $20^{\circ} \mathrm{C}$. The room temperature at the end of 24 hours will be
(A) $321^{\circ} \mathrm{C}$
(B) $341^{\circ} \mathrm{C}$
(C) $450^{\circ} \mathrm{C}$
(D) $470^{\circ} \mathrm{C}$

MCQ 7.27 A thin layer of water in a field is formed after a farmer has watered it. The ambient air conditions are : temperature $20^{\circ} \mathrm{C}$ and relative humidity 5%. An extract of steam tables is given below.

Temp $\left({ }^{\circ} \mathrm{C}\right)$	-15	-10	-5	0.01	5	10	15	20
Saturation Pressure (kPa)	0.10	0.26	0.40	0.61	0.87	1.23	1.71	2.34

Neglecting the heat transfer between the water and the ground, the water temperature in the field after phase equilibrium is reached equals
(A) $10.3^{\circ} \mathrm{C}$
(B) $-10.3^{\circ} \mathrm{C}$
(C) $-14.5^{\circ} \mathrm{C}$
(D) $14.5^{\circ} \mathrm{C}$

MCQ 7.28 W ith an increase in the thickness of insulation around a circular pipe, heat loss to surrounding due to
(A) convection increase, while that the due to conduction decreases
(B) convection decrease, while that due to conduction increases
(C) convection and conduction decreases
(D) convection and conduction increases

YEAR 2005

MCQ 7.29 In a case of one dimensional heat conduction in a medium with constant properties, T is the temperature at position x, at time t. Then $\frac{\partial T}{\partial t}$ is proportional to
(A) $\frac{T}{x}$
(B) $\frac{\partial T}{\partial x}$
(C) $\frac{\partial^{2} T}{\partial \mathrm{x}} \partial \mathrm{t}$
(D) $\frac{\partial^{2} T}{\partial x^{2}}$

MCQ 7.30 The following figure was generated from experimental data relating spectral black body emissive power to wavelength at three temperature $T_{1,} T_{2}$ and $\mathrm{T}_{3}\left(\mathrm{~T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}\right)$.

The conclusion is that the measurements are
(A) correct because the maxima in $\mathrm{E}_{\mathrm{b} \lambda}$ show the correct trend
(B) correct because Planck's law is satisfied
(C) wrong because the Stefan Boltzmann law is not satisfied
(D) wrong because Wien's displacement law is not satisfied

MCQ 7.31 Heat flows through a composite slab, as shown below. The depth of the slab is 1 m . The k values are in W / mK. The overall thermal resistance in K/W is

(A) 17.2
(B) 21.9
(C) 28.6
(D) 39.2

MCQ 7.32 A small copper ball of 5 mm diameter at 500 K is dropped into an oil bath whose temperature is 300 K . The thermal conductivity of copper is $400 \mathrm{~W} / \mathrm{mK}$, its density $9000 \mathrm{~kg} / \mathrm{m}^{3}$ and its specific heat $385 \mathrm{~J} / \mathrm{kgK}$. If the heat transfer coefficient is $250 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and lumped analysis is assumed to be valid, the rate of fall of the temperature of the ball at the beginning of cooling will be, in K/s,
(A) 8.7
(B) 13.9
(C) 17.3
(D) 27.7

MCQ 7.33 A solid cylinder (surface 2) is located at the centre of a hollow sphere (surface 1). The diameter of the sphere is 1 m , while the cylinder has a diameter and length of 0.5 m each. The radiation configuration factor F_{11} is
(A) 0.375
(B) 0.625
(C) 0.75
(D) 1

MCQ 7.34 Hot oil is cooled from 80 to $50^{\circ} \mathrm{C}$ in an oil cooler which uses air as the coolant. The air temperature rises from 30 to $40^{\circ} \mathrm{C}$. The designer uses a LMTD value of $26^{\circ} \mathrm{C}$. The type of heat exchange is
(A) parallel flow
(B) double pipe
(C) counter flow
(D) cross flow

- Common Data For Q. 35 and Q. 36

An uninsulated air conditioning duct of rectangular cross section $1 \mathrm{~m} \times 0.5 \mathrm{~m}$, carrying air at $20^{\circ} \mathrm{C}$ with a velocity of $10 \mathrm{~m} / \mathrm{s}$, is exposed to an ambient of $30^{\circ} \mathrm{C}$. Neglect the effect of duct construction material. For air in the range of $20-30^{\circ} \mathrm{C}$, data are as follows; thermal conductivity $=0.025 \mathrm{~W} / \mathrm{mK}$; viscosity $=18 \mu \mathrm{Pas}$, Prandtl number $=0.73$; density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$. The laminar flow Nusselt number is 3.4 for constant wall temperature conditions and for turbulent flow, $\mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.33}$

MCQ 7.35 The Reynolds number for the flow is
(A) 444
(B) 890
(C) 4.44×10^{5}
(D) 5.33×10^{5}

MCQ 7.36 The heat transfer per meter length of the duct, in watts is
(A) 3.8
(B) 5.3
(C) 89
(D) 769

YEAR 2004

ONE MARK
MCQ 7.37 One dimensional unsteady state heat transfer equation for a sphere with heat generation at the rate of ' q ' can be written as
(A) $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
(B) $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
(C) $\frac{\partial^{2} T}{\partial r^{2}}+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
(D) $\frac{\partial^{2}}{\partial r^{2}}(r T)+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$

YEAR 2004
TWO MARKS
MCQ 7.38 A stainless steel tube $\left(\mathrm{k}_{\mathrm{s}}=19 \mathrm{~W} / \mathrm{m} \mathrm{K}\right)$ of 2 cm ID and 5 cm OD is insulated with 3 cm thick asbestos ($\mathrm{k}_{\mathrm{a}}=0.2 \mathrm{~W} / \mathrm{m} \mathrm{K}$). If the temperature difference between the innermost and outermost surfaces is $600^{\circ} \mathrm{C}$, the heat transfer rate per unit length is
(A) $0.94 \mathrm{~W} / \mathrm{m}$
(B) $9.44 \mathrm{~W} / \mathrm{m}$
(C) $944.72 \mathrm{~W} / \mathrm{m}$
(D) $9447.21 \mathrm{~W} / \mathrm{m}$

MCQ 7.39 A spherical thermocouple junction of diameter 0.706 mm is to be used for the measurement of temperature of a gas stream. The convective heat transfer co-efficient on the bead surface is $400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Thermo-physical properties of thermocouple material are $\mathrm{k}=20 \mathrm{~W} / \mathrm{mK}, \mathrm{c}=400 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$. If the thermocouple initially at $30^{\circ} \mathrm{C}$ is placed in a hot stream of $300^{\circ} \mathrm{C}$, then time taken by the bead to reach $298^{\circ} \mathrm{C}$, is
(A) 2.35 s
(B) 4.9 s
(C) 14.7 s
(D) 29.4 s

MCQ 7.40 In a condenser, water enters at $30^{\circ} \mathrm{C}$ and flows at the rate $1500 \mathrm{~kg} / \mathrm{hr}$. The condensing steam is at a temperature of $120^{\circ} \mathrm{C}$ and cooling water leaves the condenser at $80^{\circ} \mathrm{C}$. Specific heat of water is $4.187 \mathrm{~kJ} / \mathrm{kgK}$. If the overall heat transfer coefficient is $2000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, then heat transfer area is
(A) $0.707 \mathrm{~m}^{2}$
(B) $7.07 \mathrm{~m}^{2}$
(C) $70.7 \mathrm{~m}^{2}$
(D) $141.4 \mathrm{~m}^{2}$

YEAR 2003

ONE MARK

MCQ 7.41 A plate having $10 \mathrm{~cm}^{2}$ area each side is hanging in the middle of a room of $100 \mathrm{~m}^{2}$ total surface area. The plate temperature and emissivity are respectively 800 K and 0.6 . The temperature and emissivity values for the surfaces of the room are 300 K and 0.3 respectively. Boltzmann's constant $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$. The total heat loss from the two surfaces of the plate is
(A) 13.66 W
(B) 27.32 W
(C) 27.87 W
(D) 13.66 M W

YEAR 2003

TWO MARKS
MCQ 7.42 In a counter flow heat exchanger, for the hot fluid the heat capacity $=2 \mathrm{~kJ} / \mathrm{kgK}$, mass flow rate $=5 \mathrm{~kg} / \mathrm{s}$, inlet temperature $=150^{\circ} \mathrm{C}$, outlet temperature $=100^{\circ} \mathrm{C}$. For the cold fluid, heat capacity $=4 \mathrm{~kJ} / \mathrm{kgK}$, mass flow rate $=10 \mathrm{~kg} / \mathrm{s}$, inlet temperature $=20^{\circ} \mathrm{C}$. Neglecting heat transfer to the surroundings, the outlet temperature of the cold fluid in ${ }^{\circ} \mathrm{C}$ is
(A) 7.5
(B) 32.5
(C) 45.5
(D) 70.0

MCQ 7.43 Consider a laminar boundary layer over a heated flat plate. The free stream velocity is U_{∞}. At some distance x from the leading edge the velocity boundary layer thickness is δ_{v} and the thermal boundary layer thickness is δ_{T}. If the P randtl number is greater than 1 , then
(A) $\delta_{V}>\delta_{T}$
(B) $\delta_{T}>\delta_{V}$
(C) $\delta_{V} \approx \delta_{T} \sim\left(U_{\infty} X\right)^{-1 / 2}$
(D) $\delta_{V} \approx \delta_{T} \sim x^{-1 / 2}$

- Common Data For Q. 44 and Q. 45

Heat is being transferred by convection from water at $48^{\circ} \mathrm{C}$ to a glass plate whose surface that is exposed to the water is at $40^{\circ} \mathrm{C}$. The thermal conductivity of water is $0.6 \mathrm{~W} / \mathrm{mK}$ and the thermal conductivity of glass is $1.2 \mathrm{~W} / \mathrm{mK}$. The spatial gradient of temperature in the water at the waterglass interface is $\mathrm{dT} / \mathrm{dy}=1 \times 10^{4} \mathrm{~K} / \mathrm{m}$.

MCQ 7.44 The value of the temperature gradient in the glass at the water-glass interface in K / m is
(A) -2×10^{4}
(B) 0.0
(C) 0.5×10^{4}
(D) 2×10^{4}

MCQ 7.45 The heat transfer coefficient h in $W / m^{2} K$ is
(A) 0.0
(B) 4.8
(C) 6
(D) 750

YEAR 2002

ONE MARK
MCQ 7.46 For the same inlet and outlet temperatures of hot and cold fluids, the Log mean Temperature Difference (LMTD) is
(A) greater for parallel flow heat exchanger than for counter flow heat exchanger
(B) greater for counter flow heat exchanger than for parallel flow heat exchanger
(C) same for both parallel and counter flow heat exchangers
(D) dependent on the properties of the fluids.

YEAR 2001

ONE MARK
MCQ 7.47 For the circular tube of equal length and diameter shown below, the view factor F_{13} is 0.17 . The view factor F_{12} in this case will be

(A) 0.17
(B) 0.21
(C) 0.79
(D) 0.83

MCQ 7.48 In descending order of magnitude, the thermal conductivity of (a) pure iron, (b) liquid water, (c) saturated water vapour and (d) aluminum can be arranged as
(A) abcd
(B) bcad
(C) dabc
(D) dcba

SOLUTION

sol 7.1 Option (C) is correct.
The sum of the absorbed, reflected and transmitted radiation be equal to

$$
\begin{gathered}
\alpha+\rho+\tau=1 \\
\alpha=\text { A bsorpivity, } \rho=\text { Reflectivity, } \tau=\text { Transmissivity }
\end{gathered}
$$

For an opaque surfaces such as solids and liquids

$$
\tau=0
$$

Thus, $\quad \alpha+\rho=1$

SOL 7.2 Option (A) is correct.
The performance of the fins is judged on the basis of the enhancement in heat transfer area relative to the no fin case. The fin effectiveness

$$
\varepsilon_{\text {fin }}=\frac{\text { Heat transfer rate from the fin of base area }}{\text { Heat transfer rate from the surface area }}
$$

W hen determining the rate of heat transfer from a finned surface, we must consider the unfinned portion of the surface as well as the fins and number of fins.
Thin and closed spaced fin configuration, the unfinned portion of surface is reduced and number of fins is increased. Hence the fin effectiveness will be maximum for thin and closely spaced fins.
sol 7.3 Option (D) is correct.
According to the reciprocity relation.

$$
A_{1} F_{12}=A_{2} F_{21}
$$

Which yields $\quad F_{21}=\frac{A_{1}}{A_{2}} \times F_{12}=\frac{\pi D_{1} L}{\pi D_{2} L} \times 1=\left(\frac{D_{1}}{D_{2}}\right)$
$F_{11}=0$ since no radiation leaving surface 1 and strikes 1
$F_{12}=1$, since all radiation leaving surface 1 and strikes 2
The view factor F_{22} is determined by applying summation rule to surface 2,

$$
F_{21}+F_{22}=1
$$

Thus

$$
\mathrm{F}_{22}=1-\mathrm{F}_{21}=1-\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)
$$

sol 7.4 Option (C) is correct.
Given : $\mathrm{t}_{\mathrm{h} 1}=80^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=30^{\circ} \mathrm{C}, \dot{\mathrm{m}}_{\mathrm{h}}=0.5 \mathrm{~kg} / \mathrm{sec}, \dot{\mathrm{m}}_{\mathrm{c}}=2.09 \mathrm{~kg} / \mathrm{sec} ., \varepsilon=0.8$

Capacity rate for hot fluid

$$
\begin{aligned}
& C_{h}=4.18 \times 0.5=2.09 \mathrm{~kJ} / \mathrm{K} \mathrm{sec} . \\
& C_{c}=1 \times 2.09=2.09 \mathrm{~kJ} / \mathrm{K} \mathrm{sec} .
\end{aligned}
$$

So,

$$
C_{h}=C_{c}
$$

Effectiveness $\varepsilon=\frac{\dot{Q}}{\dot{Q_{\max }}}=\frac{\left(t_{h 1}-t_{h 1}\right) C_{h}}{\left(t_{h 1}-t_{c 1}\right) C_{c}}$

$$
0.8=\frac{80-\mathrm{t}_{\mathrm{h} 2}}{80-30}
$$

or,

$$
\begin{aligned}
80-t_{\mathrm{h} 2} & =40 \\
\mathrm{t}_{\mathrm{h} 2} & =40^{\circ} \mathrm{C}
\end{aligned}
$$

From energy balance,

Now LMTD

$$
\begin{align*}
\mathrm{C}_{\mathrm{h}}\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 1}\right) & =\mathrm{C}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) \\
80-40 & =\mathrm{t}_{\mathrm{c} 2}-30 \\
\mathrm{t}_{\mathrm{c} 2} & =70^{\circ} \mathrm{C} \\
\theta_{\mathrm{m}} & =\frac{\theta_{1}-\theta_{2}}{\ln \frac{\theta_{1}}{\theta_{2}}} \tag{i}\\
\theta_{1}=\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2} & =80-70=10^{\circ} \mathrm{C} \\
\theta_{2}=\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 1} & =40-30=10^{\circ} \mathrm{C} \\
\theta_{1} & =\theta_{2} \tag{ii}
\end{align*}
$$

So LMTD is undefined
Let

$$
\frac{\theta_{1}}{\theta_{2}}=x \Rightarrow \theta_{1}=x \theta_{2}
$$

Put in equation (i), so

$$
\theta_{m}=\lim _{x \rightarrow 1} \frac{x \theta_{2}-\theta_{2}}{\ln \frac{x \theta_{2}}{\theta_{2}}}=\lim _{x \rightarrow 1} \frac{\theta_{2}(x-1)}{\ln x}
$$

It is a $\left[\frac{0}{0}\right]$ form, applying L-Hospital rule

$$
\begin{aligned}
& \theta_{\mathrm{m}}=\lim _{\mathrm{x} \rightarrow 1} \frac{\theta_{2}(1-0)}{\frac{1}{\mathrm{x}}}=\lim _{\mathrm{x} \rightarrow 1} \mathrm{x} \theta_{2} \\
& \theta_{\mathrm{m}}=\theta_{2}=\theta_{1} \quad \quad \text { From equation (ii) } \\
& \theta_{\mathrm{m}}=\theta_{1}=\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2}=80-70=10^{\circ} \mathrm{C}
\end{aligned}
$$

sol 7.5 Option (B) is correct.

Given : $\mathrm{t}_{\mathrm{h} 1}=\mathrm{t}_{\mathrm{h} 2}=60^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 2}=45^{\circ} \mathrm{C}$
From diagram, we have

$$
\begin{array}{ll}
& \theta_{1}=\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 1}=60-30=30^{\circ} \mathrm{C} \\
\text { And } & \theta_{2}=\mathrm{t}_{\mathrm{n} 2}-\mathrm{t}_{\mathrm{c} 2}=60-45=15^{\circ} \mathrm{C} \\
\text { Now LMTD, } & \theta_{\mathrm{m}}=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{30-15}{\ln \left(\frac{30}{15}\right)}=21.6^{\circ} \mathrm{C}
\end{array}
$$

SOL 7.6 Option (C) is correct.
Given : $\mathrm{d}_{0}=25 \mathrm{~mm}=0.025 \mathrm{~m}, \mathrm{r}_{0}=\frac{0.025}{2}=0.0125 \mathrm{~m}, \mathrm{~h}=5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, $\mathrm{k}=0.05 \mathrm{~W} / \mathrm{mK}$

Hence, Critical radius of insulation for the pipe is given by,

$$
\begin{align*}
& r_{c}=\frac{k}{h}=\frac{0.05}{5}=0.01 \mathrm{~m} \\
& r_{c}<r_{0} \text { or } r_{0}>r_{c} \tag{i}
\end{align*}
$$

So, from equation (i) option a and b is incorrect. The critical radius is less than the outer radius of the pipe and adding the insulation will not increase the heat loss. Hence the correct statement is adding the insulation will reduce the heat loss.

SOL 7.7 Option (D) is correct.
Given : $\mathrm{D}=12 \mathrm{~mm}=12 \times 10^{-3} \mathrm{~m}, \mathrm{~h}=5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=20 \mathrm{~W} / \mathrm{m} \mathrm{K}$
For spherical ball, $=\frac{12 \times 10^{-3}}{6}=2 \times 10^{-3} \mathrm{~m}$

$$
I=\frac{\text { volume }}{\text { surface area }}=\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}=\frac{D}{6}
$$

The non-dimensional factor (hl / k) is called Biot Number. It gives an indication of the ratio of internal (conduction) resistance to the surface (convection) resistance.
A small value of Bi implies that the system has a small conduction resistance i.e., relatively small temperature gradient or the existence of a practically uniform temperature within the system.

B iot Number,

$$
\mathrm{Bi}=\frac{\mathrm{hl}}{\mathrm{k}}=\frac{5 \times 2 \times 10^{-3}}{20}=0.0005
$$

Since, Value of Biot Number is very less. Hence, conduction resistance is much less than convection resistance.

SOL 7.8 Option (A) is correct.
Given: $\quad\left(\frac{\delta_{H}}{\delta_{\mathrm{Th}}}\right)_{\mathrm{P}}=\frac{1}{2}$ and $\left(\frac{\delta_{\mathrm{H}}}{\delta_{\mathrm{Th}}}\right)_{\mathrm{Q}}=2$
Here, $\quad \delta_{\mathrm{H}} \rightarrow$ Thickness of laminar hydrodynamic boundary layer
And $\quad \delta_{\text {Th }} \rightarrow$ Thickness of thermal boundary layer

$$
\begin{aligned}
(\mathrm{Re})_{P} & =(\mathrm{Re})_{Q}=10^{4} \\
(\mathrm{Pr})_{P} & =\frac{1}{8} \\
(\mathrm{Nu})_{P} & =35
\end{aligned}
$$

For thermal boundary layer prandtl Number is given by, (For fluid Q)

$$
\begin{gathered}
(\mathrm{Pr})_{Q}^{1 / 3}=\left(\frac{\delta_{\mathrm{H}}}{\delta_{\mathrm{Th}}}\right)_{Q}=2 \\
(\mathrm{Pr})_{Q}=(2)^{3}=8
\end{gathered}
$$

For laminar boundary layer on flat plate, relation between Reynolds Number, Prandtl Number and Nusselt Number is given by,

$$
\mathrm{Nu}=\frac{\mathrm{hl}}{\mathrm{k}}=(\mathrm{Re})^{1 / 2}(\operatorname{Pr})^{1 / 3}
$$

Since, Reynolds Number is same for both P and Q.
So,

$$
\begin{aligned}
\frac{(\mathrm{Nu})_{P}}{(\mathrm{Nu})_{Q}} & =\frac{(\mathrm{Pr})_{P}^{1 / 3}}{(\mathrm{Pr})_{Q}^{1 / 3}} \\
(\mathrm{Nu})_{Q} & =\frac{(\mathrm{Pr})_{Q}^{1 / 3}}{(\mathrm{Pr})_{P}^{1 / 3}} \times(\mathrm{Nu})_{P}=\frac{(8)^{1 / 3}}{(1 / 8)^{1 / 3}} \times(35)=\frac{2}{1 / 2} \times 35 \\
& =140
\end{aligned}
$$

SOL 7.9 Option (B) is correct.
Given, $\mathrm{d}=5 \mathrm{~mm}=0.005 \mathrm{~m}, \mathrm{I}=100 \mathrm{~mm}=0.1 \mathrm{~m}, \mathrm{k}=400 \mathrm{~W} / \mathrm{m} \mathrm{K}$
$\mathrm{T}_{0}=130^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{a}}=30^{\circ} \mathrm{C}, \mathrm{h}=40 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
Heat loss by the fin is given by,

$$
\begin{array}{lrl}
\left.\qquad \begin{array}{rl}
Q_{\text {fin }} & =m k A_{c}\left(T_{0}-T_{a}\right) \tanh (\mathrm{ml}) \\
\frac{\text { Perimeter }}{\text { Cross sectional A rea }} & =\frac{p}{A_{c}}=\frac{\pi d}{\frac{\pi}{4} d^{2}}=\frac{4}{d}=\frac{4}{0.005} \\
\text { And } & \frac{p}{A_{c}}
\end{array}\right)=800 \\
\text { From equation(i), } & m & =\sqrt{\frac{h}{k}\left(\frac{p}{A_{c}}\right)}=\sqrt{\frac{40}{400} \times 800}=\sqrt{80}
\end{array}
$$

And

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{fin}} & =\sqrt{80} \times 400 \times \frac{\pi}{4} \times(0.005)^{2}(130-30) \times \tanh (\sqrt{80} \times 0.1) \\
& =8.944 \times 400 \times 1.96 \times 10^{-5} \times 100 \times \tanh (0.8944) \\
& =7.012 \times 0.7135 \simeq 5 \mathrm{~W}
\end{aligned}
$$

SOL 7.10 Option (B) is correct.
Given : $\mathrm{T}_{1}=30^{\circ} \mathrm{C}, \mathrm{T}_{2}=100^{\circ} \mathrm{C}, \mathrm{k}=1.0 \mathrm{~W} / \mathrm{mK}$,

$$
\begin{equation*}
T=30+70 \exp (-y) \tag{i}
\end{equation*}
$$

Under steady state conditions,
Heat transfer by conduction= Heat transfer by convection

$$
\begin{array}{rlr}
-\mathrm{kA} \frac{\mathrm{dT}}{\mathrm{dy}} & =\mathrm{hA} \Delta \mathrm{~T} \quad \mathrm{~A} \rightarrow \text { A rea of plate } \\
-\mathrm{kA} \frac{\mathrm{~d}}{\mathrm{dy}}\left(30+70 \mathrm{e}^{-\mathrm{y}}\right) & =\mathrm{hA} \Delta \mathrm{~T} &
\end{array}
$$

Solving above equation, we get

$$
-k A\left(-70 e^{-y}\right)=h A \Delta T
$$

At the surface of plate, $y=0$
Hence

$$
70 \mathrm{kA}=\mathrm{hA} \Delta \mathrm{~T}
$$

$$
\mathrm{h}=\frac{70 \mathrm{kA}}{\mathrm{~A} \Delta \mathrm{~T}}=\frac{70 \mathrm{k}}{\Delta \mathrm{~T}}=\frac{70 \times 1}{(100-30)}=1 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
$$

soL 7.11 Option (B) is correct.
Given :
$\dot{\mathrm{C}_{\mathrm{h}}}=\dot{\mathrm{C}}_{\mathrm{c}}, \dot{\mathrm{m}}_{\mathrm{h}}=1 \mathrm{~kg} / \mathrm{sec}, \mathrm{C}_{\mathrm{ph}}=4 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{t}_{\mathrm{h} 1}=102^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=15^{\circ} \mathrm{C}$
$\mathrm{U}=1 \mathrm{~kW} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~A}=5 \mathrm{~m}^{2}$

The figure shown below is for parallel flow.

The heat exchanger is characterized by the following relation,

$$
\begin{equation*}
\varepsilon=\frac{1-\exp (-2 N T U)}{2} \tag{i}
\end{equation*}
$$

For parallel flow heat exchanger effectiveness is given by

$$
\begin{equation*}
\varepsilon=\frac{1-\exp [-N T U(1+C)]}{1+C} \tag{ii}
\end{equation*}
$$

Comparing equation (i) and equation (ii), we get capacity ratio

$$
\begin{equation*}
C=\frac{C_{c}}{C_{h}}=\frac{C_{\text {min }}}{C_{\text {max }}}=1 \tag{iii}
\end{equation*}
$$

A pplying energy balance for a parallel flow

$$
\begin{aligned}
\mathrm{C}_{\mathrm{h}}\left(\mathrm{t}_{\mathrm{n} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =\mathrm{C}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) \\
\frac{\mathrm{C}_{\mathrm{c}}}{\mathrm{C}_{\mathrm{h}}} & =\frac{\mathrm{t}_{\mathrm{n} 1}-\mathrm{t}_{\mathrm{t} 2}}{\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}}=1 \\
\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2} & =\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c}}
\end{aligned}
$$

Number of transfer units is given by,

$$
\begin{aligned}
\mathrm{NTU} & =\frac{U A}{C_{\text {min }}}=\frac{1 \times 5}{4}=1.25 \\
\varepsilon & =\frac{1-\exp (-2 \times 1.25)}{2}=\frac{1-0.0820}{2}=0.46
\end{aligned}
$$

M aximum possible heat transfer is,

$$
\begin{aligned}
\mathrm{Q}_{\max } & =\mathrm{C}_{\min }\left(\mathrm{t}_{\mathrm{n}_{1}}-\mathrm{t}_{\mathrm{c} 1}\right) \\
& =4 \times[(273+102)-(273+15)]=348 \mathrm{~kW}
\end{aligned}
$$

But Actual Heat transfer is,

$$
\text { And } \quad \begin{aligned}
\mathrm{Q}_{\mathrm{a}} & =\varepsilon \mathrm{Q}_{\max }=0.46 \times 348=160 \mathrm{~kW} \\
\mathrm{Q}_{\mathrm{a}} & =\mathrm{C}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) \\
160 & =4\left(\mathrm{t}_{\mathrm{c} 2}-15\right) \\
\mathrm{t}_{\mathrm{c} 2} & =40+15=55^{\circ} \mathrm{C}
\end{aligned}
$$

sol 7.12 Option (C) is correct.

The equivalent resistance diagram for the given system is,
$\xrightarrow[T_{\infty, i}=20^{\circ} \mathrm{C}]{\frac{1}{h_{i} A}} \underbrace{\frac{L_{1}}{k_{1} A}}_{T_{1}} \underbrace{\frac{L_{2}}{k_{2} A}}_{T_{i}} \underbrace{\frac{1}{h_{o} A}}_{T_{2}} \underbrace{}_{T_{\infty, 0}=-2^{\circ} \mathrm{C}}$

$$
\begin{aligned}
\mathrm{R}_{\text {eq }} & =\frac{1}{\mathrm{~h}_{\mathrm{i}} A}+\frac{\mathrm{L}_{1}}{\mathrm{k}_{1} A}+\frac{\mathrm{L}_{2}}{\mathrm{k}_{2} \mathrm{~A}}+\frac{1}{\mathrm{~h}_{0} \mathrm{~A}} \\
\mathrm{R}_{\text {eq }} \times \mathrm{A} & =\frac{1}{\mathrm{~h}_{\mathrm{i}}}+\frac{\mathrm{L}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{L}_{2}}{\mathrm{k}_{2}}+\frac{1}{\mathrm{~h}_{0}}=\frac{1}{20}+\frac{0.3}{20}+\frac{0.15}{50}+\frac{1}{50} \\
& =0.05+0.015+0.003+0.02=0.088 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

Heat flux,

$$
\mathrm{q}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\Delta \mathrm{T}}{\mathrm{AR}} \mathrm{eq}_{\mathrm{eq}}
$$

$$
\mathrm{Q}=\frac{\Delta \mathrm{T}}{\sum \mathrm{R}}
$$

Under steady state condition,

$$
\begin{aligned}
q & =\frac{T_{\infty i}-T_{\infty 0}}{A R_{e q}}=h_{i}\left(T_{\infty i}-T_{1}\right)=\frac{k_{1}\left(T_{1}-T\right)}{L_{1}}=\frac{k_{2}\left(T-T_{2}\right)}{L_{2}} \\
& =\frac{T_{\infty i}-T_{\infty 0}}{A R_{e q}}=\frac{20-(-2)}{0.088}=250 \mathrm{~W} / \mathrm{m}^{2} \\
& =\frac{T_{\infty i}-T_{1}}{\frac{1}{h_{i}}}=\frac{20-T_{1}}{\frac{1}{20}} \quad \text { Fro }
\end{aligned}
$$

$$
250=20\left(20-T_{1}\right)
$$

$$
12.5=20-\mathrm{T}_{1} \quad \Rightarrow \mathrm{~T}_{1}=20-12.5=7.5^{\circ} \mathrm{C}
$$

A gain from equation(i),

$$
\begin{aligned}
q=\frac{k_{1}\left(T_{1}-T\right)}{L_{1}} & \\
250 & =\frac{20}{0.3}(7.5-T) \\
3.75 & =7.5-T \quad \Rightarrow \mathrm{~T}=3.75^{\circ} \mathrm{C}
\end{aligned}
$$

Alternative :

U nder steady state conditions,
Heat flow from I to interface wall $=$ Heat flow from interface wall to 0

$$
\begin{aligned}
& \frac{\left(T_{\infty, i}-T\right)}{1}=\frac{\left(T-T_{\infty, 0}\right)}{h_{i} A}+\frac{L_{1}}{\mathrm{k}_{1} A} \\
& \frac{\mathrm{~K}_{2} A}{k_{2} A}+\frac{1}{h_{0} A} \\
& \frac{1}{h_{i}}+\frac{L_{1}}{\mathrm{~L}_{1}}=\frac{T-T_{\infty, 0}}{\frac{L_{2}}{k_{2}}+\frac{1}{h_{0}}} \\
& \frac{(20-T)}{\frac{1}{20}+\frac{0.3}{20}}=\frac{T-(-2)}{\frac{0.15}{50}+\frac{1}{50}} \\
& \frac{(20-T)}{\frac{1.3}{20}}=\frac{T+2}{\frac{1.15}{50}} \\
&(20-T)=2.826(T+2)=2.826 \mathrm{~T}+5.652 \\
& T=\frac{14.348}{3.826}=3.75^{\circ} \mathrm{C}
\end{aligned}
$$

sol 7.13 Option (D) is correct.
Plate 1

Given: $\sigma_{\mathrm{b}}=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}, \mathrm{~T}_{2}=(227+273) \mathrm{K}=500 \mathrm{~K}$

$$
\mathrm{T}_{1}=(727+273) \mathrm{K}=1000 \mathrm{~K}
$$

Let, $\quad \alpha \rightarrow$ The absorptivity of the gray surface
$\mathrm{E}_{1} \rightarrow$ The radiant energy of black surface
$\mathrm{E}_{2} \rightarrow$ The radiant energy of gray surface
Now, Plate 1 emits radiant energy E_{1} which strikes the plate 2. From it a part $\alpha \mathbf{E}_{1}$ absorbed by the plate 2 and the remainder $\left(\mathrm{E}_{1}-\alpha \mathrm{E}_{1}\right)$ is reflected back to the plate 1 . On reaching plate 1 , all the part of this energy is absorbed by the plate 1 , because the absorptivity of plate 1 is equal to one (it is a black surface).
Irradiation denotes the total radiant energy incident upon a surface per unit time per unit area.
Energy leaving from the plate 2 is,

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}_{2}+(1-\alpha) \mathbf{E}_{1} \tag{i}
\end{equation*}
$$

Hence, E_{2} is the energy emitted by plate 2 .

$$
\begin{aligned}
\mathrm{E}_{2} & =\varepsilon \sigma_{\mathrm{b}} \mathrm{~T}_{2}^{4}=0.7 \times 5.67 \times 10^{-8} \times(500)^{4} \quad \mathrm{E}=\varepsilon \sigma_{\mathrm{b}} \mathrm{~T}^{4} \\
& =0.7 \times 5.67 \times 10^{-8} \times 625 \times 10^{8}=2480.625 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

A nd fraction of energy reflected from surface 2 is,

$$
\begin{aligned}
& =(1-\alpha) \mathrm{E}_{1}=(1-\alpha) \sigma \mathrm{T}_{1}^{4} \\
& =5.67 \times 10^{-8}(1-0.7) \times(1000)^{4}=17010 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

Now, Total energy incident upon plate 1 is,

$$
\begin{aligned}
\mathrm{E} & =\mathrm{E}_{2}+(1-\alpha) \mathrm{E}_{1}=2480.625+17010 \\
& =19490.625 \mathrm{~W} / \mathrm{m}^{2}=19.49 \mathrm{~kW} / \mathrm{m}^{2} \cong 19.5 \mathrm{~kW} / \mathrm{m}^{2}
\end{aligned}
$$

SOL 7.14 Option (D) is correct.
Given : $\varepsilon_{2}=0.8, \varepsilon_{1}=0.7$
As both the plates are gray, the net heat flow from plate 1 to plate 2 per unit time is given by,

$$
\begin{aligned}
\mathrm{Q}_{12} & =\frac{\varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{1} \varepsilon_{2}} \sigma_{\mathrm{b}}\left(\mathrm{~T}_{1}^{4}-\mathrm{T}_{2}^{4}\right)=\frac{1}{\frac{1}{\varepsilon_{2}}+\frac{1}{\varepsilon_{1}}-1} \sigma_{\mathrm{b}}\left(\mathrm{~T}_{1}^{4}-\mathrm{T}_{2}^{4}\right) \\
& =\frac{1}{\frac{1}{0.8}+\frac{1}{0.7}-1} \times 5.67 \times 10^{-8}\left[(1000)^{4}-(500)^{4}\right] \\
& =\frac{1}{1.68} \times 5.67 \times 9375=31640.625 \mathrm{~W} / \mathrm{m}^{2} \\
& \simeq 31.7 \mathrm{~kW} / \mathrm{m}^{2}
\end{aligned}
$$

SOL 7.15 Option (C) is correct.
Given : $\mu=0.001 \mathrm{~Pa}-\mathrm{s}, \mathrm{C}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{k}=1 \mathrm{~W} / \mathrm{m} \mathrm{K}$
The prandtl Number is given by,

$$
\operatorname{Pr}=\frac{\mu \mathrm{C}_{p}}{\mathrm{k}}=\frac{0.001 \times 1 \times 10^{3}}{1}=1
$$

And $\quad \frac{\delta}{\delta_{t}}=\frac{\text { hydrodynamic bondary layer thickness }}{\text { Thermal boundary layer thickness }}=(\operatorname{Pr})^{1 / 3}$
Given,

$$
\begin{aligned}
\delta & =1 \mathrm{~m} \\
\frac{\delta}{\delta_{\mathrm{t}}} & =(1)^{1 / 3}=1 \\
\delta & =\delta_{\mathrm{t}}=1 \mathrm{~mm}
\end{aligned}
$$

Hence, thermal boundary layer thickness at same location is 1 mm .
soL 7.16 Option (C) is correct.
The T - L curve shows the counter flow.

Given : $\theta_{\mathrm{m}}=20^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=20^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{h} 1}=100^{\circ} \mathrm{C}$

$$
\begin{align*}
& \dot{\mathrm{m}}_{\mathrm{c}}=2 \dot{\mathrm{~m}}_{\mathrm{h}} \Rightarrow \frac{\dot{\mathrm{~m}}_{\mathrm{c}}}{\dot{\mathrm{~m}}_{\mathrm{h}}}=2 \tag{i}\\
& \mathrm{c}_{\mathrm{ph}}=2 \mathrm{c}_{\mathrm{pc}} \Rightarrow \frac{\mathrm{c}_{\mathrm{ph}}}{\mathrm{c}_{\mathrm{pc}}}=2 \tag{ii}
\end{align*}
$$

Energy balance for counter flow is,
Heat lost by hot fluid $=$ Heat gain by cold fluid

$$
\begin{align*}
\dot{\mathrm{m}}_{\mathrm{h}} \mathrm{c}_{\mathrm{ph}}\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =\dot{\mathrm{m}}_{\mathrm{c}} \mathrm{c}_{\mathrm{pc}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) \\
\frac{\mathrm{c}_{\mathrm{ph}}}{\mathrm{c}_{\mathrm{pc}}}\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =\frac{\dot{\mathrm{m}}_{\mathrm{c}}}{\dot{\mathrm{~m}}_{\mathrm{h}}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) \\
2\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =2\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) \\
\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2} & =\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 1} \\
\theta_{1} & =\theta_{2} \tag{iii}\\
\theta_{\mathrm{m}} & =\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)} \tag{iv}
\end{align*}
$$

And

Substituting the equation (iii) in equation (iv), we get undetermined form.
Let

$$
\begin{equation*}
\frac{\theta_{1}}{\theta_{2}}=\mathrm{x}, \quad \Rightarrow \theta_{1}=\theta_{2} \mathrm{x} \tag{v}
\end{equation*}
$$

Substitute θ_{1} in equation(iv),

$$
\begin{equation*}
\theta_{m}=\lim _{x \rightarrow 1} \frac{\theta_{2} x-\theta_{2}}{\ln \left(\frac{\theta_{2} x}{\theta_{2}}\right)}=\lim _{x \rightarrow 1} \frac{\theta_{2}(x-1)}{\ln x} \tag{vi}
\end{equation*}
$$

$\left[\frac{0}{0}\right]$ form, So we apply L-Hospital rule,

$$
\begin{aligned}
& \theta_{m}=\lim _{x \rightarrow 1} \frac{\theta_{2}(1-0)}{\frac{1}{x}}=\lim _{x \rightarrow 1} x \theta_{2} \\
& \theta_{m}=\theta_{2}=\theta_{1}
\end{aligned}
$$

Now we have to find exit temperature of cold fluid ($\mathrm{t}_{\mathrm{c} 2}$),
So,

$$
\begin{aligned}
& \theta_{\mathrm{m}}=\theta_{1}=\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2} \\
& \mathrm{t}_{\mathrm{c} 2}=\mathrm{t}_{\mathrm{h} 1}-\theta_{\mathrm{m}}=100-20=80^{\circ} \mathrm{C}
\end{aligned}
$$

SOL 7.17 Option (D) is correct.
Given : $\mathrm{h}=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~T}_{\mathrm{i}}=30^{\circ} \mathrm{C}, \mathrm{q}_{\mathrm{g}}=100 \mathrm{~W} / \mathrm{m}^{3}$
Five faces of the object are insulated, So no heat transfer or heat generation by these five faces. Only sixth face (P QRS) interacts with the surrounding and generates heat.
Hence, Heat generated throughout the volume

$$
\begin{aligned}
Q & =\text { Rate of heat Generated } \times \text { Volume of object } \\
& =100 \times(1 \times 2 \times 2)=400 \mathrm{~W}
\end{aligned}
$$

A nd heat transfer by convection is given by

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{hA}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \\
400 & =10 \times(2 \times 2)\left(\mathrm{T}_{\mathrm{f}}-30\right) \\
\mathrm{T}_{\mathrm{f}} & =30+10=40^{\circ} \mathrm{C}
\end{aligned}
$$

SOL 7.18 Option (B) is correct.
Given: $\mathrm{D}_{1}=1 \mathrm{~m}, \mathrm{D}_{2}=2 \mathrm{~m}$
Hence, the small cylindrical surface (surface 1) cannot see itself and the radiation emitted by this surface strikes on the enclosing surface 2 . From the conservation principal (summation rule).
For surface 1, $\quad \mathrm{F}_{12}+\mathrm{F}_{11}=1$

$$
\begin{equation*}
\mathrm{F}_{12}=1 \tag{i}
\end{equation*}
$$

$\mathrm{F}_{11}=0$

From the reciprocity theorem

$$
\begin{aligned}
\mathrm{A}_{1} \mathrm{~F}_{12} & =\mathrm{A}_{2} \mathrm{~F}_{21} \\
\mathrm{~F}_{21} & =\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\pi \mathrm{D}_{1} \mathrm{~L}}{\pi \mathrm{D}_{2} \mathrm{~L}}=\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}=\frac{1}{2}=0.5
\end{aligned}
$$

and from the conservation principal, for surface 2, we have

$$
\begin{aligned}
\mathrm{F}_{21}+\mathrm{F}_{22} & =1 \\
\mathrm{~F}_{22} & =1-\mathrm{F}_{21}=1-0.5=0.5
\end{aligned}
$$

So, the fraction of the thermal radiation leaves the larger surface and striking itself is $\mathrm{F}_{22}=0.5$.

SOL 7.19 Option (D) is correct.
Given : $\left(\frac{\partial T}{\partial \mathrm{x}}\right)_{\mathrm{Q}}=10 \mathrm{~K} / \mathrm{m},(\mathrm{T})_{\mathrm{P}}=(\mathrm{T})_{\mathrm{Q}},(\mathrm{k})_{\mathrm{P}}=(\mathrm{k})_{\mathrm{Q}}=0.1 \mathrm{~W} / \mathrm{mK}$
Direction of heat flow is always normal to surface of constant temperature. So, for surface P,

$$
\frac{\partial T}{\partial x}=0
$$

Because, $\mathrm{Q}=-\mathrm{kA}(\partial T / \partial \mathrm{x})$ and ∂T is the temperature difference for a short perpendicular distance $d x$. Let width of both the bodies are unity. From the law of energy conservation,

$$
\begin{aligned}
\text { Heat rate at } \mathrm{P} & =\text { Heat rate at } \mathrm{Q} \\
-0.1 \times 1 \times\left(\frac{\partial T}{\partial \mathrm{y}}\right)_{P} & =-0.1 \times 2 \times\left(\frac{\partial T}{\partial \mathrm{x}}\right)_{\mathrm{Q}}
\end{aligned}
$$

Because for P heat flow in y direction and for Q heat flow in x direction

$$
\left(\frac{\partial T}{\partial \mathrm{y}}\right)_{P}=\frac{0.1 \times 2 \times 10}{0.1}=20 \mathrm{~K} / \mathrm{m}
$$

sol 7.20 Option (B) is correct.
The region beyond the thermal entrance region in which the dimensionless temperature profile expressed as $\left(\frac{T-T_{w}}{T_{\infty}-T_{w}}\right)$ remains unchanged is called thermally fully developed region.
Nusselt Number is given by,

$$
\begin{equation*}
\mathrm{N}_{\mathrm{u}}=\frac{\mathrm{hL}}{\mathrm{k}}=\left(\frac{\partial T}{\partial \mathrm{y}^{\prime}}\right)_{\mathrm{at} \mathrm{y}^{\prime}=0} \tag{i}
\end{equation*}
$$

Here,

$$
T=\frac{T-T_{w}}{T_{\infty}-T_{w}} \text { and } y^{\prime}=\frac{y}{\partial_{t}}
$$

So,

$$
\begin{aligned}
\mathrm{N}_{u} & =\frac{\partial}{\partial \mathrm{y}^{\prime}}\left[\frac{3}{2}\left(\frac{\mathrm{y}}{\delta_{\mathrm{t}}}\right)-\frac{1}{2}\left(\frac{\mathrm{y}}{\delta_{\mathrm{t}}}\right)^{3}\right]_{\mathrm{y}^{\prime}=0}=\frac{\partial}{\partial \mathrm{y}}\left[\frac{3}{2} \mathrm{y}^{\prime}-\frac{1}{2}\left(\mathrm{y}^{\prime}\right)^{3}\right]_{y^{\prime}=0} \\
& =\left[\frac{3}{2}-\frac{3}{2}\left(\frac{\mathrm{y}}{\delta_{\mathrm{t}}}\right)^{2}\right]_{\mathrm{y}^{\prime}=0}=\frac{3}{2}=1.5
\end{aligned}
$$

sol 7.21 Option (B) is correct.
The counter flow arrangement of the fluid shown below :

Given: for hot fluid: $\mathrm{t}_{\mathrm{h} 1}=60^{\circ} \mathrm{C}, \dot{m}_{\mathrm{h}}=1 \mathrm{~kg} / \mathrm{sec}, \mathrm{c}_{\mathrm{h}}=10 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
A nd for cold fluid: $\mathrm{t}_{\mathrm{c} 2}=30^{\circ} \mathrm{C}, \dot{\mathrm{m}}_{\mathrm{c}}=2 \mathrm{~kg} / \mathrm{sec}, \mathrm{c}_{\mathrm{c}}=5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Heat capacity of Hot fluid,

$$
\mathrm{C}_{\mathrm{h}}=\dot{\mathrm{m}}_{\mathrm{h}} \mathrm{c}_{\mathrm{h}}=1 \times 10=10 \mathrm{~kJ} / \mathrm{k} \cdot \mathrm{sec}
$$

A nd heat capacity of cold fluid,

$$
\mathrm{C}_{c}=\dot{\mathrm{m}}_{\mathrm{c}} \mathrm{c}_{\mathrm{c}}=2 \times 5=10 \mathrm{~kJ} / \mathrm{k} \mathrm{sec}
$$

By energy balance for the counter flow

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{h}} \mathrm{c}_{\mathrm{h}}\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =\dot{\mathrm{m}}_{\mathrm{c}} \mathrm{c}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) & \\
\mathrm{C}_{\mathrm{h}}\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =\mathrm{C}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c} 2}-\mathrm{t}_{\mathrm{c} 1}\right) & \mathrm{C}_{\mathrm{h}}=\mathrm{C}_{\mathrm{c}} \\
\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2} & =\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 1} &
\end{aligned}
$$

LMTD, $\quad \begin{aligned} \theta_{1} & =\theta_{2} \\ \theta_{\mathrm{m}} & =\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}\end{aligned}$
Let,

$$
\begin{aligned}
\frac{\theta_{1}}{\theta_{2}} & =\mathrm{x} \\
\theta_{1} & =\mathrm{x} \theta_{2}
\end{aligned}
$$

Substituting θ_{1} in equation (i), we get,

$$
\theta_{m}=\lim _{x \rightarrow 1} \frac{x \theta_{2}-\theta_{2}}{\ln (x)}=\lim _{x \rightarrow 1} \frac{\theta_{2}(x-1)}{\ln (x)}
$$

$\left(\frac{0}{0}\right)$ form, So we apply L-hospital rule,

$$
\begin{aligned}
& \theta_{\mathrm{m}}=\lim _{\mathrm{x} \rightarrow 1} \frac{\theta_{2} \times 1}{\frac{1}{\mathrm{x}}}=\lim _{\mathrm{x} \rightarrow 1} \mathrm{x} \theta_{2} \\
& \theta_{\mathrm{m}}=\theta_{2}=\theta_{1} \Rightarrow \theta_{1}=\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2}=60-30=30^{\circ} \mathrm{C}
\end{aligned}
$$

SOL 7.22 Option (D) is correct.
Given : $\mathrm{T}_{1}=25^{\circ} \mathrm{C}=(273+25)=298 \mathrm{~K}, \mathrm{~A}=0.1 \mathrm{~m}^{2}, \mathrm{~m}=4 \mathrm{~kg}$,
$\mathrm{c}=2.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{h}=?, \mathrm{~T}_{2}=225^{\circ} \mathrm{C}=273+225=498 \mathrm{~K}$
Temperature G radient, $\frac{\mathrm{dT}}{\mathrm{dt}}=-0.02 \mathrm{~K} / \mathrm{s}$
Here negative sign shows that plate temperature decreases with the time.
From the given condition,
Heat transfer by convection to the plate $=R$ ate of change of internal energy

$$
\begin{gathered}
h A\left(T_{2}-T_{1}\right)=-m c \frac{d T}{d t} \\
h=-\frac{m c}{A\left(T_{2}-T_{1}\right)} \times \frac{d T}{d t}=-\frac{4 \times 2.5 \times 10^{3}}{0.1(498-298)} \times(-0.02)=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{gathered}
$$

SOL 7.23 Option (C) is correct.

Let the location of maximum temperature occurs at the distance x from the left face. We know that steady state heat flow equation in one dimension
with a uniform heat generation is given by,

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{q_{g}}{k}=0 \tag{i}
\end{equation*}
$$

Here $\mathrm{q}_{\mathrm{g}}=$ Heat generated per unit volume and per unit time, Given : $\mathrm{q}_{\mathrm{g}}=80 \mathrm{M} \mathrm{W} / \mathrm{m}^{2}=80 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}, \mathrm{k}=200 \mathrm{~W} / \mathrm{m} \mathrm{K}$ Substituting the value of q_{g} and k in equation (i), we get

$$
\begin{aligned}
& \frac{\partial^{2} T}{\partial \mathrm{x}^{2}}+\frac{80 \times 10^{6}}{200}=0 \\
& \frac{\partial^{2} T}{\partial \mathrm{x}^{2}}+4 \times 10^{5}=0
\end{aligned}
$$

Integrating the above equation,

$$
\begin{equation*}
\frac{\partial T}{\partial x}+4 \times 10^{5} \times x+c_{1}=0 \tag{ii}
\end{equation*}
$$

A gain integrating, we get

$$
\begin{equation*}
T+4 \times 10^{5} \times \frac{x^{2}}{2}+c_{1} x+c_{2}=0 \tag{iii}
\end{equation*}
$$

A pplying boundary conditions on equation (iii), we get
(1) At $x=0, T=160^{\circ} \mathrm{C}$

$$
\begin{align*}
160+c_{2} & =0 \\
c_{2} & =-160 \tag{iv}
\end{align*}
$$

(2) At $x=20 \mathrm{~mm}=0.020 \mathrm{~m}, \mathrm{~T}=120^{\circ} \mathrm{C}$

$$
\begin{align*}
120+4 \times 10^{5} \times \frac{(0.020)^{2}}{2}+c_{1} \times 0.020+(-160) & =0 \quad c_{2}=-160 \\
120+80+0.020 c_{1}-160 & =0 \\
0.020 c_{1}+40 & =0 \\
c_{1}=-\frac{40}{0.020}=-2000 & \ldots(\mathrm{v}) \tag{v}
\end{align*}
$$

To obtain the location of maximum temperature, applying maxima-minima principle and put $\frac{d T}{d x}=0$ in equation (ii), we get

$$
\begin{array}{cc}
0+4 \times 10^{5} \mathrm{x}+(-2000)=0 & \mathrm{c}_{1}=-2000 \\
x=\frac{2000}{4 \times 10^{5}}=500 \times 10^{-5}=5 \times 10^{-3} \mathrm{~m}=5 \mathrm{~mm} &
\end{array}
$$

sol 7.24 Option (B) is correct.
From the previous part of the question, at $x=5 \mathrm{~mm}$ temperature is maximum.
So, put $x=5 \mathrm{~mm}=5 \times 10^{-3} \mathrm{~m}$ in equation(iii), we get

$$
\begin{aligned}
& \mathrm{T}+4 \times 10^{5} \times \frac{\left(5 \times 10^{-3}\right)^{2}}{2}+(-2000) \times 5 \times 10^{-3}+(-160)=0 \\
& T+5 \times 10^{6} \times 10^{-6}-10-160=0
\end{aligned}
$$

$$
\mathrm{T}+5-170=0 \Rightarrow \mathrm{~T}=165^{\circ} \mathrm{C}
$$

SOL 7.25 Option (D) is correct.

$$
\text { Given : } \quad \mathrm{T}_{\text {inter }}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}
$$

Heat transfer will be same for both the ends
So, $\quad Q=-\frac{k_{1} A_{1}\left(T_{1}-T_{\text {inter }}\right)}{2 b}=-\frac{k_{2} A_{2}\left(T_{\text {inter }}-T_{2}\right)}{b} Q=-k A \frac{d T}{d x}$
There is no variation in the horizontal direction. Therefore, we consider portion of equal depth and height of the slab, since it is representative of the entire wall.

So,

$$
\mathrm{A}_{1}=\mathrm{A}_{2} \text { and } \mathrm{T}_{\text {inter }}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}
$$

$$
\frac{\mathrm{k}_{1}\left[\mathrm{~T}_{1}-\left(\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}\right)\right]}{2}=\mathrm{k}_{2}\left[\frac{\mathrm{~T}_{1}+\mathrm{T}_{2}}{2}-\mathrm{T}_{2}\right]
$$

$$
\mathrm{k}_{1}\left[\frac{2 \mathrm{~T}_{1}-\mathrm{T}_{1}-\mathrm{T}_{2}}{2}\right]=2 \mathrm{k}_{2}\left[\frac{\mathrm{~T}_{1}+\mathrm{T}_{2}-2 \mathrm{~T}_{2}}{2}\right]
$$

$$
\frac{\mathrm{k}_{1}}{2}\left[\mathrm{~T}_{1}-\mathrm{T}_{2}\right]=\mathrm{k}_{2}\left[\mathrm{~T}_{1}-\mathrm{T}_{2}\right]
$$

$$
\mathrm{k}_{1}=2 \mathrm{k}_{2}
$$

sol 7.26 Option (D) is correct.
Given : $\mathrm{P}=100 \mathrm{~W}, \nu=2.5 \times 3 \times 3=22.5 \mathrm{~m}^{3}, \mathrm{~T}_{\mathrm{i}}=20^{\circ} \mathrm{C}$ N ow Heat generated by the bulb in 24 hours,

$$
\begin{equation*}
\mathrm{Q}=100 \times 24 \times 60 \times 60=8.64 \mathrm{MJ} \tag{i}
\end{equation*}
$$

Volume of the room remains constant.
Heat dissipated, $\mathrm{Q}=\mathrm{mc}_{\mathrm{v}} \mathrm{dT}=\rho \nu \mathrm{C}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$
$\mathrm{m}=\rho \mathrm{v}$
Where, $\quad T_{f}=$ Final temperature of room
$\rho=$ Density of air $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$
C_{v} of air $=0.717 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Substitute the value of Q from equation (i), we get

$$
\begin{aligned}
8640000 & =1.2 \times 22.5 \times 0.717 \times 10^{3}\left(\mathrm{~T}_{\mathrm{f}}-20\right) \\
8640 & =1.2 \times 22.5 \times 0.717\left(\mathrm{~T}_{\mathrm{f}}-20\right) \\
\left(\mathrm{T}_{f}-20\right) & =446.30 \\
\mathrm{~T}_{f} & =446.30+20=466.30^{\circ} \mathrm{C} \simeq 470^{\circ} \mathrm{C}
\end{aligned}
$$

SOL 7.27 Option (C) is correct.
Given : Relation humidity $=5 \%$ at temperature $20^{\circ} \mathrm{C}$
R elative humidity,

$\phi=\frac{\text { Actual mass of water vapour in a given volume of moist air }}{\text { mass of water vapour in the same volume of saturated }}$

$$
\begin{equation*}
\phi=\frac{m_{v}}{m_{\mathrm{s}}}=\frac{\mathrm{p}_{\mathrm{v}}}{\mathrm{p}_{\mathrm{s}}}=0.05 \tag{i}
\end{equation*}
$$

Where, $\quad p_{v}=$ Partial pressure of vapor at $20^{\circ} \mathrm{C}$
From given table at $\mathrm{T}=20^{\circ} \mathrm{C}, \mathrm{p}_{\mathrm{s}}=2.34 \mathrm{kPa}$
From equation (i),

$$
\mathrm{p}_{\mathrm{v}}=0.05 \times \mathrm{p}_{\mathrm{s}}=0.05 \times 2.34=0.117 \mathrm{kPa}
$$

Phase equilibrium means, $p_{s}=p_{v}$
The temperature at which p_{v} becomes saturated pressure can be found by interpolation of values from table, for $p_{s}=0.10$ to $p_{s}=0.26$

$$
\begin{aligned}
\mathrm{T} & =-15+\left[\frac{-10-(-15)}{0.26-0.10}\right](0.117-0.10) \\
& =-15+\frac{5}{0.16} \times 0.017=-14.47 \simeq-14.5^{\circ} \mathrm{C}
\end{aligned}
$$

sol 7.28 Option (B) is correct.
The variation of heat transfer with the outer radius of the insulation r_{2}, when $\mathrm{r}_{1}<\mathrm{r}_{\text {cr }}$

The rate of heat transfer from the insulated pipe to the surrounding air can be expressed as

$$
\dot{Q}=\frac{\mathrm{T}_{1}-\mathrm{T}_{\infty}}{\mathrm{R}_{\text {ins }}+\mathrm{R}_{\text {conv. }}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{\infty}}{\frac{\ln \left(\frac{r_{2}}{r_{1}}\right)}{2 \pi \mathrm{Lk}}+\frac{1}{\mathrm{~h}\left(2 \pi r_{2} \mathrm{~L}\right)}}
$$

The value of r_{2} at which \dot{Q} reaches a maximum is determined from the requirement that $\frac{d \dot{Q}}{d r_{2}}=0$. By solving this we get,

$$
\begin{equation*}
r_{c r, p i p e}=\frac{k}{h} \tag{i}
\end{equation*}
$$

From equation (i), we easily see that by increasing the thickness of insulation, the value of thermal conductivity increases and heat loss by the conduction also increases.
But by increasing the thickness of insulation, the convection heat transfer co-efficient decreases and heat loss by the convection also decreases. These both cases are limited for the critical thickness of insulation.
sol 7.29 Option (D) is correct.
The general heat equation in cartesian co-ordinates,

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial \mathrm{t}}
$$

For one dimensional heat conduction,

For constant properties of medium,

$$
\frac{\partial T}{\partial t} \propto \frac{\partial^{2} T}{\partial x^{2}}
$$

sol 7.30 Option (D) is correct.

Given: $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
From, W ien's displacement law,

$$
\begin{aligned}
\lambda_{\max } \mathrm{T} & =0.0029 \mathrm{mK}=\text { Constant } \\
\lambda_{\max } & \propto \frac{1}{\mathrm{~T}}
\end{aligned}
$$

If T increase, then λ_{m} decrease. But according the figure, when T increases, then λ_{m} also increases. So, the W ien's law is not satisfied.
sol 7.31 Option (C) is correct.
Assumptions:
(1) Heat transfer is steady since there is no indication of change with time.
(2) Heat transfer can be approximated as being one-dimensional since it is predominantly in the x-direction.
(3) Thermal conductivities are constant.
(4) Heat transfer by radiation is negligible.

Analysis:

There is no variation in the horizontal direction. Therefore, we consider a 1 m deep and 1 m high portion of the slab, since it representative of the entire wall.
Assuming any cross-section of the slab normal to the x - direction to be isothermal, the thermal resistance network for the slab is shown in the figure.

$$
\begin{aligned}
& R_{1}=\frac{L_{1}}{k_{1} A_{1}}=\frac{0.5}{0.02(1 \times 1)}=25 \mathrm{~K} / \mathrm{W} \\
& R_{2}=\frac{L_{2}}{k_{2} A_{2}}=\frac{0.25}{0.10 \times(1 \times 0.5)}=5 \mathrm{~K} / \mathrm{W} \\
& R_{3}=\frac{L_{3}}{k_{3} A_{3}}=\frac{0.25}{0.04 \times(1 \times 0.5)}=12.5 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

Resistance R_{2} and R_{3} are in parallel. So the equivalent resistance $R_{\text {eq }}$ will be

$$
\begin{aligned}
& \frac{1}{R_{\text {eq }}}=\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& \frac{1}{R_{\text {eq }}}=\frac{R_{3}+R_{2}}{R_{2} R_{3}} \\
& R_{\text {eq }}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{5 \times 12.5}{5+12.5}=3.6 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

Resistance R_{1} and $R_{\text {eq }}$ are in series. So total Resistance will be

$$
R=R_{1}+R_{\text {eq }}=25+3.6=28.6 \mathrm{~K} / \mathrm{W}
$$

soL 7.32 Option (C) is correct.
Given: $\mathrm{D}=5 \mathrm{~mm}=0.005 \mathrm{~m}, \mathrm{~T}_{\mathrm{i}}=500 \mathrm{~K}, \mathrm{~T}_{\mathrm{a}}=300 \mathrm{~K}, \mathrm{k}=400 \mathrm{~W} / \mathrm{mK}$,
$\rho=9000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{c}=385 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \mathrm{h}=250 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$,
Given that lumped analysis is assumed to be valid.
So,

$$
\begin{equation*}
\frac{T-T_{a}}{T_{i}-T_{a}}=\exp \left(-\frac{h A t}{\rho \nu \mathrm{C}}\right)=\exp \left(-\frac{h t}{\rho \mid \mathrm{c}}\right) \tag{i}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{I}=\frac{\nu}{\mathrm{A}}=\frac{\text { V olume of ball }}{\text { Surface Area }}=\frac{\frac{4}{3} \pi \mathrm{R}^{3}}{4 \pi \mathrm{R}^{2}} & \mathrm{I}=\frac{\nu}{\mathrm{A}} \\
\mathrm{I}=\frac{\mathrm{R}}{3}=\frac{\mathrm{D}}{6}=\frac{0.005}{6}=\frac{1}{1200} \mathrm{~m} &
\end{array}
$$

On substituting the value of I and other parameters in equation. (i),

$$
\begin{aligned}
\frac{\mathrm{T}-300}{500-300} & =\exp \left(-\frac{250 \times \mathrm{t}}{9000 \times \frac{1}{1200} 385}\right) \\
\mathrm{T} & =300+200 \times \mathrm{e}^{-0.08658 \mathrm{t}}
\end{aligned}
$$

On differentiating the above equation w.r.t. t ,

$$
\frac{\mathrm{dT}}{\mathrm{dt}}=200 \times(-0.08658) \times \mathrm{e}^{-0.08658 t}
$$

R ate of fall of temperature of the ball at the beginning of cooling is (at beginning $\mathrm{t}=0$)

$$
\left(\frac{d T}{d t}\right)_{t=0}=200 \times(-0.08658) \times 1=-17.316 \mathrm{~K} / \mathrm{sec}
$$

Negative sign shows fall of temperature.
soL 7.33 Option (C) is correct.

Given : $\mathrm{d}_{1}=1 \mathrm{~m}, \mathrm{~d}_{2}=0.5 \mathrm{~m}, \mathrm{~L}=0.5 \mathrm{~m}$
The cylinder surface cannot see itself and the radiation emitted by this surface falls on the enclosing sphere. So, from the conservation principle (summation rule) for surface 2,

$$
\begin{aligned}
\mathrm{F}_{21}+\mathrm{F}_{22} & =1 \\
\mathrm{~F}_{21} & =1
\end{aligned}
$$

$$
F_{22}=0
$$

From the reciprocity theorem,

$$
\begin{align*}
\mathrm{A}_{1} \mathrm{~F}_{12} & =\mathrm{A}_{2} \mathrm{~F}_{21} \\
\mathrm{~F}_{12} & =\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \times \mathrm{F}_{21}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \tag{ii}
\end{align*}
$$

For sphere, $\mathrm{F}_{11}+\mathrm{F}_{12}=1$

$$
\begin{equation*}
\mathrm{F}_{11}=1-\mathrm{F}_{12} \tag{iii}
\end{equation*}
$$

From equation (ii) and (iii), we get

$$
\begin{aligned}
\mathrm{F}_{11} & =1-\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}=1-\frac{2 \pi \mathrm{r}_{2} \mid}{\pi \mathrm{d}_{1}^{2}}=1-\frac{2 r_{2} \mid}{\mathrm{d}_{1}^{2}} \\
& =1-\frac{2 \times 0.250 \times 0.5}{1^{2}}=1-\frac{1}{4}=0.75
\end{aligned}
$$

sol 7.34 Option (D) is correct.
The figure shown below are of parallel flow and counter flow respectively.

For parallel flow,

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{h} 1}=80^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{h} 2}=50^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 2}=40^{\circ} \mathrm{C} \\
& \theta_{\mathrm{mp}}=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 1}\right)-\left(\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 2}\right)}{\ln \left(\frac{\mathrm{t}_{\mathrm{t} 1}-\mathrm{t}_{\mathrm{c} 1}}{\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 2}}\right)}
\end{aligned}
$$

Where, θ_{mp} denotes the LMTD for parallel flow.

$$
\theta_{\mathrm{mp}}=\frac{(80-30)-(50-40)}{\ln \left(\frac{50}{10}\right)}=\frac{40}{\ln (5)}=24.85^{\circ} \mathrm{C}
$$

For counter flow arrangement
$\mathrm{t}_{\mathrm{h} 1}=80^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{h} 2}=50^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=40^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 2}=30^{\circ} \mathrm{C}$
W here, θ_{mc} denotes the LMTD for counter flow.

$$
\begin{aligned}
\theta_{\mathrm{mc}} & =\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2}\right)-\left(\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 1}\right)}{\ln \left(\frac{\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 2}}{\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 1}}\right)} \\
& =\frac{(80-30)-(50-40)}{\ln \left(\frac{50}{10}\right)}=\frac{40}{\ln (5)}=28.85^{\circ} \mathrm{C}
\end{aligned}
$$

Now for defining the type of flow, we use the correction factor.

$$
\begin{equation*}
\theta_{\mathrm{m}}=\mathrm{F} \theta_{\mathrm{mc}}=\mathrm{F} \theta_{\mathrm{mp}} \tag{i}
\end{equation*}
$$

W here $F=$ correction factor, which depends on the geometry of the heat exchanger and the inlet and outlet temperatures of the of the hot and cold streams.
$F<1$, for cross flow and $F=1$, for counter and parallel flow So, From equation (i),
and also

$$
\begin{aligned}
& \mathrm{F}=\frac{\theta_{\mathrm{m}}}{\theta_{\mathrm{mc}}}=\frac{26}{28.85}=0.90<1 \\
& \mathrm{~F}=\frac{\theta_{\mathrm{m}}}{\theta_{\mathrm{mp}}}=\frac{26}{24.85}=1.04>1
\end{aligned}
$$

So, cross flow in better for this problem.

SOL 7.35 Option (C) is correct.
Given : A duct of rectangular cross section. For which sides are
$\mathrm{a}=1 \mathrm{~m}$ and $\mathrm{b}=0.5 \mathrm{~m}$
$\mathrm{T}_{1}=30^{\circ} \mathrm{C}, \mathrm{T}_{2}=20^{\circ} \mathrm{C}, \mathrm{V}=10 \mathrm{~m} / \mathrm{sec}, \mathrm{k}=0.025 \mathrm{~W} / \mathrm{m} \mathrm{K}$
V iscosity $=18 \mu \mathrm{Pas}, \mathrm{Pr}=0.73, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.33}$
Hence, For a rectangular conduit of sides a and b,
Hydraulic diameter,

$$
D_{H}=\frac{4 A}{p}
$$

Where, A is the flow cross sectional area and p the wetted perimeter

$$
\begin{aligned}
D_{H} & =\frac{4 a b}{2(a+b)}=\frac{2 a b}{(a+b)} \\
& =\frac{2 \times 1 \times 0.5}{(1+0.5)}=\frac{1}{1.5}=0.666 \mathrm{~m}
\end{aligned}
$$

Reynolds Number, $\quad \operatorname{Re}=\frac{\rho V \mathrm{D}_{\mathrm{H}}}{\mu}$

$$
=\frac{1.2 \times 10 \times 0.666}{18 \times 10^{-6}}=4.44 \times 10^{5}
$$

SOL 7.36 Option (D) is correct.
From the first part of the question,

$$
\mathrm{Re}=4.44 \times 10^{5}
$$

Which is greater than 3×10^{5}. So, flow is turbulent flow.
Therefore,

$$
\mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.33}
$$

$$
\frac{\mathrm{hL}}{\mathrm{k}}=0.023\left(4.44 \times 10^{5}\right)^{0.8} \times(0.73)^{0.33} \quad \mathrm{Nu}=\frac{\mathrm{hL}}{\mathrm{k}}
$$

$$
=0.023 \times 32954 \times 0.9013=683.133
$$

$$
h=683.133 \times \frac{k}{L}
$$

$$
=683.133 \times \frac{0.025}{0.666}=25.64 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
$$

$D_{H}=L=0.666 \mathrm{~m}$
Total A rea, $\quad A=2(a+b) L=2(1+0.5) L=3 L$
Heat transfer by convection is given by,

$$
\mathrm{Q}=\mathrm{hA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)
$$

$$
=25.64 \times 3 L \times[(273+30)-(273+20)]
$$

Heat transfer per meter length of the duct is given by

$$
\frac{\mathrm{Q}}{\mathrm{~L}}=25.64 \times 3 \times 10=769.2 \mathrm{~W} \simeq 769 \mathrm{~W}
$$

soL 7.37 Option (B) is correct.
The one dimensional time dependent heat conduction equation can be written more compactly as a simple equation,

$$
\begin{equation*}
\frac{1}{r^{n}} \frac{\partial}{\partial r}\left[r^{n} \frac{\partial T}{\partial r}\right]+\frac{q}{k}=\frac{\rho c}{k} \frac{\partial T}{\partial t} \tag{i}
\end{equation*}
$$

Where,

$$
\begin{aligned}
& \mathrm{n}=0, \text { For rectangular coordinates } \\
& \mathrm{n}=1, \text { For cylindrical coordinates } \\
& \mathrm{n}=2, \text { For spherical coordinates }
\end{aligned}
$$

Further, while using rectangular coordinates it is customary to replace the r-variable by the x-variable.
For sphere, substitute $r=2$ in equation (i)

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{q}{k}=\frac{\rho c}{k} \frac{\partial T}{\partial t} \\
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial}{\partial t} \quad \alpha=\frac{k}{\rho c}=\text { thermal diffusivity }
\end{aligned}
$$

soL 7.38 Option (C) is correct.

Let Length of the tube $=1$
Given : $r_{1}=\frac{d_{1}}{2}=2 / 2 \mathrm{~cm}=1 \mathrm{~cm}, r_{2}=\frac{5}{2} \mathrm{~cm}=2.5 \mathrm{~cm}$
Radius of asbestos surface, $\quad r_{3}=\frac{d_{2}}{2}+3=2.5+3=5.5 \mathrm{~cm}$
$\mathrm{k}_{\mathrm{s}}=19 \mathrm{~W} / \mathrm{mK}, \mathrm{k}_{\mathrm{a}}=0.2 \mathrm{~W} / \mathrm{mK}$
And $\quad T_{1}-T_{2}=600^{\circ} \mathrm{C}$
From the given diagram heat is transferred from r_{1} to r_{2} and from r_{2} to r_{3}. So Equivalent thermal resistance,

$$
\Sigma R=\frac{1}{2 \pi k_{s}} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{2 \pi k_{a}} \ln \left(\frac{r_{3}}{r_{2}}\right) \quad \text { For hollow cylinder } R_{t}=\frac{\log _{e}\left(r_{2} / r_{1}\right)}{2 \pi k \mid}
$$

$$
\begin{align*}
\Sigma \mathrm{R} \times \mathrm{I} & =\frac{1}{2 \pi \mathrm{k}_{\mathrm{s}}} \ln \left(\frac{\mathrm{r}_{2}}{r_{1}}\right)+\frac{1}{2 \pi \mathrm{k}_{\mathrm{a}}} \ln \left(\frac{\mathrm{r}_{3}}{\mathrm{r}_{2}}\right) \\
& =\frac{1}{2 \times 3.14 \times 19} \ln \left(\frac{2.5}{1}\right)+\frac{1}{2 \times 3.14 \times 0.2} \ln \left(\frac{5.5}{2.5}\right) \\
& =\frac{0.916}{119.32}+\frac{0.788}{1.256}=0.00767+0.627 \\
& =0.635 \mathrm{mK} / \mathrm{W} \tag{i}
\end{align*} .
$$

Heat transfer per unit length,

$$
\mathrm{Q}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{(\Sigma \mathrm{R} \times \mathrm{I})}=\frac{600}{0.635}=944.88 \simeq 944.72 \mathrm{~W} / \mathrm{m}
$$

sol 7.39 Option (B) is correct.
Given : $\mathrm{h}=400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=20 \mathrm{~W} / \mathrm{mK}, \mathrm{c}=400 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{T}_{\mathrm{i}}=30^{\circ} \mathrm{C}, \mathrm{D}=0.706 \mathrm{~mm}, \mathrm{~T}_{\mathrm{a}}=300^{\circ} \mathrm{C}, \mathrm{T}=298^{\circ} \mathrm{C}$
Biot Number,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{i}}=\frac{\mathrm{hl}}{\mathrm{k}} \tag{i}
\end{equation*}
$$

And

$$
\begin{aligned}
\mathrm{I} & =\frac{\text { Volume }}{\text { Surface A rea }}=\frac{\frac{4}{3} \pi \mathrm{R}^{3}}{4 \pi \mathrm{R}^{2}}=\frac{\frac{1}{6} \pi \mathrm{D}^{3}}{\pi \mathrm{D}^{2}} \\
& =\frac{\mathrm{D}}{6}=\frac{0.706 \times 10^{-3}}{6}=1.176 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

From equation (i), we have

$$
\begin{aligned}
& \mathrm{Bi}=\frac{\mathrm{hl}}{\mathrm{k}}=\frac{400 \times 1.176 \times 10^{-4}}{20}=0.0023 \\
& \mathrm{Bi}<0.1
\end{aligned}
$$

The value of B iot Number is less than one. So the lumped parameter solution for transient conduction can be conveniently stated as

$$
\begin{array}{rlr}
\frac{\mathrm{T}-\mathrm{T}_{\mathrm{a}}}{\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{a}}} & =\mathrm{e}^{-\left(\frac{\mathrm{hAt}}{\rho c \nu}\right)}=\mathrm{e}^{-\left(\frac{h t}{\rho c \mathrm{c}}\right)} \quad \frac{\nu}{\mathrm{A}}=\mathrm{I} \\
\frac{298-300}{30-300} & =\exp \left(\frac{-400 \mathrm{t}}{8500 \times 400 \times 1.176 \times 10^{-4}}\right) \\
\frac{-2}{-270} & =\mathrm{e}^{-\mathrm{t}} \\
\frac{2}{270} & =\mathrm{e}^{-\mathrm{t}} &
\end{array}
$$

Take natural logarithm both sides, we get

$$
\ln \left(\frac{2}{270}\right)=-t \quad \rightarrow t=4.90 \mathrm{sec}
$$

SOL 7.40 Option (A) is correct.
Given : $\mathrm{t}_{\mathrm{c} 1}=30^{\circ} \mathrm{C}, \frac{\mathrm{dm}}{\mathrm{dt}}=\dot{\mathrm{m}}=1500 \mathrm{~kg} / \mathrm{hr}=\frac{1500}{3600} \mathrm{~kg} / \mathrm{sec}=0.4167 \mathrm{~kg} / \mathrm{sec}$
$\mathrm{t}_{\mathrm{h} 2}=\mathrm{t}_{\mathrm{h} 1}=120^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 2} \mathrm{t}_{\mathrm{c} 2}=80^{\circ} \mathrm{C}, \mathrm{c}_{\mathrm{w}}=4.187 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{U}=2000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
Figure for condensation is given below :

Hence,

$$
\begin{aligned}
& \theta_{1}=\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 1}=120-30=90^{\circ} \mathrm{C} \\
& \theta_{2}=\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 2}=120-80=40^{\circ} \mathrm{C}
\end{aligned}
$$

And
So, Log mean temperature difference (LMTD) is,

$$
\theta_{\mathrm{m}}=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{90-40}{\ln \left(\frac{90}{40}\right)}=61.66^{\circ} \mathrm{C}
$$

E nergy transferred is given by,

$$
\begin{aligned}
\mathrm{Q} & =\dot{\mathrm{m}} \mathrm{c}_{\mathrm{w}} \Delta \mathrm{~T}=\mathrm{UA} \theta_{\mathrm{m}} \\
\mathrm{~A} & =\frac{\dot{\mathrm{m}} \mathrm{c}_{\mathrm{w}} \Delta \mathrm{~T}}{\mathrm{U} \theta_{\mathrm{m}}}=\frac{0.4167 \times 4.187 \times 1000 \times 50}{2000 \times 61.66}=0.707 \mathrm{~m}^{2}
\end{aligned}
$$

sol 7.41 Option (B) is correct.
Given, for plate :
$\mathrm{A}_{1}=10 \mathrm{~cm}^{2}=10 \times\left(10^{-2}\right)^{2} \mathrm{~m}^{2}=10^{-3} \mathrm{~m}^{2}, \mathrm{~T}_{1}=800 \mathrm{~K}, \varepsilon_{1}=0.6$
For R oom : $\mathrm{A}_{2}=100 \mathrm{~m}^{2}, \mathrm{~T}_{2}=300 \mathrm{~K}, \varepsilon_{2}=0.3$ and $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

Total heat loss from one surface of the plate is given by,

$$
\left(Q_{12}\right)=\frac{E_{b 1}-E_{b 2}}{\frac{\left(1-\varepsilon_{1}\right)}{A_{1} \varepsilon_{1}}+\frac{1}{A_{1} F_{12}}+\frac{\left(1-\varepsilon_{2}\right)}{A_{2} \varepsilon_{2}}}
$$

If small body is enclosed by a large enclosure, then $F_{12}=1$ and from Stefan's

Boltzman law $\mathrm{E}_{\mathrm{b}}=\sigma \mathrm{T}^{4}$. So we get

$$
\begin{aligned}
\left(\mathrm{Q}_{12}\right) & =\frac{\sigma\left(\mathrm{T}_{1}^{4}-\mathrm{T}_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\mathrm{~A}_{1} \varepsilon_{1}}+\frac{1}{\mathrm{~A}_{1}}+\frac{1-\varepsilon_{2}}{\mathrm{~A}_{2} \varepsilon_{2}}}=\frac{5.67 \times 10^{-8}\left[(800)^{4}-(300)^{4}\right]}{\frac{1-0.6}{10^{-3} \times 0.6}+\frac{1}{10^{-3}}+\frac{1-0.3}{100 \times 0.3}} \\
& =\frac{22.765 \times 10^{3}}{666.66+1000+0.0233}=13.66 \mathrm{~W}
\end{aligned}
$$

Q_{12} is the heat loss by one surface of the plate. So, heat loss from the two surfaces is given by,

$$
\mathrm{Q}_{\mathrm{net}}=2 \times \mathrm{Q}_{12}=2 \times 13.66=27.32 \mathrm{~W}
$$

SOL 7.42 Option (B) is correct.

In counter flow, hot fluid enters at the point 1 and exits at the point 2 or cold fluid enter at the point 2 and exit at the point 1.
Given: for hot fluid,
$\mathrm{c}_{\mathrm{h}}=2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{m}_{\mathrm{h}}=5 \mathrm{~kg} / \mathrm{sec}, \mathrm{t}_{\mathrm{h} 1}=150^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{h} 2}=100^{\circ} \mathrm{C}$
and for cold fluid,
$\mathrm{c}_{\mathrm{c}}=4 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{m}_{\mathrm{c}}=10 \mathrm{~kg} / \mathrm{sec}, \mathrm{t}_{\mathrm{c} 2}=20^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} 1}=$?
From the energy balance,
Heat transferred by the hot fluid $=$ Heat gain by the cold fluid

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{h}} \mathrm{c}_{\mathrm{h}}\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right) & =\dot{\mathrm{m}}_{\mathrm{c}} \mathrm{c}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c} 1}-\mathrm{t}_{\mathrm{c} 2}\right) \\
5 \times 2 \times 10^{3}(150-100) & =10 \times 4 \times 10^{3}\left(\mathrm{t}_{\mathrm{c} 1}-20\right) \\
10^{4} \times 50 & =4 \times 10^{4}\left(\mathrm{t}_{\mathrm{c} 1}-20\right) \\
\mathrm{t}_{\mathrm{c} 1} & =\frac{130}{4}=32.5^{\circ} \mathrm{C}
\end{aligned}
$$

Hence, outlet temperature of the cold fluid,

$$
\mathrm{t}_{\mathrm{c} 1}=32.5^{\circ} \mathrm{C}
$$

SOL 7.43 Option (A) is correct.
The non-dimensional Prandtl Number for thermal boundary layer is,

$$
\frac{\delta_{v}}{\delta_{T}}=(\operatorname{Pr})^{1 / 3}
$$

$$
\text { (i) } \quad \mathrm{W} \text { hen } \mathrm{Pr}=1 \quad \delta_{V}=\delta_{T}
$$

(ii) $\quad W$ hen $\operatorname{Pr}>1 \quad \delta_{v}>\delta_{T}$
(iii) When $\operatorname{Pr}<1 \quad \delta_{V}<\delta_{T}$

So for $\mathrm{Pr}>1, \delta_{v}>\delta_{\mathrm{T}}$

SOL 7.44 Option (C) is correct.
Given for water : $\mathrm{T}_{\mathrm{w}}=48^{\circ} \mathrm{C}, \mathrm{k}_{\mathrm{w}}=0.6 \mathrm{~W} / \mathrm{mK}$
A nd for glass : $\mathrm{T}_{\mathrm{g}}=40^{\circ} \mathrm{C}, \mathrm{k}_{\mathrm{g}}=1.2 \mathrm{~W} / \mathrm{mK}$
Spatial gradient $\quad\left(\frac{d T}{d y}\right)_{w}=1 \times 10^{4} \mathrm{~K} / \mathrm{m}$
Heat transfer takes place between the water and glass interface by the conduction and convection. Heat flux would be same for water and glass interface. So, applying the conduction equation for water and glass interface.

$$
\begin{aligned}
k_{w}\left(\frac{d T}{d y}\right)_{w}=k_{g}\left(\frac{d T}{d y}\right)_{g} \quad & q=\frac{Q}{A}=\frac{-k A \frac{d T}{d x}}{A}=-k \frac{d T}{d x} \\
\left(\frac{d T}{d y}\right)_{g} & =\frac{k_{w}}{k_{g}}\left(\frac{d T}{d y}\right)_{w}=\frac{0.6}{1.2} \times 10^{4}=0.5 \times 10^{4} \mathrm{~K} / \mathrm{m}
\end{aligned}
$$

sol 7.45 Option (D) is correct.
From the equation of convection,
Heat flux, $\quad q=h\left[T_{w}-T_{g}\right]$
W here, $\mathrm{h}=\mathrm{H}$ eat transfer coefficient
First find q,

$$
q=k_{w}\left(\frac{d T}{d y}\right)_{w}=k_{g}\left(\frac{d T}{d y}\right)_{g}=0.6 \times 10^{4}=6000 \mathrm{~W} / \mathrm{m}^{2}
$$

Now from equation (i),

$$
h=\frac{q}{T_{w}-T_{g}}=\frac{6000}{48-40}=\frac{6000}{8}=750 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
$$

sol 7.46 Option (C) is correct.

Given : (A) For counter flow $\mathrm{t}_{\mathrm{h} 1}=\mathrm{t}_{\mathrm{c} 1}, \mathrm{t}_{\mathrm{h} 2}=\mathrm{t}_{\mathrm{c} 2}$
LMTD, $\theta_{\mathrm{mc}}=\frac{\theta_{1}-\theta_{2}}{\ln \frac{\theta_{1}}{\theta_{2}}}$

$$
\begin{equation*}
\theta_{\mathrm{mc}}=\frac{\left(t_{\mathrm{h} 1}-t_{\mathrm{c} 2}\right)-\left(t_{\mathrm{h} 2}-t_{\mathrm{c} 1}\right)}{\ln \left[\frac{t_{\mathrm{h} 1}-t_{\mathrm{c} 2}}{t_{\mathrm{h} 2}-t_{\mathrm{c} 1}}\right]}=\frac{\left(t_{\mathrm{h} 1}-t_{\mathrm{h} 2}\right)-\left(t_{\mathrm{h} 2}-t_{\mathrm{h} 1}\right)}{\ln \left[\frac{t_{\mathrm{h} 1}-t_{\mathrm{h} 2}}{t_{\mathrm{h} 2}-t_{\mathrm{h} 1}}\right]}=\frac{2\left(t_{\mathrm{t} 1}-t_{\mathrm{h} 2}\right)}{\ln \left[\frac{t_{\mathrm{h} 1}-t_{\mathrm{h} 2}}{t_{\mathrm{h} 2}-t_{\mathrm{h} 1}}\right]} \tag{i}
\end{equation*}
$$

(B) For parallel flow given: $\mathrm{t}_{\mathrm{h} 1}=\mathrm{t}_{\mathrm{C} 2}, \mathrm{t}_{\mathrm{h} 2}=\mathrm{t}_{\mathrm{C} 1}$

$$
\begin{gather*}
\text { LMTD, } \theta_{\mathrm{mp}}=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)} \\
\theta_{\mathrm{mp}}=\frac{\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 1}\right)-\left(\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 2}\right)}{\ln \left[\frac{t_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{c} 1}}{\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{c} 2}}\right]}=\frac{\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right)-\left(\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{h} 1}\right)}{\ln \left[\frac{t_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}}{t_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{h} 1}}\right]}=\frac{2\left(\mathrm{t}_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}\right)}{\ln \left[\frac{t_{\mathrm{h} 1}-\mathrm{t}_{\mathrm{h} 2}}{\mathrm{t}_{\mathrm{h} 2}-\mathrm{t}_{\mathrm{h} 1}}\right]} \tag{ii}
\end{gather*}
$$

From equation (i) and (ii), we get

$$
\theta_{\mathrm{mc}}=\theta_{\mathrm{mp}}
$$

SOL 7.47 Option (D) is correct.
Given: $\quad F_{13}=0.17$
Applying summation rule :

$$
F_{11}+F_{12}+F_{13}=1
$$

The flat surface cannot see itself.
So,

$$
F_{11}=0
$$

This gives,
$\mathrm{F}_{12}=1-\mathrm{F}_{11}-\mathrm{F}_{13}=1-0-0.17=0.83$

SOL 7.48 Option (C) is correct.

S. No.	M aterials	Thermal C onductivity (W /m $-K$)
1.	A luminum	237
2.	Pure Iron	80.2
3.	Liquid Water	0.607
4.	Saturated Water Vapour	0.026

CHAPTER 8

THERMODYNAMICS

YEAR 2012
MCQ 8.1 Steam enters an adiabatic turbine operating at steady state with an enthalpy of $3251.0 \mathrm{~kJ} / \mathrm{kg}$ and leaves as a saturated mixture at 15 kPa with quality (dryness fraction) 0.9. The enthalpies of the saturated liquid and vapour at 15 kPa are $\mathrm{h}_{\mathrm{f}}=225.94 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{h}_{\mathrm{g}}=2598.3 \mathrm{~kJ} / \mathrm{kg}$ respectively. The mass flow rate of steam is $10 \mathrm{~kg} / \mathrm{s}$. K inetic and potential energy changes are negligible. The power output of the turbine in MW is
(A) 6.5
(B) 8.9
(C) 9.1
(D) 27.0

MCQ 8.2 A ideal gas of mass m and temperature T_{1} undergoes a reversible isothermal process from an initial pressure p_{1} to final pressure p_{2}. The heat loss during the process is Q . The entropy change $\Delta \mathrm{s}$ of the gas is
(A) $m R \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)$
(B) $m R \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)$
(C) $m R \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)-\frac{\mathrm{Q}}{\mathrm{T}_{1}}$
(D) zero

YEAR 2012
TWO MARKS

- Common Data For Q. 3 and Q. 4

Air enters an adiabatic nozzle at $300 \mathrm{kPa}, 500 \mathrm{~K}$ with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It leaves the nozzle at 100 kPa with a velocity of $180 \mathrm{~m} / \mathrm{s}$. The inlet area is $80 \mathrm{~cm}^{2}$. The specific heat of air c_{p} is $1008 \mathrm{~J} / \mathrm{kgK}$.
MCQ 8.3 The exit temperature of the air is
(A) 516 K
(B) 532 K
(C) 484 K
(D) 468 K

MCQ 8.4 The exit area of the nozzle in cm^{2} is
(A) 90.1
(B) 56.3
(C) 4.4
(D) 12.9

YEAR 2011

ONE MARK
MCQ 8.5 Heat and work are
(A) intensive properties
(B) extensive properties
(B) point functions
(D) path functions

MCQ 8.6 The contents of a well-insulated tank are heated by a resistor of 23Ω in which 10 A current is flowing. Consider the tank along with its contents as a thermodynamic system. The work done by the system and the heat transfer to the system are positive. The rates of heat (Q), work (W) and change in internal energy ($\Delta \mathrm{U}$) during the process in kW are
(A) $\mathrm{Q}=0, \mathrm{~W}=-2.3, \Delta \mathrm{U}=+2.3$
(B) $\mathrm{Q}=+2.3, \mathrm{~W}=0, \Delta \mathrm{U}+2.3$
(C) $\mathrm{Q}=-2.3, \mathrm{~W}=0, \Delta \mathrm{U}=-2.3$
(D) $\mathrm{Q}=0, \mathrm{~W}=+2.3, \Delta \mathrm{U}=-2.3$

YEAR 2011
TWO MARKS
MCQ 8.7 The values of enthalpy of steam at the inlet and outlet of a steam turbine in a Rankine cycle are $2800 \mathrm{~kJ} / \mathrm{kg}$ and $1800 \mathrm{~kJ} / \mathrm{kg}$ respectively. Neglecting pump work, the specific steam consumption in $\mathrm{kg} / \mathrm{kW}$ hour is
(A) 3.60
(B) 0.36
(C) 0.06
(D) 0.01

MCQ 8.8 The crank radius of a single-cylinder I.C. engine is 60 mm and the diameter of the cylinder is 80 mm . The swept volume of the cylinder in cm^{3} is
(A) 48
(B) 96
(C) 302
(D) 603

MCQ 8.9 An ideal Brayton cycle, operating between the pressure limits of 1 bar and 6 bar, has minimum and maximum temperature of 300 K and 1500 K . The ratio of specific heats of the working fluid is 1.4. The approximate final temperatures in K elvin at the end of compression and expansion processes are respectively
(A) 500 and 900
(B) 900 and 500
(C) 500 and 500
(D) 900 and 900

- Common Data For Q. 10 and Q. 11

In an experimental set up, air flows between two stations P and Q adiabatically. The direction of flow depends on the pressure and temperature conditions maintained at P and Q. The conditions at station P are 150 kPa and 350 K . The temperature at station Q is 300 K .
The following are the properties and relations pertaining to air :
Specific heat at constant pressure, $\quad \mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kgK}$;
Specific heat at constant volume, $\quad \mathrm{C}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kgK}$;
Characteristic gas constant, $\quad \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kgK}$
Enthalpy,
$\mathrm{h}=\mathrm{c}_{\mathrm{p}} \mathrm{T}$
Internal energy,
$u=c_{v} T$
MCQ 8.10 If the air has to flow from station P to station Q, the maximum possible value of pressure in KPa at station Q is close to
(A) 50
(B) 87
(C) 128
(D) 150

MCQ 8.11 If the pressure at station Q is 50 kPa , the change in entropy ($\mathrm{S}_{\mathrm{Q}}-\mathrm{S}_{\mathrm{P}}$) in $\mathrm{kJ} / \mathrm{kgK}$ is
(A) -0.155
(B) 0
(C) 0.160
(D) 0.355

- Common Data For Q. 12 and Q. 13

The temperature and pressure of air in a large reservoir are 400 K and 3 bar respectively. A converging diverging nozzle of exit area $0.005 \mathrm{~m}^{2}$ is fitted to the wall of the reservoir as shown in the figure. The static pressure of air at the exit section for isentropic flow through the nozzle is 50 kPa . The characteristic gas constant and the ratio of specific heats of air are $0.287 \mathrm{~kJ} / \mathrm{kgK}$ and 1.4 respectively.

MCQ 8.12 The density of air in $\mathrm{kg} / \mathrm{m}^{3}$ at the nozzle exit is
(A) 0.560
(B) 0.600
(C) 0.727
(D) 0.800

MCQ 8.13 The mass flow rate of air through the nozzle in kg / s is
(A) 1.30
(B) 1.77
(C) 1.85
(D) 2.06

YEAR 2010
ONE MARK
MCQ 8.14 A turbo-charged four-stroke direct injection diesel engine has a displacement volume of $0.0259 \mathrm{~m}^{3}$ (25.9 litres). The engine has an output of 950 kW at 2200 rpm . The mean effective pressure (in MPa) is closest to
(A) 2
(B) 1
(C) 0.2
(D) 0.1

MCQ 8.15 One kilogram of water at room temperature is brought into contact with a high temperature thermal reservoir. The entropy change of the universe is (A) equal to entropy change of the reservoir
(B) equal to entropy change of water
(C) equal to zero
(D) always positive

YEAR 2010
TWO MARKS
MCQ 8.16 A mono-atomic ideal gas $(\gamma=1.67$, molecular weight $=40)$ is compressed adiabatically from $0.1 \mathrm{MPa}, 300 \mathrm{~K}$ to 0.2 MPa . The universal gas constant is $8.314 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The work of compression of the gas (in $\mathrm{kJ} \mathrm{kg}^{-1}$) is
(A) 29.7
(B) 19.9
(C) 13.3
(D) 0

MCQ 8.17 Consider the following two processes ;
(a) A heat source at 1200 K loses 2500 kJ of heat to a sink at 800 K
(b) A heat source at 800 K loses 2000 kJ of heat to a sink at 500 K W hich of the following statements is true ?
(A) Process I is more irreversible than Process II
(B) Process II is more irreversible than Process I
(C) Irreversibility associated in both the processes are equal
(D) B oth the processes are reversible

- Common Data For Q. 18 and Q. 19

In a steam power plant operating on the Rankine cycle, steam enters the turbine at $4 \mathrm{MPa}, 350^{\circ} \mathrm{C}$ and exists at a pressure of 15 kPa . Then it enters
the condenser and exits as saturated water. Next, a pump feeds back the water to the boiler. The adiabatic efficiency of the turbine is 90%. The thermodynamic states of water and steam are given in table.

State	$\mathrm{h}\left(\mathrm{kJ} \mathrm{kg}{ }^{-1}\right)$		$\mathrm{s}\left(\mathrm{kJ} \mathrm{kg}{ }^{-1} \mathrm{~K}^{-1}\right)$		$\nu\left(\mathrm{m}^{3} \mathrm{~kg}^{-1}\right)$	
Steam : $4 \mathrm{MPa}, 350^{\circ} \mathrm{C}$	3092.5		6.5821		0.06645	
Water : 15 kPa	h_{f}	h_{g}	S_{f}	S_{g}	ν_{f}	ν_{g}
	225.94	2599.1	0.7549	8.0085	0.001014	10.02

h is specific enthalpy, s is specific entropy and ν the specific volume; subscripts f and g denote saturated liquid state and saturated vapor state.

MCQ 8.18 The net work output ($\mathrm{KJ} \mathrm{kg}^{-1}$) of the cycle is
(A) 498
(B) 775
(C) 860
(D) 957

MCQ 8.19 Heat supplied ($\mathrm{KJ} \mathrm{kg}^{-1}$) to the cycle is
(A) 2372
(B) 2576
(C) 2863
(D) 3092

YEAR 2009

ONE MARK
MCQ 8.20 If a closed system is undergoing an irreversible process, the entropy of the system
(A) must increase
(B) always remains constant
(C) M ust decrease
(D) can increase, decrease or remain constant

MCQ 8.21 A frictionless piston-cylinder device contains a gas initially at 0.8 MPa and $0.015 \mathrm{~m}^{3}$. It expands quasi-statically at constant temperature to a final volume of $0.030 \mathrm{~m}^{3}$. The work output (in kJ) during this process will be
(A) 8.32
(B) 12.00
(C) 554.67
(D) 8320.00

MCQ 8.22 A compressor undergoes a reversible, steady flow process. The gas at inlet and outlet of the compressor is designated as state 1 and state 2 respectively. Potential and kinetic energy changes are to be ignored. The following notations are used :
$\nu=$ Specific volume and $\mathrm{p}=$ pressure of the gas.
The specific work required to be supplied to the compressor for this gas compression process is
(A) $\int_{i}^{2} p d \nu$
(B) $\int_{1}^{2} v d p$
(C) $\nu_{1}\left(p_{2}-p_{1}\right)$
(D) $-p_{2}\left(\nu_{1}-\nu_{2}\right)$

MCQ 8.23 In an air-standard Otto-cycle, the compression ratio is 10 . The condition at the beginning of the compression process is 100 kPa and $27^{\circ} \mathrm{C}$. Heat added at constant volume is $1500 \mathrm{~kJ} / \mathrm{kg}$, while $700 \mathrm{~kJ} / \mathrm{kg}$ of heat is rejected during the other constant volume process in the cycle. Specific gas constant for air $=0.287 \mathrm{~kJ} / \mathrm{kgK}$. The mean effective pressure (in kPa) of the cycle is
(A) 103
(B) 310
(C) 515
(D) 1032

MCQ 8.24 An irreversible heat engine extracts heat from a high temperature source at a rate of 100 kW and rejects heat to a sink at a rate of 50 kW . The entire work output of the heat engine is used to drive a reversible heat pump operating between a set of independent isothermal heat reservoirs at $17^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. The rate (in kW) at which the heat pump delivers heat to its high temperature sink is
(A) 50
(B) 250
(C) 300
(D) 360

- Common Data For Q. 25 and Q. 26

The inlet and the outlet conditions of steam for an adiabatic steam turbine are as indicated in the figure. The notations are as usually followed.

MCQ 8.25 If mass rate of steam through the turbine is $20 \mathrm{~kg} / \mathrm{s}$, the power output of the turbine (in MW) is
(A) 12.157
(B) 12.941
(C) 168.001
(D) 168.785

MCQ 8.26 A ssume the above turbine to be part of a simple R ankine cycle. The density of water at the inlet to the pump is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Ignoring kinetic and potential energy effects, the specific work (in $\mathrm{kJ} / \mathrm{kg}$) supplied to the pump is
(A) 0.293
(B) 0.351
(C) 2.930
(D) 3.510

YEAR 2008
ONE MARK
MCQ 8.27 2 moles of oxygen are mixed adiabatically with another 2 moles of oxygen in mixing chamber, so that the final total pressure and temperature of the mixture become same as those of the individual constituents at their initial states. The universal gas constant is given as R. The change in entropy due to mixing, per mole of oxygen, is given by
(A) $-R \ln 2$
(B) 0
(C) $R \ln 2$
(D) $R \ln 4$

MCQ 8.28 Which one of the following is NOT a necessary assumption for the airstandard Otto cycle?
(A) All processes are both internally as well as externally reversible.
(B) Intake and exhaust processes are constant volume heat rejection processes.
(C) The combustion process is a constant volume heat addition process.
(D) The working fluid is an ideal gas with constant specific heats.

YEAR 2008
TWO MARKS
MCQ 8.29 A gas expands in a frictionless piston-cylinder arrangement. The expansion process is very slow, and is resisted by an ambient pressure of 100 kPa . During the expansion process, the pressure of the system (gas) remains constant at 300 kPa . The change in volume of the gas is $0.01 \mathrm{~m}^{3}$. The maximum amount of work that could be utilized from the above process is
(A) 0 kJ
(B) 1 kJ
(C) 2 kJ
(D) 3 kJ

MCQ 8.30 A cyclic device operates between three reservoirs, as shown in the figure. Heat is transferred to/ from the cycle device. It is assumed that heat transfer between each thermal reservoir and the cyclic device takes place across negligible temperature difference. Interactions between the cyclic device and the respective thermal reservoirs that are shown in the figure are all in the form of heat transfer.

The cyclic device can be
(A) a reversible heat engine
(B) a reversible heat pump or a reversible refrigerator
(C) an irreversible heat engine
(D) an irreversible heat pump or an irreversible refrigerator

MCQ 8.31 A balloon containing an ideal gas is initially kept in an evacuated and insulated room. The balloon ruptures and the gas fills up the entire room. W hich one of the following statements is TRUE at the end of above process ?
(A) The internal energy of the gas decreases from its initial value, but the enthalpy remains constant
(B) The internal energy of the gas increases from its initial value, but the enthalpy remains constant
(C) B oth internal energy and enthalpy of the gas remain constant
(D) Both internal energy and enthalpy of the gas increase

MCQ 8.32 A rigid, insulated tank is initially evacuated. The tank is connected with a supply line through which air (assumed to be ideal gas with constant specific heats) passes at $1 \mathrm{MPa}, 350^{\circ} \mathrm{C}$. A valve connected with the supply line is opened and the tank is charged with air until the final pressure inside the tank reaches 1 MPa. The final temperature inside the tank.

(A) is greater than $350^{\circ} \mathrm{C}$
(B) is less than $350^{\circ} \mathrm{C}$
(C) is equal to $350^{\circ} \mathrm{C}$
(D) may be greater than, less than, or equal to, $350^{\circ} \mathrm{C}$ depending on the volume of the tank

MCQ 8.33 A thermal power plant operates on a regenerative cycle with a single open feed water heater, as shown in the figure. For the state points shown, the specific enthalpies are: $h_{1}=2800 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{h}_{2}=200 \mathrm{~kJ} / \mathrm{kg}$. The bleed to the feed water heater is 20% of the boiler steam generation rate. The specific enthalpy at state 3 is

(A) $720 \mathrm{~kJ} / \mathrm{kg}$
(B) $2280 \mathrm{~kJ} / \mathrm{kg}$
(C) $1500 \mathrm{~kJ} / \mathrm{kg}$
(D) $3000 \mathrm{~kJ} / \mathrm{kg}$

MCQ 8.34 In a steady state flow process taking place in a device with a single inlet and a single outlet, the work done per unit mass flow rate is given by $W=-\int^{\text {outlet }} \nu \mathrm{dp}$, where ν is the specific volume and p is the pressure.
The expmession for W given above
(A) is valid only if the process is both reversible and adiabatic
(B) is valid only if the process is both reversible and isothermal
(C) is valid for any reversible process
(D) is incorrect; it must be W $=\int_{\text {inlet }}^{\text {outlet }} \mathrm{pd} \nu$

- Common Data For Q.35, 36 and Q. 37

In the figure shown, the system is a pure substance kept in a piston-cylinder arrangement. The system is initially a two-phase mixture containing 1 kg of liquid and 0.03 kg of vapour at a pressure of 100 kPa . Initially, the piston rests on a set of stops, as shown in the figure. A pressure of 200 kPa
is required to exactly balance the weight of the piston and the outside atmospheric pressure. Heat transfer takes place into the system until its volume increases by 50%. Heat transfer to the system occurs in such a manner that the piston, when allowed to move, does so in a very slow (quasistatic/ quasi-equilibrium) process. The thermal reservoir from which heat is transferred to the system has a temperature of $400^{\circ} \mathrm{C}$. A verage temperature of the system boundary can be taken as $175^{\circ} \mathrm{C}$. The heat transfer to the system is 1 kJ , during which its entropy increases by $10 \mathrm{~J} / \mathrm{K}$.

Specific volume of liquid (ν_{f}) and vapour $\left(\nu_{\mathrm{g}}\right)$ phases, as well as values of saturation temperatures, are given in the table below.

Pressure (kPa)	Saturation temperature, $\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$	$\nu_{\mathrm{f}}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	$\nu_{\mathrm{g}}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$
100	100	0.001	0.1
200	200	0.0015	0.002

MCQ 8.35 At the end of the process, which one of the following situations will be true?
(A) superheated vapour will be left in the system
(B) no vapour will be left in the system
(C) a liquid + vapour mixture will be left in the system
(D) the mixture will exist at a dry saturated vapour state

MCQ 8.36 The work done by the system during the process is
(A) 0.1 kJ
(B) 0.2 kJ
(C) 0.3 kJ
(D) 0.4 kJ

MCQ 8.37 The net entropy generation (considering the system and the thermal reservoir together) during the process is closest to
(A) $7.5 \mathrm{~J} / \mathrm{K}$
(B) $7.7 \mathrm{~J} / \mathrm{K}$
(C) $8.5 \mathrm{~J} / \mathrm{K}$
(D) $10 \mathrm{~J} / \mathrm{K}$

MCQ 8.38 W hich of the following relationships is valid only for reversible processes undergone by a closed system of simple compressible substance (neglect changes in kinetic and potential energy ?)
(A) $\delta \mathrm{Q}=\mathrm{dU}+\delta \mathrm{W}$
(B) $\mathrm{Tds}=\mathrm{dU}+\mathrm{pd} \nu$
(C) $\mathrm{Tds}=\mathrm{dU}+\delta \mathrm{W}$
(D) $\delta \mathrm{Q}=\mathrm{dU}+\mathrm{pd} \nu$

MCQ 8.39 Water has a critical specific volume of $0.003155 \mathrm{~m}^{3} / \mathrm{kg}$. A closed and rigid steel tank of volume $0.025 \mathrm{~m}^{3}$ contains a mixture of water and steam at 0.1 MPa . The mass of the mixture is 10 kg . The tank is now slowly heated. The liquid level inside the tank
(A) will rise
(B) will fall
(C) will remain constant
(D) may rise or fall depending on the amount of heat transferred

YEAR 2007
TWO MARKS
MCQ 8.40 The stroke and bore of a four stroke spark ignition engine are 250 mm and 200 mm respectively. The clearance volume is $0.001 \mathrm{~m}^{3}$. If the specific heat ratio $\gamma=1.4$, the air-standard cycle efficiency of the engine is
(A) 46.40\%
(B) 56.10\%
(C) 58.20%
(D) 62.80%

MCQ 8.41 W hich combination of the following statements is correct ?
The incorporation of reheater in a steam power plant :
P : always increases the thermal efficiency of the plant.
Q : always increases the dryness fraction of steam at condenser inlet
R : always increases the mean temperature of heat addition.
S: always increases the specific work output.
(A) P and S
(B) Q and S
(C) P, R and S
(D) P, Q, R and S

MCQ 8.42 W hich combination of the following statements is correct ?
P : A gas cools upon expansion only when its Joule-T homson coefficient is positive in the temperature range of expansion.
Q : For a system undergoing a process, its entropy remains constant only when the process is reversible.
R : The work done by closed system in an adiabatic is a point function.
S : A liquid expands upon freezing when the slope of its fusion curve on
pressure-Temperature diagram is negative.
(A) R and S
(B) P and Q
(C) Q, R and S
(D) P, Q and R

- Common Data For Q. 43 and Q. 44

A thermodynamic cycle with an ideal gas as working fluid is shown below.

MCQ 8.43 The above cycle is represented on T -s plane by
(A)

(B)

(C)

(D)

MCQ 8.44 If the specific heats of the working fluid are constant and the value of specific heat ratio is 1.4 , the thermal efficiency (\%) of the cycle is
(A) 21
(B) 40.9
(C) 42.6
(D) 59.7

MCQ 8.45 A heat transformer is device that transfers a part of the heat, supplied to it at an intermediate temperature, to a high temperature reservoir while rejecting the remaining part to a low temperature heat sink. In such a heat transformer, 100 kJ of heat is supplied at 350 K . The maximum amount of heat in kJ that can be transferred to 400 K , when the rest is rejected to a heat sink at 300 K is
(A) 12.50
(B) 14.29
(C) 33.33
(D) 57.14

YEAR 2006
TWO MARKS
MCQ 8.46 Given below is an extract from steam tables.

Temperature in ${ }^{\circ} \mathrm{C}$	$\mathbf{p}_{\text {sat }}$ $(\mathbf{B a r})$	Specific volume $\mathbf{m}^{\mathbf{3} / \mathbf{k g}}$		E nthalpy (kJ/ kg)	
		Saturated Liquid	Saturated vapour	Saturated liquid	Saturated vapour
45	0.09593	0.001010	15.26	188.45	2394.8
342.24	150	0.001658	0.010337	1610.5	2610.5

Specific enthalpy of water in $\mathrm{kJ} / \mathrm{kg}$ at 150 bar and $45^{\circ} \mathrm{C}$ is
(A) 203.60
(B) 200.53
(C) 196.38
(D) 188.45

MCQ 8.47 Determine the correctness or otherwise $\mathbf{A} \operatorname{ssertion}(\mathbf{A})$ and the \mathbf{R} eason (\mathbf{R})
A ssertion (A) : In a power plant working on a R ankine cycle, the regenerative feed water heating improves the efficiency of the steam turbine.
Reason (R) : The regenerative feed water heating raises the average temperature of heat addition in the R ankine cycle.
(A) B oth (A) and (R) are true and (R) is the correct reason for (A)
(B) Both (A) and (R) are true but (R) is NOT the correct reason for (A)
(C) B oth (A) and (R) are false
(D) (A) is false but (R) is true

MCQ 8.48 Determine the correctness or otherwise of the following Assertion (A) and the \mathbf{R} eason (\mathbf{R}).
Assertion (A) : Condenser is an essential equipment in a steam power plant.
Reason (R) : For the same mass flow rate and the same pressure rise, a
water pump requires substantially less power than a steam compressor.
(A) Both (A) and (R) are true and (R) is the correct reason for (A)
(B) Both (A) and (R) are true and (R) is NOT the correct reason for (A)
(C) Both (A) and (R) are false
(D) (A) is false but (R) is true

MCQ 8.49 Match items from groups I, II, III, IV and V.

Group I	Group II	G roup III	Group IV	G roup V
	W hen added to the system is	Differential	Function	P henomenon
E Heat	G Positive	I Exact	K Path	M Transient
F Work	H Negative	J Inexact	L Point	N Boundary

(A) F-G-J-K-M
(B) E-G-I-K-M
E-G-I-K-N
F-H-I-K-N
(C) F-H-J-L-N
(D) E-G-J-K-N
E-H-I-L-M
F-H-J-K-M

MCQ 8.50 Group I shows different heat addition process in power cycles. Likewise, Group II shows different heat removal processes. Group III lists power cycles. M atch items from Groups I, II and III.

Group I

P. Pressure constant
Q. Volume Constant
R. Temperature constant

G roup II

S. Pressure constant
T. Volume Constant
U. Temperature Constant

Group III

1. Rankine Cycle
2. Otto cycle
3. Carnot cycle
4. Diesel cycle
5. Brayton cycle
(A) P-S-5
R-U-3
(B) $\mathrm{P}-\mathrm{S}-1$
R-U-3
P-S-1
P-S-4
Q-T-2
(C) R-T-3
(D) $\mathrm{P}-\mathrm{T}-4$
P-S-1
R-S-3
P-T-4
P-S-1
Q-S-5

- Common Data For Q. 51 and Q. 52

A football was inflated to a gauge pressure of 1 bar when the ambient temperature was $15^{\circ} \mathrm{C}$. W hen the game started next day, the air temperature at the stadium was $5^{\circ} \mathrm{C}$. A ssume that the volume of the football remains constant at $2500 \mathrm{~cm}^{3}$.

MCQ 8.51 The amount of heat lost by the air in the football and the gauge pressure of air in the football at the stadium respectively equal
(A) 30.6 J, 1.94 bar
(B) $21.8 \mathrm{~J}, 0.93 \mathrm{bar}$
(C) $61.1 \mathrm{~J}, 1.94 \mathrm{bar}$
(D) $43.7 \mathrm{~J}, 0.93 \mathrm{bar}$

MCQ 8.52 Gauge pressure of air to which the ball must have been originally inflated so that it would be equal 1 bar gauge at the stadium is
(A) 2.23 bar
(B) 1.94 bar
(C) 1.07 bar
(D) 1.00 bar

YEAR 2005

ONE MARK
MCQ 8.53 The following four figures have been drawn to represent a fictitious thermodynamic cycle, on the $\mathrm{p}-\nu$ and $\mathrm{T}-\mathrm{s}$ planes.

fig. 1

fig. 3

fig. 2

fig. 4

According to the first law of thermodynamics, equal areas are enclosed by
(A) figures 1 and 2
(B) figures 1 and 3
(C) figures 1 and 4
(D) figures 2 and 3

MCQ 8.54 A p-v diagram has been obtained from a test on a reciprocating compressor. W hich of the following represents that diagram ?
(A)

(B)

(C)

(D)

YEAR 2005
TWO MARKS
MCQ 8.55 A reversible thermodynamic cycle containing only three processes and producing work is to be constructed. The constraints are
(i) there must be one isothermal process,
(ii) there must be one isentropic process,
(iii) the maximum and minimum cycle pressures and the clearance volume are fixed, and
(iv) polytropic processes are not allowed. Then the number of possible cycles are
(A) 1
(B) 2
(C) 3
(D) 4

MCQ 8.56 Nitrogen at an initial state of 10 bar, $1 \mathrm{~m}^{3}$ and 300 K is expanded isothermally to a final volume of $2 \mathrm{~m}^{3}$. The $\mathrm{p}-\nu-\mathrm{T}$ relation is $\left(\mathrm{p}+\frac{\mathrm{a}}{\nu^{2}}\right) \nu=\mathrm{RT}$, where $a>0$. The final pressure.
(A) will be slightly less than 5 bar
(B) will be slightly more than 5 bar
(C) will be exactly 5 bar
(D) cannot be ascertained in the absence of the value of a

MCQ 8.57 In the velocity diagram shown below, $u=$ bladevelocity, $C=$ absolutefluid velocityand $W=$ relativevelocity of fluid and the subscripts 1 and 2 refer to inlet and outlet. This diagram is for

(A) an impulse turbine
(B) a reaction turbine
(C) a centrifugal compressor
(D) an axial flow compressor

- Common Data For Q. 58 and Q. 59

In two air standard cycles-one operating in the Otto and the other on the Brayton cycle-air is isentropically compressed from 300 to 450 K . Heat is added to raise the temperature to 600 K in the Otto cycle and to 550 K in the Brayton cycle.

MCQ 8.58 In η_{0} and η_{B} are the efficiencies of the Otto and Brayton cycles, then
(A) $\eta_{0}=0.25, \eta_{B}=0.18$
(B) $\eta_{0}=\eta_{\mathrm{B}}=0.33$
(C) $\eta_{0}=0.5, \eta_{B}=0.45$
(D) it is not possible to calculate the efficiencies unless the temperature after the expansion is given

MCQ 8.59 If W_{0} and W_{B} are work outputs per unit mass, then
(A) $W_{0}>W_{B}$
(B) $W_{0}<W_{B}$
(C) $W_{0}=W_{B}$
(D) it is not possible to calculate the work outputs unless the temperature after the expansion is given

- Common Data For Q. 90 and Q. 61 :

The following table of properties was printed out for saturated liquid and saturated vapour of ammonia. The title for only the first two columns are available. All that we know that the other columns (column 3 to 8) contain
data on specific properties, namely, internal energy (kJ/kg), enthalpy (kJ / kg) and entropy (kJ / kg.K)

$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{p}(\mathrm{kPa})$						
-20	190.2	88.76	0.3657	89.05	5.6155	1299.5	1418.0
0	429.6	179.69	0.7114	180.36	5.3309	1318.0	1442.2
20	587.5	272.89	1.0408	274.30	5.0860	1332.2	1460.2
40	1554.9	368.74	1.3574	371.43	4.8662	1341.0	1470.2

MCQ 8.60 The specific enthalpy data are in columns
(A) 3 and 7
(B) 3 and 8
(C) 5 and 7
(D) 5 and 8

MCQ 8.61 W hen saturated liquid at $40^{\circ} \mathrm{C}$ is throttled to $-20^{\circ} \mathrm{C}$, the quality at exit will be
(A) 0.189
(B) 0.212
(C) 0.231
(D) 0.788

YEAR 2004 ONE MARK

MCQ 8.62 A gas contained in a cylinder is compressed, the work required for compression being 5000 kJ . During the process, heat interaction of 2000 kJ causes the surroundings to be heated. The changes in internal energy of the gas during the process is
(A) -7000 kJ
(B) -3000 kJ
(C) +3000 kJ
(D) +7000 kJ

MCQ 8.63 The compression ratio of a gas power plant cycle corresponding to maximum work output for the given temperature limits of $T_{\text {min }}$ and $T_{\text {max }}$ will be
(A) $\left(T_{\text {max }} \frac{\frac{\gamma}{2(1)}}{T_{\text {min }}}\right)^{\frac{\gamma}{2(\gamma-1)}}$
(B) $\left(T_{\text {min }} \frac{\gamma}{2(\gamma-1)}\right.$
(C) $\binom{T_{\text {max }}}{T_{\text {min }}}^{\frac{\gamma-1}{\gamma}}$
(D) $\left(\frac{T_{\min }}{T_{\max }}\right)^{\frac{\gamma-1}{\gamma}}$

MCQ 8.64 At the time of starting, idling and low speed operation, the carburretor supplies a mixture which can be termed as
(A) Lean
(B) slightly leaner than stoichiometric
(C) stoichiometric
(D) rich

MCQ 8.65 A steel billet of 2000 kg mass is to be cooled from 1250 K to 450 K . T he heat released during this process is to be used as a source of energy. The ambient temperature is 303 K and specific heat of steel is $0.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The available energy of this billet is
(A) 490.44 MJ
(B) 30.95 MJ
(C) 10.35 MJ
(D) 0.10 MJ

MCQ 8.66 During a M orse test on a 4 cylinder engine, the following measurements of brake power were taken at constant speed.
All cylinders firing 3037 kW
Number 1 cylinder not firing 2102 kW
Number 2 cylinder not firing 2102 kW
Number 3 cylinder not firing 2100 kW Number 4 cylinder not firing 2098 kW
The mechanical efficiency of the engine is
(A) 91.53\%
(B) 85.07\%
(C) 81.07%
(D) 61.22%

MCQ 8.67 A solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$ transforms it to the internal energy of a fluid at an overall efficiency of 50%. The fluid heated to 250 K is used to run a heat engine which rejects heat at 315 K . If the heat engine is to deliver 2.5 kW power, the minimum area of the solar collector required would be
(A) $83.33 \mathrm{~m}^{2}$
(B) $16.66 \mathrm{~m}^{2}$
(C) $39.68 \mathrm{~m}^{2}$
(D) $79.36 \mathrm{~m}^{2}$

MCQ 8.68 An engine working on air standard Otto cycle has a cylinder diameter of 10 cm and stroke length of 15 cm . The ratio of specific heats for air is 1.4. If the clearance volume is 196.3 cc and the heat supplied per kg of air per cycle is $1800 \mathrm{~kJ} / \mathrm{kg}$, the work output per cycle per kg of air is
(A) 879.1 kJ
(B) 890.2 kJ
(C) 895.3 kJ
(D) 973.5 kJ

- Common Data For Q. 69 and Q. 70 :

Consider a steam power plant using a reheat cycle as shown. Steam leaves the boiler and enters the turbine at $4 \mathrm{M} \mathrm{Pa}, 350^{\circ} \mathrm{C}\left(\mathrm{h}_{3}=3095 \mathrm{~kJ} / \mathrm{kg}\right)$. A fter expansion in the turbine to $400 \mathrm{kPa}\left(\mathrm{h}_{4}=2609 \mathrm{~kJ} / \mathrm{kg}\right)$, and then expanded in a low pressure turbine to $10 \mathrm{kPa}\left(\mathrm{h}_{6}=2165 \mathrm{~kJ} / \mathrm{kg}\right)$. The specific volume of liquid handled by the pump can be assumed to be

MCQ 8.69 The thermal efficiency of the plant neglecting pump work is
(A) 15.8%
(B) 41.1%
(C) 48.5%
(D) 58.6%

MCQ 8.70 The enthalpy at the pump discharge $\left(h_{2}\right)$ is
(A) $0.33 \mathrm{~kJ} / \mathrm{kg}$
(B) $3.33 \mathrm{~kJ} / \mathrm{kg}$
(C) $4.0 \mathrm{~kJ} / \mathrm{k}$
(D) $33.3 \mathrm{~kJ} / \mathrm{kg}$

YEAR 2003
ONE MARK
MCQ 8.71 For a spark ignition engine, the equivalence ratio (ϕ) of mixture entering the combustion chamber has values
(A) $\phi<1$ for idling and $\phi>1$ for peak power conditions
(B) $\phi>1$ for both idling and peak power conditions
(C) $\phi>1$ for idling and $\phi<1$ for peak power conditions
(D) $\phi<1$ for both idling and peak power conditions

MCQ 8.72 A diesel engine is usually more efficient than a spark ignition engine because (A) diesel being a heavier hydrocarbon, releases more heat per kg than gasoline
(B) the air standard efficiency of diesel cycle is higher than the Otto cycle, at a fixed compression ratio
(C) the compression ratio of a diesel engine is higher than that of an SI engine
(D) self ignition temperature of diesel is higher than that of gasoline

MCQ 8.73 In Ranking cycle, regeneration results in higher efficiency because
(A) pressure inside the boiler increases
(B) heat is added before steam enters the low pressure turbine
(C) average temperature of heat addition in the boiler increases
(D) total work delivered by the turbine increases

MCQ 8.74 Considering the variation of static pressure and absolute velocity in an impulse steam turbine, across one row of moving blades
(A) both pressure and velocity decreases
(B) pressure decreases but velocity increases
(C) pressure remains constant, while velocity increases
(D) pressure remains constant, while velocity decreases

MCQ 8.75 A $2 \mathrm{~kW}, 40$ liters water heater is switched on for 20 minutes. The heat capacity C_{p} for water is $4.2 \mathrm{~kJ} / \mathrm{kgK}$. A ssuming all the electrical energy has gone into heating the water, increase of the water temperature in degree centigrade is
(A) 2.7
(B) 4.0
(C) 14.3
(D) 25.25

YEAR 2003 TWO MARKS

MCQ 8.76 Considering the relationship $T \mathrm{ds}=\mathrm{dU}+\mathrm{pd} \nu$ between the entropy (s), internal energy (U), pressure (p), temperature (T) and volume (ν), which of the following statements is correct ?
(A) It is applicable only for a reversible process
(B) For an irreversible process, $\mathrm{T} \mathrm{ds}>\mathrm{dU}+\mathrm{pd} \nu$
(C) It is valid only for an ideal gas
(D) It is equivalent to I $^{\text {st }}$ law, for a reversible process

MCQ 8.77 In a gas turbine, hot combustion products with the specific heats $c_{p}=0.98 \mathrm{~kJ} / \mathrm{kgK}$, and $\mathrm{c}_{\mathrm{v}}=0.7538 \mathrm{~kJ} / \mathrm{kgK}$ enters the turbine at 20 bar, 1500 K exit at 1 bar. The isentropic efficiency of the turbine is 0.94 . The work developed by the turbine per kg of gas flow is
(A) $689.64 \mathrm{~kJ} / \mathrm{kg}$
(B) $794.66 \mathrm{~kJ} / \mathrm{kg}$
(C) $1009.72 \mathrm{~kJ} / \mathrm{kg}$
(D) $1312.00 \mathrm{~kJ} / \mathrm{kg}$

MCQ 8.78 A n automobile engine operates at a fuel air ratio of 0.05 , volumetric efficiency of 90% and indicated thermal efficiency of 30%. Given that the calorific value of the fuel is $45 \mathrm{MJ} / \mathrm{kg}$ and the density of air at intake is $1 \mathrm{~kg} / \mathrm{m}^{3}$, the indicated mean effective pressure for the engine is
(A) 6.075 bar
(B) 6.75 bar
(C) 67.5 bar
(D) 243 bar

MCQ 8.79 For an engine operating on air standard Otto cycle, the clearance volume is 10% of the swept volume. The specific heat ratio of air is 1.4. The air standard cycle efficiency is
(A) 38.3\%
(B) 39.8%
(C) 60.2\%
(D) 61.7%

- Common Data For Q. 80 and 81

Nitrogen gas (molecular weight 28) is enclosed in a cylinder by a piston, at the initial condition of 2 bar, 298 K and $1 \mathrm{~m}^{3}$. In a particular process, the gas slowly expands under isothermal condition, until the volume becomes $2 \mathrm{~m}^{3}$. Heat exchange occurs with the atmosphere at 298 K during this process.
MCQ 8.80 The work interaction for the Nitrogen gas is
(A) 200 kJ
(B) 138.6 kJ
(C) 2 kJ
(D) - 200 kJ

MCQ 8.81 The entropy changes for the Universe during the process in kJ / K is
(A) 0.4652
(B) 0.0067
(C) 0
(D) -0.6711

YEAR 2002

ONE MARK
MCQ 8.82 A positive value of Joule-T homson coefficient of a fluid means
(A) temperature drops during throttling
(B) temperature remains constant during throttling
(C) temperature rises during throttling
(D) None of the above

MCQ 8.83 A correctly designed convergent-divergent nozzle working at a designed load is
(A) always isentropic
(B) always choked
(C) never choked
(D) never isentropic

MCQ 8.84 A Carnot cycle is having an efficiency of 0.75 . If the temperature of the high temperature reservoir is $727^{\circ} \mathrm{C}$, what is the temperature of low temperature
reservoir ?
(A) $23^{\circ} \mathrm{C}$
(B) $-23^{\circ} \mathrm{C}$
(C) $0^{\circ} \mathrm{C}$
(D) $250^{\circ} \mathrm{C}$

MCQ 8.85 An ideal air standard Otto cycle has a compression ratio of 8.5. If the ratio of the specific heats of air (γ) is 1.4, what is the thermal efficiency in percentage) of the Otto cycle?
(A) 57.5
(B) 45.7
(C) 52.5
(D) 95

MCQ 8.86 The efficiency of superheat Rankine cycle is higher than that of simple R ankine cycle because
(A) the enthalpy of main steam is higher for superheat cycle
(B) the mean temperature of heat addition is higher for superheat cycle
(C) the temperature of steam in the condenser is high
(D) the quality of steam in the condenser is low.

YEAR 2001

ONE MARK
MCQ 8.87 The R ateau turbine belongs to the category of
(A) pressure compounded turbine
(B) reaction turbine
(C) velocity compounded turbine
(D) radial flow turbine

MCQ 8.88 A gas having a negative J oule-T homson coefficient $(\mu<0)$, when throttled, will
(A) become cooler
(B) become warmer
(C) remain at the same temperature
(D) either be cooler or warmer depending on the type of gas

YEAR 2001
TWO MARKS
MCQ 8.89 A cyclic heat engine does 50 kJ of work per cycle. If the efficiency of the heat engine is 75%, the heat rejected per cycle is
(A) $16 \frac{2}{3} \mathrm{~kJ}$
(B) $33 \frac{1}{3} \mathrm{~kJ}$
(C) $37 \frac{1}{2} \mathrm{~kJ}$
(D) $66 \frac{2}{3} \mathrm{~kJ}$

MCQ 8.90 A single-acting two-stage compressor with complete intercooling delivers air at 16 bar. A ssuming an intake state of 1 bar at $15^{\circ} \mathrm{C}$, the pressure ratio per stage is
(A) 16
(B) 8
(C) 4
(D) 2

MCQ 8.91 A small steam whistle (perfectly insulated and doing no shaft work) causes a drop of $0.8 \mathrm{~kJ} / \mathrm{kg}$ in the enthalpy of steam from entry to exit. If the kinetic energy of the steam at entry is negligible, the velocity of the steam at exit is
(A) $4 \mathrm{~m} / \mathrm{s}$
(B) $40 \mathrm{~m} / \mathrm{s}$
(C) $80 \mathrm{~m} / \mathrm{s}$
(D) $120 \mathrm{~m} / \mathrm{s}$

MCQ 8.92 In a spark ignition engine working on the ideal Otto cycle, the compression ratio is 5.5. The work output per cycle (i.e., area of the p- ν diagram) is equal to $23.625 \times 10^{5} \times \nu_{c}$, where ν_{c} is the clearance volume in m^{3}. The indicated mean effective pressure is
(A) 4.295 bar
(B) 5.250 bar
(C) 86.870 bar
(D) 106.300 bar

SOLUTION

sol 8.1 Option (B) is correct.
For adiabatic expansion steam in turbine.

Given $h_{1}=3251.0 \mathrm{~kJ} / \mathrm{kg}, \mathrm{m}=10 \mathrm{~kg} / \mathrm{s}, \mathrm{x}=0.9$ (dryness fraction)
At 15 kPa
Enthalpy of liquid, $\quad h_{f}=225.94 \mathrm{~kJ} / \mathrm{kg}$
Enthalpy of vapour, $\quad h_{g}=2598.3 \mathrm{~kJ} / \mathrm{kg}$
Since Power output of turbine.

$$
\begin{align*}
P & =\dot{m}\left(h_{1}-h_{2}\right) \quad(K . E \text { and } P . E \text { are negligible }) \tag{i}\\
h_{2} & =h_{f}+x h_{f g}=h_{f}+x\left(h_{g}-h_{f}\right) \\
& =225.94+0.9(2598.3-225.94)=2361.064 \mathrm{~kJ} / \mathrm{kg}
\end{align*}
$$

From Eq. (i)

$$
P=10 \times(3251.0-2361.064)=8899 \mathrm{~kW}=8.9 \mathrm{M} \mathrm{~W}
$$

sol 8.2 Option (B) is correct.
We know that $\quad \mathrm{Tds}=\mathrm{du}+\mathrm{Pd} \nu$
For ideal gas $\quad \mathrm{p} \nu=\mathrm{mRT}$
For isothermal process

$$
\mathrm{T}=\text { constant }
$$

For reversible process

$$
\mathrm{du}=0
$$

Then from equation (i)

$$
\begin{aligned}
\mathrm{ds} & =\frac{\mathrm{pd} \nu}{\mathrm{~T}}=\frac{\mathrm{mR} \mathrm{~T}}{\mathrm{~T}} \frac{\mathrm{~d} \nu}{\nu}=\mathrm{mR} \frac{\mathrm{~d} \nu}{\nu} \\
\int \mathrm{ds} & =\Delta \mathrm{s}=\mathrm{mR} \int_{\nu_{1}}^{\nu_{2}} \frac{\mathrm{~d} \nu}{\nu}=\mathrm{mR} \ln \frac{\nu_{2}}{\nu_{1}}
\end{aligned}
$$

$$
\Delta \mathrm{s}=\mathrm{mR} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}
$$

$$
\left[\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\frac{\nu_{2}}{\nu_{2}}\right]
$$

SOL 8.3 Option (C) is correct.
From energy balance for steady flow system.

$$
\begin{align*}
\mathrm{E}_{\text {in }} & =\mathrm{E}_{\text {out }} \\
\dot{\mathrm{m}}\left(\mathrm{~h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}\right) & =\dot{\mathrm{m}}\left(\mathrm{~h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}\right) \tag{i}
\end{align*}
$$

As

$$
h=c_{p} T
$$

Equation (1) becomes

$$
\begin{aligned}
c_{p} T_{1}+\frac{V_{1}^{2}}{2} & =c_{p} T_{2}+\frac{V_{2}^{2}}{2} \\
T_{2} & =\left(\frac{V_{1}^{2}-V_{2}^{2}}{2 \times C_{p}}\right)+T_{1}=\frac{10^{2}-180^{2}}{2 \times 1008}+500=-16.02+500 \\
& =483.98 \simeq 484 \mathrm{~K}
\end{aligned}
$$

sol 8.4 Option (D) is correct.
From M ass conservation.

$$
\begin{align*}
\dot{m}_{\text {in }} & =\dot{\mathrm{m}}_{\text {out }} \\
\frac{\mathrm{V}_{1} A_{1}}{\nu_{1}} & =\frac{\mathrm{V}_{2} A_{2}}{\nu_{2}} \tag{i}\\
\nu & =\text { specific volume of air }=\frac{\mathrm{RT}}{\mathrm{p}}
\end{align*}
$$

where
Therefore Eq. (1) becomes

$$
\begin{aligned}
\frac{p_{1} V_{1} A_{1}}{R T_{1}} & =\frac{p_{2} V_{2} A_{2}}{R T_{2}} \\
A_{2} & =\frac{p_{1} \times V_{1} \times A_{1} \times T_{2}}{p_{2} \times V_{2} \times T_{1}}=\frac{300 \times 10 \times 80 \times 484}{100 \times 180 \times 500}=12.9 \mathrm{~cm}^{2}
\end{aligned}
$$

SOL 8.5 Option (D) is correct.
Work done is a quasi-static process between two given states depends on the path followed. Therefore,

$$
\int_{1}^{2} d W \neq W_{2}-W_{1} \quad d W \text { shows the inexact differential }
$$

But, $\quad \int_{1}^{2} d W=W_{1-2}$ or ${ }_{1} W_{2}$
So, Work is a path function and Heat transfer is also a path function. The amount of heat transferred when a system changes from state 1 to state 2 depends on the intermediate states through which the system passes i.e. the path.

$$
\int_{1}^{2} \mathrm{dQ}=\mathrm{Q}_{1-2} \text { or }{ }_{1} \mathrm{Q}_{2}
$$

dQ shows the inexact differential. So, Heat and work are path functions.
sol 8.6 Option (A) is correct.
Given: $\mathrm{R}=23 \Omega, \mathrm{i}=10 \mathrm{~A}$
Since work is done on the system. So,

$$
W_{\text {electrical }}=-\mathrm{i}^{2} \mathrm{R}=-(10)^{2} \times 23=-2300 \mathrm{~W}=-2.3 \mathrm{~kW}
$$

Here given that tank is well-insulated.
So,

$$
\Delta \mathrm{Q}=0
$$

A pplying the First law of thermodynamics,

$$
\begin{aligned}
\Delta \mathrm{Q} & =\Delta \mathrm{U}+\Delta \mathrm{W} \\
\Delta \mathrm{U}+\Delta \mathrm{W} & =0 \\
\Delta \mathrm{~W} & =-\Delta \mathrm{U} \\
\text { And } \quad \Delta \mathrm{U} & =+2.3 \mathrm{~kW}
\end{aligned}
$$

Heat is transferred to the system
sol 8.7 Option (A) is correct.
Given: $\quad h_{1}=2800 \mathrm{~kJ} / \mathrm{kg}=$ Enthalpy at the inlet of steam turbine $h_{2}=1800 \mathrm{~kJ} / \mathrm{kg}=$ Enthalpy at the outlet of a steam
turbine
Steam rate or specific steam consumption

$$
=\frac{3600}{W_{T}-W_{p}} \mathrm{~kg} / \mathrm{kW} \mathrm{~h}
$$

Pump work W_{p} is negligible, therefore

$$
\text { Steam rate }=\frac{3600}{W_{T}} \mathrm{~kg} / \mathrm{kW} \mathrm{~h}
$$

And

$$
W_{T}=h_{1}-h_{2} \quad \text { From } R \text { ankine cycle }
$$

$$
\text { Steam rate }=\frac{3600}{h_{1}-h_{2}} \mathrm{~kg} / \mathrm{kW} \mathrm{~h}=\frac{3600}{2800-1800}=3.60 \mathrm{~kg} / \mathrm{kW} \mathrm{~h}
$$

SOL 8.8 Option (D) is correct.
Given : $r=60 \mathrm{~mm}, \mathrm{D}=80 \mathrm{~mm}$
Stroke length, $L=2 r=2 \times 60=120 \mathrm{~mm}$ (cylinder diameter)
Swept Volume, $\quad \nu_{\mathrm{s}}=\mathrm{A} \times \mathrm{L}$

$$
\begin{aligned}
& =\frac{\pi}{4} D^{2} \times L=\frac{\pi}{4}(8.0)^{2} \times 12.0 \\
& =\frac{\pi}{4}(8 \times 8) \times 12=602.88 \simeq 603 \mathrm{~cm}^{3}
\end{aligned}
$$

sol 8.9 Option (A) is correct.
Given $\mathrm{p}-\nu$ curve shows the Brayton Cycle.

Given : $\mathrm{p}_{1}=1$ bar $=\mathrm{p}_{4}, \mathrm{p}_{2}=6 \mathrm{bar}=\mathrm{p}_{3}, \mathrm{~T}_{\text {minimum }}=300 \mathrm{~K}, \mathrm{~T}_{\text {maximum }}=1500 \mathrm{~K}$

$$
\frac{c_{p}}{c_{v}}=\gamma=1.4
$$

We haveto find T_{2} (temperature at the end of compression) or T_{4} (temperature at the end of expansion)
A pplying adiabatic equation for process $1-2$, we get

$$
\begin{aligned}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} & =\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{1}{6}\right)^{\frac{1.4-1}{1.4}} \\
\frac{300}{\mathrm{~T}_{2}} & =\left(\frac{1}{6}\right)^{0.286} \\
\mathrm{~T}_{2} & =\frac{300}{\left(\frac{1}{6}\right)^{2.20}}=500.5 \mathrm{~K} \simeq 500 \mathrm{~K}
\end{aligned} \quad \mathrm{~T}_{1}=\mathrm{T}_{\text {minimum }}
$$

A gain applying for the Process 3-4,

$$
\begin{aligned}
& \frac{\mathrm{T}_{4}}{\mathrm{~T}_{3}}=\left(\frac{\mathrm{p}_{4}}{\mathrm{p}_{3}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{1}{6}\right)^{\frac{1.4-1}{1.4}}=\left(\frac{1}{6}\right)^{0.286} \\
& \mathrm{~T}_{4}=\mathrm{T}_{3} \times\left(\frac{1}{6}\right)^{0.286}=1500 \times\left(\frac{1}{6}\right)^{0.286}=900 \mathrm{~K} \mathrm{~T}_{3}=\mathrm{T}_{\text {maximum }}
\end{aligned}
$$

So,
sol 8.10 Option (B) is correct.
Given : At station p :
$\mathrm{p}_{1}=150 \mathrm{kPa}, \mathrm{T}_{1}=350 \mathrm{~K}$
At station Q :
$\mathrm{p}_{2}=$?, $\mathrm{T}_{2}=300 \mathrm{~K}$
We know, $\quad \gamma=\frac{C_{p}}{C_{v}}=\frac{1.005}{0.718}=1.39$
A pplying adiabatic equation for station P and Q ,

$$
\begin{aligned}
& \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{\frac{\gamma-1}{\gamma}} \\
& \left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)^{\frac{\gamma}{\gamma-1}}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}} \\
& \mathrm{p}_{2}=\frac{\mathrm{p}_{1}}{\left(\frac{T_{1}}{T_{2}}\right)^{\frac{\gamma}{\gamma-1}}}=\frac{150}{\left(\frac{350}{300}\right)^{\frac{1.39}{1.39-1}}}=\frac{150}{1.732}=86.60 \mathrm{kPa} \simeq 87 \mathrm{kPa}
\end{aligned}
$$

sol 8.11 Option (C) is correct.
Given :
Pressure at Q $\quad \mathrm{p}_{2}=50 \mathrm{kPa}$
Using the general relation to find the entropy changes between P and Q

$$
\begin{align*}
\mathrm{T} \mathrm{ds} & =\mathrm{dh}-\nu \mathrm{dp} \\
\mathrm{ds} & =\frac{\mathrm{dh}}{\mathrm{~T}}-\frac{\nu}{\mathrm{T}} \mathrm{dp} \tag{i}
\end{align*}
$$

Given in the previous part of the question

$$
h=C_{p} T
$$

Differentiating both the sides, we get

$$
\mathrm{dh}=\mathrm{c}_{\mathrm{p}} \mathrm{dT}
$$

Put the value of dh in equation (i),

So, $\quad=c_{p} \frac{d T}{T}-R \frac{d p}{p}$
Integrating both the sides and putting the limits

$$
\begin{aligned}
\int_{P}^{Q} d S & =c_{p} \int_{P}^{Q} \frac{d T}{T}-R \int_{P}^{Q} \frac{d p}{P} \\
{[S]_{P}^{Q} } & =c_{p}[\ln T]_{P}^{Q}-R[\ln P]_{P}^{Q} \\
S_{Q}-S_{P} & =c_{p}\left[\ln T_{Q}-\ln T_{P}\right]-R\left[\ln p_{Q}-\ln p_{P}\right] \\
& =c_{p} \ln \left(\frac{T_{Q}}{T_{P}}\right)-R \ln \left(\frac{p_{Q}}{p_{P}}\right) \\
& =1.005 \ln \left(\frac{300}{350}\right)-0.287 \ln \left(\frac{50}{150}\right) \\
& =1.005 \times(-0.1541)-0.287 \times(-1.099) \\
& =0.160 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

sol 8.12 Option (C) is correct.

Given $: T_{1}=400 \mathrm{~K}, \mathrm{p}_{1}=3$ bar, $\mathrm{A}_{2}=0.005 \mathrm{~m}^{2}, \mathrm{p}_{2}=50 \mathrm{kPa}=0.5$ bar,
$\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=1.4, \mathrm{~T}_{2}=$?
Applying adiabatic equation for isentropic (reversible adiabatic) flow at section (1) and (2), we get

$$
\begin{aligned}
\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right) & =\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
\mathrm{~T}_{2} & =\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=400\left(\frac{0.5}{3}\right)^{\frac{1.4-1}{1.4}} \\
& =400 \times(0.166)^{0.286}=239.73 \mathrm{~K}
\end{aligned}
$$

A pply perfect G as equation at the exit,

$$
\begin{aligned}
\mathrm{p}_{2} \nu_{2} & =\mathrm{m}_{2} \mathrm{RT}_{2} \\
\mathrm{p}_{2} & =\frac{\mathrm{m}_{2}}{\nu_{2}} \mathrm{RT} T_{2}=\rho_{2} \mathrm{RT}_{2} \quad\left(\frac{\mathrm{~m}}{\nu}=\rho\right) \\
\rho_{2} & =\frac{\mathrm{p}_{2}}{\mathrm{RT}_{2}}=\frac{50 \times 10^{3}}{0.287 \times 10^{3} \times 239.73}=0.727 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

sol 8.13 Option (D) is correct.
Given : $\rho_{2}=0.727 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~A}_{2}=0.005 \mathrm{~m}^{2}, \mathrm{~V}_{2}=$?
For isentropic expansion,

$$
\begin{aligned}
V_{2} & =\sqrt{2 c_{p}\left(T_{1}-T_{2}\right)} \\
& =\sqrt{2 \times 1.005 \times 10^{3} \times(400-239.73)} \\
& \quad \text { for air } c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& =\sqrt{322142.7}=567.58 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

M ass flow rate at exit,

$$
\dot{\mathrm{m}}=\rho_{2} \mathrm{~A}_{2} \mathrm{~V}_{2}=0.727 \times 0.005 \times 567.58=2.06 \mathrm{~kg} / \mathrm{sec}
$$

SOL 8.14 Option (A) is correct.
Given : $\nu=0.0259 \mathrm{~m}^{3}$, W ork output $=950 \mathrm{~kW}, \mathrm{~N}=2200 \mathrm{rpm}$
M ean effective pressure

$$
\text { mep }=\frac{\text { Net work for one cycle }}{\text { displacement volume }} \times 60
$$

Number of power cycle

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{N}}{2}=\frac{2200}{2}=1100 \tag{for4stroke}
\end{equation*}
$$

Hence, net work for one cycle

So,

$$
\begin{aligned}
& =\frac{950 \times 10^{3}}{1100}=863.64 \mathrm{~W} \\
\text { mep } & =\frac{60 \times 863.64}{0.0259}=2 \times 10^{6} \mathrm{~Pa}=2 \mathrm{M} \mathrm{~Pa}
\end{aligned}
$$

sol 8.15 Option (D) is correct.
We know that,
Entropy of universe is always increases.

$$
\begin{aligned}
\Delta \mathrm{s}_{\text {universe }} & >0 \\
(\Delta \mathrm{~s})_{\text {system }}+(\Delta \mathrm{s})_{\text {surrounding }} & >0
\end{aligned}
$$

sol 8.16 Option (A) is correct.
Given : $\gamma=1.67, \mathrm{M}=40, \mathrm{p}_{1}=0.1 \mathrm{MPa}=10^{6} \times 0.1=10^{5} \mathrm{~Pa}$
$\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{p}_{2}=0.2 \mathrm{MPa}=2 \times 10^{5} \mathrm{~Pa}, \mathrm{R}_{\mathrm{u}}=8.314 \mathrm{~kJ} / \mathrm{kgmol} \mathrm{K}$

$$
\begin{aligned}
\text { Gas constant } & =\frac{\text { Universal Gas constant }}{M \text { olecular W eight }} \\
R & =\frac{R_{u}}{M}=\frac{8.314}{40}=0.20785 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

For adiabatic process,

$$
\begin{aligned}
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} & =\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
\frac{\mathrm{~T}_{2}}{300} & =\left(\frac{0.2}{0.1}\right)^{\frac{1.67-1}{1.67}}=(2)^{0.4012} \\
\mathrm{~T}_{2} & =300 \times(2)^{0.4012}=300 \times 1.32=396 \mathrm{~K}
\end{aligned}
$$

Work done in adiabatic process is given by,

$$
\begin{aligned}
W & =\frac{p_{1} \nu_{1}-p_{2} \nu_{2}}{\gamma-1}=\frac{R\left(T_{1}-T_{2}\right)}{\gamma-1} \\
& =\frac{0.20785[300-396]}{1.67-1}=\frac{0.20785(-96)}{0.67}=-29.7 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(Negative sign shows the compression work)
sol 8.17 Option (B) is correct.
We know from the clausius Inequality,
If

$$
\oint \frac{\mathrm{dQ}}{\mathrm{~T}}=0 \text {, the cycle is reversible }
$$

For case (a),

$$
\oint \frac{\mathrm{dQ}}{\mathrm{~T}}<0 \text {, the cycle is irreversible and possible }
$$

$$
\begin{aligned}
\oint_{a} \frac{d Q}{T} & =\frac{2500}{1200}-\frac{2500}{800} \\
& =\frac{25}{12}-\frac{25}{8}=-1.041 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For case (b),

$$
\begin{aligned}
& \oint_{0} \frac{d Q}{T}=\frac{2000}{800}-\frac{2000}{500}=\frac{20}{8}-\frac{20}{5}=-1.5 \mathrm{~kJ} / \mathrm{kg} \\
& \oint_{a}^{\mathrm{dQ}}
\end{aligned}>\oint_{0}^{\mathrm{dQ}} \frac{\mathrm{dQ}}{\mathrm{~T}} .
$$

So, process (b) is more irreversible than process (a)

SOL 8.18 Option (C) is correct.
Given T-s curve is for the steam plant

Given: $\mathrm{p}_{1}=4 \mathrm{MPa}=4 \times 10^{6} \mathrm{~Pa}, \mathrm{~T}_{1}=350^{\circ} \mathrm{C}=(273+350) \mathrm{K}=623 \mathrm{~K}$
$\mathrm{p}_{2}=15 \mathrm{kPa}=15 \times 10^{3} \mathrm{~Pa}, \eta_{\text {adiabatic }}=90 \%=0.9$
N ow from the steam table,
Given data : $\mathrm{h}_{1}=3092.5 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}=225.94 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{g}}=2599.1 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{equation*}
\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{~s}_{\mathrm{g}}-\mathrm{s}_{\mathrm{f}}\right) \tag{i}
\end{equation*}
$$

Where, $\quad x=$ dryness fraction
From the table, we have

$$
\begin{aligned}
\mathrm{s}_{\mathrm{f}} & =0.7549 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
\mathrm{~s}_{\mathrm{g}} & =8.0085 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
\mathrm{~s}_{1} & =\mathrm{s}_{2}=6.5821
\end{aligned}
$$

From equation (i),

$$
\begin{aligned}
x & =\frac{s_{2}-s_{f}}{s_{g}-s_{f}}=\frac{6.5821-0.7549}{8.0085-0.7549}=0.8033 \\
h_{2} & =h_{f}+x\left(h_{g}-h_{f}\right) \\
& =225.94+0.8033(2599.1-225.94) \\
& =225.94+1906.36=2132.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Theoretical turbine work from the cycle is given by,

$$
\begin{aligned}
W_{T} & =h_{1}-h_{2} \\
& =3092.5-2132.3=960.2 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Actual work by the turbine,

$$
\begin{aligned}
& =\text { Theoretical work } \times \eta_{\text {adiabatic }} \\
& =0.9 \times 960.2=864.18 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Pump work, $\quad \mathrm{W}_{\mathrm{p}}=\nu_{\mathrm{f}}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)$

$$
=0.001014(4000-15)=4.04 \mathrm{~kJ} / \mathrm{kg}
$$

$$
W_{\text {net }}=W_{T}-W_{p}=864.18-4.04=860.14 \mathrm{~kJ} / \mathrm{kg} \approx 860
$$

sol 8.19 Option (C) is correct.
Heat supplied $=h_{1}-h_{4}$
From T -s diagram
From the pump work equation,

$$
\begin{aligned}
\mathrm{W}_{\mathrm{p}} & =\mathrm{h}_{4}-\mathrm{h}_{3} \\
\mathrm{~h}_{4} & =\mathrm{W}_{\mathrm{p}}+\mathrm{h}_{3}=4.04+225.94=229.98 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

And Heat supplied,

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{h}_{1}-\mathrm{h}_{4} \\
& =3092.50-229.98=2862.53 \simeq 2863 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

sol 8.20 Option (A) is correct.
We consider the cycle shown in figure, where A and B are reversible processes and C is an irreversible process. For the reversible cycle consisting of A and B .

$$
\int_{R} \frac{d Q}{T}=\int_{A 1}^{2} \frac{d Q}{T}+\int_{B 2}^{1} \frac{d Q}{T}=0
$$

or

$$
\begin{equation*}
\int_{\mathrm{A} 1}^{2} \frac{\mathrm{dQ}}{\mathrm{~T}}=-\int_{\mathrm{B} 2}^{1} \frac{\mathrm{dQ}}{\mathrm{~T}} \tag{i}
\end{equation*}
$$

For the irreversible cycle consisting of A and C, by the inequality of clausius,

$$
\begin{equation*}
\oint \frac{\mathrm{dQ}}{\mathrm{~T}}=\int_{\mathrm{A}_{1}}^{2} \frac{\mathrm{dQ}}{\mathrm{~T}}+\int_{\mathrm{C}_{2}}^{1} \frac{\mathrm{dQ}}{\mathrm{~T}}<0 \tag{ii}
\end{equation*}
$$

From equation (i) and (ii)

$$
\begin{align*}
-\int_{B 2}^{1} \frac{d Q}{T}+ & \int_{C 2}^{1} \frac{d Q}{T}
\end{align*}<0
$$

Since the path B is reversible,

$$
\int_{B 2}^{1} \frac{d Q}{T}=\int_{B 2}^{1} d s
$$

Since entropy is a property, entropy changes for the paths B and C would be the same.
Therefore,

$$
\begin{equation*}
\int_{B 2}^{1} \mathrm{ds}=\int_{C_{2}}^{1} \mathrm{ds} \tag{iv}
\end{equation*}
$$

From equation (iii) and (iv),

$$
\int_{C_{2}}^{1} d s>\int_{C_{2}}^{1} \frac{d Q}{T}
$$

Thus, for any irreversible process.

$$
\mathrm{ds}>\frac{\mathrm{dQ}}{\mathrm{~T}}
$$

So, entropy must increase.
soL 8.21 Option (A) is correct.
Given : $\mathrm{p}_{1}=0.8 \mathrm{MPa}, \nu_{1}=0.015 \mathrm{~m}^{3}, \nu_{2}=0.030 \mathrm{~m}^{3}, \mathrm{~T}=$ Constant
We know work done in a constant temperature (isothermal) process

$$
\begin{aligned}
\mathrm{W} & =\mathrm{p}_{1} \nu_{1} \ln \left(\frac{\nu_{2}}{\nu_{1}}\right)=\left(0.8 \times 10^{6}\right)(0.015) \ln \left(\frac{0.030}{0.015}\right) \\
& =\left(0.012 \times 10^{6}\right) \times 0.6931=8.32 \mathrm{~kJ}
\end{aligned}
$$

soL 8.22 Option (B) is correct.

Steady flow energy equation for a compressor (Fig a) gives,

$$
\begin{equation*}
h_{1}+d Q=h_{2}+d W_{x} \tag{i}
\end{equation*}
$$

Neglecting the changes of potential and kinetic energy. From the property relation

$$
\mathrm{Tds}=\mathrm{dh}-\nu \mathrm{dp}
$$

For a reversible process,

$$
T d s=d Q
$$

So,

$$
\begin{equation*}
\mathrm{dQ}=\mathrm{dh}-\nu \mathrm{dp} \tag{ii}
\end{equation*}
$$

If consider the process is reversible adiabatic then $\mathrm{dQ}=0$
From equation (i) and (ii),

$$
\begin{align*}
\mathrm{h}_{1}-\mathrm{h}_{2} & =\mathrm{dW} \quad \Rightarrow \mathrm{dh}=\mathrm{h}_{2}-\mathrm{h}_{1}=-\mathrm{dW} \tag{iii}\\
\mathrm{dh} & =\nu \mathrm{dp} \tag{iv}
\end{align*}
$$

And

From equation (iii) and (iv),

$$
\begin{aligned}
-\mathrm{dW}_{\mathrm{x}} & =\nu \mathrm{dp} \\
\mathrm{~W}_{\mathrm{x}} & =-\int \nu \mathrm{dp}
\end{aligned}
$$

Negative sign shows the work is done on the system (compression work) for initial and Final Stage

$$
\mathrm{W}_{\mathrm{x}}=\int_{1}^{2} \nu \mathrm{dp}
$$

sol 8.23 Option (D) is correct.
Given : $r=10, p_{1}=100 \mathrm{kPa}, \mathrm{T}_{1}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}$
$\mathrm{Q}_{\mathrm{s}}=1500 \mathrm{~kJ} / \mathrm{kg}, \mathrm{Q}_{\mathrm{r}}=700 \mathrm{~kJ} / \mathrm{kg}, \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
M ean Effective pressure

$$
\begin{equation*}
\mathrm{p}_{\mathrm{m}}=\frac{\text { Net work output }}{\text { Swept V olume }} \tag{i}
\end{equation*}
$$

Swept volume, $\quad \nu_{1}-\nu_{2}=\nu_{2}(\mathrm{r}-1)$
where $\nu_{1}=$ T otal volume and $\nu_{2}=$ Clearance volume

$$
\begin{equation*}
\mathrm{r}=\frac{\nu_{1}}{\nu_{2}}=10 \quad \Rightarrow \quad \nu_{1}=10 \mathrm{v}_{2} \tag{ii}
\end{equation*}
$$

A pplying gas equation for the beginning process,

$$
\begin{aligned}
\mathrm{p}_{1} \nu_{1} & =\mathrm{RT}_{1} \\
\nu_{1} & =\frac{\mathrm{RT} T_{1}}{\mathrm{p}_{1}}=\frac{0.287 \times 300}{100}=0.861 \mathrm{~m}^{3} / \mathrm{kg} \\
\nu_{2} & =\frac{\nu_{1}}{10}=\frac{0.861}{10}=0.0861 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{~W}_{\text {net }} & =\mathrm{Q}_{\mathrm{s}}-\mathrm{Q}_{\mathrm{r}}=(1500-700) \mathrm{kJ} / \mathrm{kg} \mathrm{~K}=800 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

From equation (i)

$$
\begin{aligned}
\mathrm{p}_{\mathrm{m}} & =\frac{800}{\nu_{2}(\mathrm{r}-1)}=\frac{800}{0.0861(10-1)} \\
& =\frac{800}{0.7749}=1032.391 \mathrm{kPa} \simeq 1032 \mathrm{kPa}
\end{aligned}
$$

sol 8.24 Option (C) is correct.

We know that coefficient of performance of a Heat pump for the given system is,

$$
(C O P)_{H . \mathrm{P} .}=\frac{\mathrm{Q}_{3}}{\mathrm{Q}_{3}-\mathrm{Q}_{4}}=\frac{\mathrm{Q}_{3}}{W}
$$

For a reversible process,

$$
\begin{aligned}
& \frac{\mathrm{Q}_{3}}{\mathrm{Q}_{4}}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}} \\
&(\mathrm{COP})_{\text {H.P. }}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{3}-\mathrm{T}_{4}}=\frac{\mathrm{Q}_{3}}{\mathrm{~W}} \\
& 3488 \\
& 348-290=\frac{\mathrm{Q}_{3}}{50} \\
& \mathrm{Q}_{3}=\frac{348 \times 50}{58}=300 \mathrm{~K}
\end{aligned}
$$

SOL 8.25 Option (A) is correct.
Given : $\mathrm{h}_{1}=3200 \mathrm{~kJ} / \mathrm{kg}, \mathrm{V}_{1}=160 \mathrm{~m} / \mathrm{sec}, \mathrm{z}_{1}=10 \mathrm{~m}$

$$
\mathrm{p}_{1}=3 \mathrm{mpA}, \dot{\mathrm{~m}}=-\frac{\mathrm{dM}}{\mathrm{dt}}=20 \mathrm{~kg} / \mathrm{sec}
$$

It is a adiabatic process, So dQ $=0$
A pply steady flow energy equation [S.F.E.E.] at the inlet and outlet section of steam turbine,

$$
\begin{aligned}
\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{z}_{1} g+\frac{\mathrm{dQ}}{\mathrm{dm}} & =\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{z}_{2} g+\frac{\mathrm{dW}}{\mathrm{dm}} \\
\mathrm{dQ} & =0
\end{aligned}
$$

So $\frac{d Q}{d m}=0$
And $\quad h_{1}+\frac{V_{1}^{2}}{2}+z_{1} g=h_{2}+\frac{V_{2}^{2}}{2}+z_{2} g+\frac{d W}{d m}$

$$
\begin{aligned}
\frac{d W}{d m} & =\left(h_{1}-h_{2}\right)+\left(\frac{V_{1}^{2}-V_{2}^{2}}{2}\right)+\left(z_{1}-z_{2}\right) g \\
& =(3200-2600) \times 10^{3}+\left[\frac{(160)^{2}-(100)^{2}}{2}\right]+(10-6) 9.8 \\
& =600000+7800+39.20 \\
\frac{d W}{d m} & =607839.2 \mathrm{~J} / \mathrm{kg}=607.84 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Power output of turbine

$$
\begin{array}{rlr}
P & =M \text { ass flow rate } \times \frac{d W}{d m} \\
& =20 \times 607.84 \times 10^{3} \\
P & =12.157 \mathrm{MJ} / \mathrm{sec}=12.157 \mathrm{MW} & \dot{\mathrm{~m}}=20 \mathrm{~kg} / \mathrm{sec}
\end{array}
$$

sol 8.26 Option (C) is correct.
Given :

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

Here given that ignoring kinetic and potential energy effects, So in the steady flow energy equation the terms $\mathrm{V}^{2} / 2, \mathrm{Z}_{1}$ g are equal to zero and dQ is also zero for adiabatic process.
S.F.E.E. is reduces to,

$$
h_{4}=h_{3}+\frac{d W_{p}}{d m} \quad \text { Here, } W_{p} \text { represents the pump work }
$$

where $h_{3}=$ Enthalpy at the inlet of pump and $h_{4}=$ Enthalpy at the outlet of the pump.

$$
\begin{equation*}
\frac{d W_{p}}{d m}=h_{4}-h_{3}=d h \tag{i}
\end{equation*}
$$

For reversible adiabatic compression,

$$
\begin{align*}
\mathrm{dQ} & =\mathrm{dh}-\nu \mathrm{dp} \tag{dQ=0}\\
\mathrm{dh} & =\nu \mathrm{dp} \tag{ii}
\end{align*}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
& \frac{d W_{\mathrm{p}}}{\mathrm{dm}}=\nu \mathrm{dp} \\
& \frac{\mathrm{dW}}{\mathrm{p}} \\
& \frac{\mathrm{dm}}{}=\frac{1}{\rho}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right) \\
& \frac{\mathrm{dW}}{\mathrm{p}} \\
& \mathrm{dm} \\
& =\frac{(3000-70) \mathrm{kPa}}{1000}=\frac{2930}{1000} \mathrm{kPa}=2.930 \mathrm{kPa}
\end{aligned}
$$

sol 8.27 Option (B) is correct.
Given : $T_{1}=T_{2}, p_{1}=p_{2}$
Universal Gas constant $=\mathrm{R}$
Here given oxygen are mixed adiabatically
So,

$$
\mathrm{dQ}=0
$$

We know, $\quad d s=\frac{d Q}{T}=\frac{0}{T}=0$
SOL 8.28 Option (B) is correct.

A ssumptions of air standard otto cycle :-
(A) All processes are both internally as well as externally reversible.
(B) A ir behaves as ideal gas
(C) Specific heats remains constant ($\mathrm{c}_{\mathrm{p}} \& \mathrm{c}_{\mathrm{v}}$)
(D) Intake process is constant volume heat addition process and exhaust process is constant volume heat rejection process.
Intake process is a constant volume heat addition process, From the given options, option (2) is incorrect.
sol 8.29 Option (C) is correct.
Given : $\mathrm{p}_{\mathrm{a}}=100 \mathrm{kPa}, \mathrm{p}_{\mathrm{s}}=300 \mathrm{kPa}, \Delta \nu=0.01 \mathrm{~m}^{3}$
Net pressure work on the system,

$$
\mathrm{p}=\mathrm{p}_{\mathrm{s}}-\mathrm{p}_{\mathrm{a}}=300-100=200 \mathrm{kPa}
$$

For constant pressure process work done is given by

$$
\mathrm{W}=\mathrm{p} \Delta \nu=200 \times 0.01=2 \mathrm{~kJ}
$$

SOL 8.30 Option (A) is correct.
A heat engine cycle is a thermodynamic cycle in which there is a net Heat transfer from higher temperature to a lower temperature device. So it is a Heat Engine.
Applying Clausius theorem on the system for checking the reversibility of the cyclic device.

$$
\begin{aligned}
& \oint_{R} \frac{\mathrm{dQ}}{\mathrm{~T}}=0 \\
& \frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}}-\frac{\mathrm{Q}_{3}}{\mathrm{~T}_{3}}=0 \\
& \frac{100 \times 10^{3}}{1000}+\frac{50 \times 10^{3}}{500}-\frac{60 \times 10^{3}}{300}=0 \\
& 100+100-200=0
\end{aligned}
$$

Here, the cyclic integral of dQ/T is zero. This implies, it is a reversible Heat engine.
sol 8.31 Option (C) is correct.

We know enthalpy,

$$
\begin{align*}
\mathrm{h} & =\mathrm{U}+\mathrm{p} \nu \tag{i}\\
\mathrm{U} & =\text { Internal energy } \\
\mathrm{p} & =\mathrm{Pressure} \text { of the room } \\
\nu & =\text { Volume of the room }
\end{align*}
$$

W here,

It is given that room is insulated, So there is no interaction of energy (Heat) between system (room) and surrounding (atmosphere).
It means Change in internal Energy $\mathrm{dU}=0$ and $\mathrm{U}=$ C onstant And temperature is also remains constant.
A pplying the perfect gas equation,

$$
\begin{aligned}
& \mathrm{p} \nu=\mathrm{nR} \mathrm{~T} \\
& \mathrm{p} \nu=\mathrm{Constant}
\end{aligned}
$$

Therefore, from equation (i)

$$
\mathrm{h}=\text { Constant }
$$

So this process is a constant internal energy and constant enthalpy process.

Alternate M ethod :

We know that enthalpy,

$$
\mathrm{h}=\mathrm{U}+\mathrm{p} \nu
$$

Given that room is insulated, So there is no interaction of Energy (Heat) between system (room) and surrounding (atmosphere).
It means internal Energy $\mathrm{dU}=0$ and $\mathrm{U}=$ constant.
Now flow work $\mathrm{p} \nu$ must also remain constant thus we may conclude that during free expansion process $p \nu$ i.e. product of pressure and specific volume change in such a way that their product remains constant.
So, it is a constant internal energy and constant enthalpy process.

SOL 8.32 Option (A) is correct.
Given: $\mathrm{p}_{1}=1 \mathrm{MPa}, \mathrm{T}_{1}=350^{\circ} \mathrm{C}=(350+273) \mathrm{K}=623 \mathrm{~K}$
For air $\gamma=1.4$
We know that final temperature $\left(\mathrm{T}_{2}\right)$ inside the tank is given by,

$$
\mathrm{T}_{2}=\gamma \mathrm{T}_{1}=1.4 \times 623=872.2 \mathrm{~K}=599.2^{\circ} \mathrm{C}
$$

T_{2} is greater than $350^{\circ} \mathrm{C}$.
sol 8.33 Option (A) is correct.
Given : $\mathrm{h}_{1}=2800 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{2}=200 \mathrm{~kJ} / \mathrm{kg}$
From the given diagram of thermal power plant, point 1 is directed by the Boiler to the open feed water heater and point 2 is directed by the pump to the open feed water Heater. The bleed to the feed water heater is 20% of the boiler steam generation i.e. 20% of h_{1}

Open Feed Water Heater

So,

$$
\begin{aligned}
h_{3} & =20 \% \text { of } h_{1}+80 \% \text { of } h_{2} \\
& =0.2 \times 2800+0.8 \times 200=720 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

sol 8.34 Option (C) is correct.
From the first law of thermodynamic,

$$
\begin{align*}
\mathrm{dQ} & =\mathrm{dU}+\mathrm{dW} \\
\mathrm{dW} & =\mathrm{dQ}-\mathrm{dU} \tag{i}
\end{align*}
$$

If the process is complete at the constant pressure and no work is done other than the pd ν work. So

$$
\mathrm{dQ}=\mathrm{dU}+\mathrm{pd} \nu
$$

At constant pressure

$$
\begin{aligned}
\mathrm{pd} \nu & =\mathrm{d}(\mathrm{p} \nu) \\
(\mathrm{dQ}) & =\mathrm{dU}+\mathrm{d}(\mathrm{p} \nu)=\mathrm{d}(\mathrm{U}+\mathrm{p} \nu)=(\mathrm{dh}) \quad \mathrm{h}=\mathrm{U}+\mathrm{p} \nu
\end{aligned}
$$

From equation (i)

$$
\begin{equation*}
\mathrm{dW}=-\mathrm{dh}+\mathrm{dQ}=-\mathrm{dh}+\mathrm{Tds} \quad \mathrm{ds}=\mathrm{dQ} / \mathrm{T} \tag{ii}
\end{equation*}
$$

For an reversible process,

$$
\begin{align*}
\mathrm{T} \mathrm{ds} & =\mathrm{dh}-\nu \mathrm{dp} \\
-\nu \mathrm{dp} & =-\mathrm{dh}+\mathrm{T} \mathrm{ds} \tag{iii}
\end{align*}
$$

From equation (ii) and (iii)

$$
\mathrm{dW}=-\nu \mathrm{dp}
$$

On integrating both sides, we get

$$
W=-\int \nu \mathrm{dp}
$$

It is valid for reversible process.

SOL 8.35 Option (A) is correct.
W hen the vapour is at a temperaturegreater than the saturation temperature, it is said to exist as super heated vapour. The pressure and Temperature of superheated vapour are independent properties, since the temperature may increase while the pressure remains constant. Here vapour is at $400^{\circ} \mathrm{C}$ and saturation temperature is $200^{\circ} \mathrm{C}$.
So, at 200 kP a pressure superheated vapour will be left in the system.
sol 8.36 Option (D) is correct.
Given : $\mathrm{p}_{1}=100 \mathrm{kPa}, \mathrm{p}_{2}=200 \mathrm{kPa}$
Let, $\nu_{1}=\nu$
Now, given that Heat transfer takes place into the system until its volume increases by 50\%
So, $\quad \nu_{2}=\nu+50 \%$ of ν
Now, for work done by the system, we must take pressure is $\mathrm{p}_{2}=200 \mathrm{kPa}$, because work done by the system is against the pressure p_{2} and it is a positive work done.
From first law of thermodynamics,

$$
\begin{equation*}
\mathrm{dQ}=\mathrm{dU}+\mathrm{dW} \tag{i}
\end{equation*}
$$

B ut for a quasi-static process,
$\mathrm{T}=$ Constant
Therefore, change in internal energy is

$$
\mathrm{dU}=0
$$

From equation (i)

$$
\begin{array}{rlr}
\mathrm{dQ} & =\mathrm{dW}=\mathrm{pd} \nu & \mathrm{dW}=\mathrm{pd} \nu \\
& =\mathrm{p}\left[\nu_{2}-\nu_{1}\right] &
\end{array}
$$

For initial condition at 100 kPa , volume

$$
\nu_{1}=m_{\text {liquid }} \times \frac{1}{\rho_{\mathrm{f}}}+m_{\text {vapour }} \times \frac{1}{\rho_{\mathrm{g}}}
$$

Here

$$
\begin{aligned}
\frac{1}{\rho_{\mathrm{f}}}=\nu_{\mathrm{f}} & =0.001, \frac{1}{\rho_{\mathrm{g}}}=\nu_{\mathrm{g}}=0.1 \\
\mathrm{~m}_{\text {liquid }} & =1 \mathrm{~kg}, \mathrm{~m}_{\text {vapour }}=0.03 \mathrm{~kg} \\
\nu_{1} & =1 \times 0.001+0.03 \times 0.1=4 \times 10^{-3} \mathrm{~m}^{3} \\
\nu_{2} & =\frac{3}{2} \nu_{1}=\frac{3}{2} \times 4 \times 10^{-3}=6 \times 10^{-3} \mathrm{~m}^{3} \\
& =200 \times 10^{3}\left[\frac{3 \nu}{2}-\nu\right] \\
& =200 \times\left[6 \times 10^{-3}-4 \times 10^{-3}\right] \\
& =200 \times 2 \times 10^{-3}=0.4 \mathrm{~kJ}
\end{aligned}
$$

So
sol 8.37 Option (C) is correct.

$$
\begin{equation*}
\Delta \mathrm{s}_{\text {net }}=(\Delta \mathrm{s})_{\text {system }}+(\Delta \mathrm{s})_{\text {surrounding }} \tag{i}
\end{equation*}
$$

A nd it is given that,

$$
(\Delta \mathrm{s})_{\text {system }}=10 \mathrm{~kJ}
$$

Also,

$$
(\Delta \mathrm{S})_{\text {surrounding }}=\left(\frac{\mathrm{Q}}{\mathrm{~T}}\right)_{\text {surrounding }}
$$

Heat transferred to the system by thermal reservoir,

$$
\mathrm{T}=400^{\circ} \mathrm{C}=(400+273) \mathrm{K}=673 \mathrm{~K}
$$

$$
\begin{aligned}
\mathrm{Q} & =1 \mathrm{~kJ} \\
(\Delta \mathrm{~s})_{\text {surrounding }} & =\frac{1000}{673}=1.485 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

From equation (i)

$$
(\Delta \mathrm{s})_{\text {net }}=10-1.485=8.515 \mathrm{~J} / \mathrm{K}
$$

(Take Negative sign, because the entropy of surrounding decrease due to heat transfer to the system.)
sol 8.38 Option (D) is correct.
In this question we discuss on all the four options.
(A) $\delta \mathrm{Q}=\mathrm{dU}+\delta \mathrm{W} \quad$ This equation holds good for any process undergone by a closed stationary system.
(B) $\mathrm{Tds}=\mathrm{dU}+\mathrm{pd} \nu \quad$ This equation holds good for any process reversible or irreversible, undergone by a closed system.
(C) $\mathrm{Tds}=\mathrm{dU}+\delta \mathrm{W} \quad$ This equation holds good for any process, reversible or irreversible, and for any system.
(D) $\delta \mathrm{Q}=\mathrm{dU}+\mathrm{pd} \nu \quad$ This equation holds good for a closed system when only pd ν work is present. This is true only for a reversible (quasi-static) process.
sol 8.39 Option (A) is correct.
Given : $\nu_{\text {cri }}=0.003155 \mathrm{~m}^{3} / \mathrm{kg}, \nu=0.025 \mathrm{~m}^{3}, \mathrm{p}=0.1 \mathrm{M} \mathrm{Pa}$ and $\mathrm{m}=10 \mathrm{~kg}$ We know, Rigid means volume is constant.
Specific volume, $\quad \nu_{\mathrm{S}}=\frac{\nu}{\mathrm{m}}=\frac{0.025}{10}=0.0025 \mathrm{~m}^{3} / \mathrm{kg}$
We see that the critical specific volume is more than the specific volume and during the heating process, both the temperature and the pressure remain constant, but the specific volume increases to the critical volume (i.e. critical point). The critical point is defined as the point at which the saturated liquid and saturated vapour states are identical.

So, point (B) will touch the saturated liquid line and the liquid line will rise at the point 0 .
sol 8.40 Option (C) is correct.
Given : $\mathrm{L}=250 \mathrm{~mm}=0.25 \mathrm{~m}, \mathrm{D}=200 \mathrm{~mm}=0.2 \mathrm{~m}$,

$$
\nu_{\mathrm{c}}=0.001 \mathrm{~m}^{3}, \gamma=\frac{C_{p}}{C_{v}}=1.4
$$

Swept volume

$$
\begin{aligned}
\nu_{\mathrm{s}} & =\mathrm{A} \times \mathrm{L}=\frac{\pi}{4}(\mathrm{D})^{2} \times \mathrm{L} \\
& =\frac{\pi}{4}(0.2)^{2} \times 0.25=0.00785 \mathrm{~m}^{3}
\end{aligned}
$$

Compression ratio

$$
\mathrm{r}=\frac{\nu_{\mathrm{\digamma}}}{\nu_{\mathrm{c}}}=\frac{\nu_{\mathrm{c}}+\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}}=\frac{0.001+0.00785}{0.001}=8.85
$$

Air standard efficiency

$$
\begin{aligned}
\eta & =1-\frac{1}{(r)^{\gamma-1}}=1-\frac{1}{(8.85)^{1.4-1}} \\
& =1-\frac{1}{2.39}=1-0.418=0.582 \text { or } 58.2 \%
\end{aligned}
$$

sol 8.41 Option (B) is correct.
We know, dryness fraction or quality of the liquid vapour mixture,

$$
\begin{equation*}
x=\frac{m_{v}}{m_{v}+m_{l}}=\frac{1}{1+m_{l} / m_{v}} \tag{i}
\end{equation*}
$$

Where, $\quad m_{v} \rightarrow M$ ass of vapour and $m_{l} \rightarrow M$ ass of liquid
The value of x varies between 0 to 1 . Now from equation (i) if incorporation of reheater in a steam power plant adopted then M ass of vapour m_{v} increase and M ass of liquid m_{l} decreases So, dryness fraction x increases.
In practice the use of reheater only gives a small increase in cycle efficiency, but it increases the net work output by making possible the use of higher pressure.

SOL 8.42 Option (A) is correct.
Following combination is correct
(R) The work done by a closed system in an adiabatic is a point function.
(S) A liquid expands upon freezing when the slope of its fusion curve on pressure-temperature diagram is negative.
sol 8.43 Option (C) is correct.
In the given $\mathrm{p}-\nu$ diagram, three processes are occurred.
(i) Constant pressure (Process 1 - 2)
(ii) Constant Volume (Process 2 - 3)
(iii) A diabatic (Process 3-1)

We know that, Constant pressure and constant volume lines are inclined curves in the T -s curve, and adiabatic process is drawn by a vertical line on a T -s curve.

Given $\mathrm{p}-\nu$ curve is clock wise. So T-s curve must be clockwise.

SOL 8.44 Option (A) is correct.

This cycle shows the Lenoir cycle.
For Lenoir cycle efficiency is given by

Where, $\quad r_{p}=\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{400}{100}=4$
And

$$
\eta_{\mathrm{L}}=1-\gamma\left(\frac{\mathrm{r}_{\mathrm{p}}^{\frac{1}{\gamma}}-1}{r_{\mathrm{p}}-1}\right)
$$

So, $\quad \eta_{\mathrm{L}}=1-1.4\left[\frac{(4) \frac{1}{1.4}-1}{4-1}\right]=1-0.789=0.211$
$\eta_{\mathrm{L}}=21.1 \% \simeq 21 \%$

SOL 8.45 Option (D) is correct.

Given : $\mathrm{T}_{1}=400 \mathrm{~K}, \mathrm{~T}_{2}=300 \mathrm{~K}, \mathrm{~T}=350 \mathrm{~K}, \mathrm{Q}=100 \mathrm{~kJ}$
$\mathrm{Q}_{1} \rightarrow$ Heat transferred to the source by the transformer
$\mathrm{Q}_{2} \rightarrow$ Heat transferred to the sink by the transformer

A pplying energy balance on the system,

$$
\begin{align*}
\mathrm{Q} & =\mathrm{Q}_{1}+\mathrm{Q}_{2} \\
\mathrm{Q}_{2} & =\mathrm{Q}-\mathrm{Q}_{1}=100-\mathrm{Q}_{1} \tag{i}
\end{align*}
$$

A pply Clausicus inequality on the system,

$$
\begin{aligned}
\frac{\mathrm{Q}}{\mathrm{~T}} & =\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}} \\
\frac{100}{350} & =\frac{\mathrm{Q}_{1}}{400}+\frac{\mathrm{Q}_{2}}{300}
\end{aligned}
$$

Substitute the value of Q_{2} from equation (i),

$$
\frac{100}{350}=\frac{Q_{1}}{400}+\left(\frac{100-Q_{1}}{300}\right)=\frac{Q_{1}}{400}+\frac{100}{300}-\frac{Q_{1}}{300}
$$

$$
\frac{100}{350}-\frac{100}{300}=\mathrm{Q}_{1}\left[\frac{1}{400}-\frac{1}{300}\right]
$$

$$
-\frac{1}{21}=-\frac{Q_{1}}{1200}
$$

$$
\mathrm{Q}_{1}=\frac{1200}{21}=57.14 \mathrm{~kJ}
$$

Therefore the maximum amount of heat that can be transferred at 400 K is 57.14 kJ.
sol 8.46 Option (D) is correct.
W hen the temperature of a liquid is less than the saturation temperature at the given pressure, the liquid is called compressed liquid (state 2 in figure). The pressure and temperature of compressed liquid may vary independently and a table of properties like the superheated vapor table could be arranged, to give the properties at any p and T.
The properties of liquids vary little with pressure. Hence, the properties are taken from the saturation table at the temperature of the compressed liquid. So, from the given table at $\mathrm{T}=45^{\circ} \mathrm{C}$, Specific enthalpy of water

$$
=188.45 \mathrm{~kJ} / \mathrm{kg}
$$

sol 8.47 Option (A) is correct.

The thermal efficiency of a power plant cycle increases by increase the average temperature at which heat is transferred to the working fluid in the boiler or decrease the average temperature at which heat is rejected from the working fluid in the condenser. Heat is transferred to the working fluid with the help of the feed water heater.
So, (A) and (R) are true and (R) is the correct reason of (A).
sol 8.48 Option (D) is correct.
(A) Condenser is an essential equipment in a steam power plant because when steam expands in the turbine and leaves the turbine in the form of super saturated steam. It is not economical to feed this steam directly to the boiler. So, condenser is used to condensed the steam into water and it is a essential part (equipment) in steam power plant.
A ssertion (A) is correct.
(R) The compressor and pumps require power input. The compressor is capable of compressing the gas to very high pressures. Pump work very much like compressor except that they handle liquid instead of gases. Now
for same mass flow rate and the same pressure rise, a water pump require very less power because the specific volume of liquid is very less as compare to specific volume of vapour.
sol 8.49 Option (D) is correct
Group Group (II) Group (III) Group (IV) Group (V)

When added to Differential Function Phenomenon the system

E	G	J	K	N
F	H	J	K	M

So correct pairs are E-G-J-K-N and F-H-J-K-M

SOL 8.50 Option (A) is correct.
We draw p -v diagram for the cycles.
(a) R ankine cycle

Constant Pressure Process

$\mathrm{Q}_{1}=$ Heat addition at constant p and $\mathrm{Q}_{2}=$ Heat Rejection at constant p
(b) Otto cycle

Constant Volume Process

$\mathrm{Q}_{1}=$ Heat addition at constant ν and $\mathrm{Q}_{2}=$ Heat Rejection at constant ν
(c) Carnot cycle

C onstant Temperature Process (Isothermal)

$\mathrm{Q}_{1}=$ Heat addition at constant T and $\mathrm{Q}_{2}=$ Heat Rejection at constant T
(d) Diesel cycle

Constant Pressure and constant volume process
$\mathrm{Q}_{1}=$ Heat addition at constant p and $\mathrm{Q}_{2}=$ Heat rejection at constant V
(e) Brayton cycle

Constant pressure Process

$\mathrm{Q}_{1}=$ Heat addition at constant p and $\mathrm{Q}_{2}=$ Heat rejection at constant p

From the Five cycles, we see that P-S-5,R-U-3,P-S-1,Q-T-2 are the correct pairs.
sol 8.51 Option (D) is correct.
Given :

$$
\begin{aligned}
\mathrm{p}_{\text {gauge }} & =1 \mathrm{bar} \\
\mathrm{p}_{\text {absolute }} & =\mathrm{p}_{\mathrm{atm}}+\mathrm{p}_{\text {gauge }}
\end{aligned}
$$

So,

$$
p_{\mathrm{abs}}=1.013+1=2.013 \mathrm{bar} \quad \mathrm{p}_{\mathrm{atm}}=1.013 \mathrm{bar}
$$

$$
\mathrm{T}_{1}=15^{\circ} \mathrm{C}=(273+15) \mathrm{K}=288 \mathrm{~K}
$$

$$
\mathrm{T}_{2}=5^{\circ} \mathrm{C}=(273+5) \mathrm{K}=278 \mathrm{~K}
$$

Volume $=$ Constant

$$
\nu_{1}=\nu_{2}=2500 \mathrm{~cm}^{3}=2500 \times\left(10^{-2}\right)^{3} \mathrm{~m}^{3}
$$

From the perfect gas equation,

$$
\begin{aligned}
\mathrm{p} \nu & =\mathrm{mRT} \\
2.013 \times 10^{5} \times 2500 \times\left(10^{-2}\right)^{3} & =\mathrm{m} \times 287 \times 288 \\
2.013 \times 2500 \times 10^{-1} & =\mathrm{m} \times 287 \times 288 \\
\mathrm{~m} & =\frac{2.013 \times 250}{287 \times 288}=0.0060 \mathrm{~kg}
\end{aligned}
$$

For constant Volume, relation is given by,

$$
\begin{array}{rlr}
\mathrm{Q} & =\mathrm{mc} \mathrm{c} \mathrm{dT} & \mathrm{C}_{\mathrm{v}}=0.718 \mathrm{~J} / \mathrm{kg} \mathrm{~K} \\
& =0.0060 \times 0.718 \times(278-288) & \mathrm{dT}=\mathrm{T}_{2}-\mathrm{T}_{1} \\
\mathrm{Q} & =-0.0437=-43.7 \times 10^{-3} \mathrm{~kJ} & \\
& =-43.7 \mathrm{~J} \text { oule } \quad \text { Negative sign shows the heat lost }
\end{array}
$$

As the process is isochoric i.e. constant volume, So from the prefect gas equation,

And

$$
\frac{p}{T}=\text { Constant }
$$

$$
\begin{aligned}
& \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\
& p_{2}=\frac{T_{2}}{T_{1}} \times p_{1}=\frac{278}{288} \times 2.013=1.943 \text { bar } p_{1}=p_{\text {abs }}
\end{aligned}
$$

So, \quad Gauge Pressure $=$ A bsolute pressure - atmospheric pressure

$$
p_{\text {gauge }}=1.943-1.013=0.93 \mathrm{bar}
$$

sol 8.52 Option (C) is correct.
It is a constant volume process, it means

$$
\begin{aligned}
& \frac{p}{T}=\text { Constant } \\
& \frac{p_{1}}{p_{2}}=\frac{T_{1}}{T_{2}}
\end{aligned}
$$

Substitute, $T_{1}=288$ and $T_{2}=278$

So,

$$
\begin{aligned}
& \mathrm{p}_{2}=\mathrm{p}_{2, \text { gauge }}+\mathrm{p}_{\mathrm{atm} .}=1+1.013 \\
& \mathrm{p}_{2}=2.013 \mathrm{bar} \\
& \mathrm{p}_{1}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \mathrm{p}_{2}=\frac{288}{278} \times 2.013=2.08 \mathrm{bar}
\end{aligned}
$$

Gauge pressure, $\quad p_{\text {gauge }}=2.08-1.013=1.067 \simeq 1.07 \mathrm{bar}$
sol 8.53 Option (A) is correct.
From the first law of thermodynamics for a cyclic process,

And

$$
\Delta U=0
$$

And

$$
\oint \delta Q=\oint \delta W
$$

The symbol $\oint \delta Q$, which is called the cyclic integral of the heat transfer represents the heat transfer during the cycle and $\oint \delta \mathrm{W}$, the cyclic integral of the work, represents the work during the cycle.
We easily see that figure 1 and 2 satisfies the first law of thermodynamics. B oth the figure are in same direction (clockwise) and satisfies the relation.

$$
\oint \delta \mathbf{Q}=\oint \delta \mathbf{W}
$$

sol 8.54 Option (D) is correct.
Discharge Valve Closes

From above figure, we can easily see that option (D) is same.
sol 8.55 Option (A) is correct.

Now check the given processes :-
(i) Show in $\mathrm{p}-\nu$ curve that process 1-2 and process 3-4 are Reversible isothermal process.
(ii) Show that process 2-3 and process 4-1 are Reversible adiabatic (isentropic) processes.
(iii) In carnot cycle maximum and minimum cycle pressure and the clearance volume are fixed.
(iv) From $\mathrm{p}-\nu$ curve there is no polytropic process.

So, it consists only one cycle [carnot cycle]
sol 8.56 Option (B) is correct.
Given : $\mathrm{p}_{1}=10 \mathrm{bar}, \nu_{1}=1 \mathrm{~m}^{3}, \mathrm{~T}_{1}=300 \mathrm{~K}, \nu_{2}=2 \mathrm{~m}^{3}$
Given that Nitrogen Expanded isothermally.
So,
RT = Constant
A nd from given relation,

$$
\begin{aligned}
\left(\mathrm{p}+\frac{\mathrm{a}}{\nu^{2}}\right) \nu & =\mathrm{RT}=\text { Constant } \\
\mathrm{p}_{1} \nu_{1}+\frac{\mathrm{a}}{\nu_{1}} & =\mathrm{p}_{2} \nu_{2}+\frac{\mathrm{a}}{\nu_{2}} \\
\mathrm{p}_{2} \nu_{2} & =\mathrm{p}_{1} \nu_{1}+\frac{\mathrm{a}}{\nu_{1}}-\frac{\mathrm{a}}{\nu_{2}} \\
\mathrm{p}_{2} & =\mathrm{p}_{1}\left(\frac{\nu_{1}}{\nu_{2}}\right)+\mathrm{a}\left(\frac{1}{\nu_{1} \nu_{2}}-\frac{1}{\nu_{2}^{2}}\right)=10\left(\frac{1}{2}\right)+\mathrm{a}\left(\frac{1}{2}-\frac{1}{4}\right)=5+\frac{\mathrm{a}}{4}
\end{aligned}
$$

Here a >0, so above equation shows that p_{2} is greater than 5 and $+v e$.
sol 8.57 Option (B) is correct.
Velocity of flow, $u=u_{1}=u_{2}=$ constant
\&

$$
W_{2} \gg W_{1} \quad W=W \text { hirl velocity }
$$

Hence, it is a diagram of reaction turbine.

SOL 8.58 Option (B) is correct.
We know that efficiency,

$$
\begin{aligned}
& \eta_{\text {Otto }}=\eta_{\mathrm{Brayton}}=1-\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \\
& \eta_{\mathrm{Otto}}=\eta_{\mathrm{Brayton}}=1-\frac{300}{450}=1-\frac{6}{9}=0.33
\end{aligned}
$$

So, $\quad \eta_{\text {Otto }}=\eta_{\text {Brayton }}=33 \%$
sol 8.59 Option (A) is correct.

From the previous part of the question
$\mathrm{T}_{3 \text { (0tto) }}=600 \mathrm{~K}, \mathrm{~T}_{3(\mathrm{Brayton})}=550 \mathrm{~K}$
From the $\mathrm{p}-\mathrm{v}$ diagram of O tto cycle, we have

$$
\begin{equation*}
W_{0}=Q_{1}-Q_{2}=C_{v}\left(T_{3}-T_{2}\right)-c_{v}\left(T_{4}-T_{1}\right) \tag{i}
\end{equation*}
$$

For process 3-4,

$$
\begin{aligned}
& \frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}}=\left(\frac{\nu_{4}}{\nu_{3}}\right)^{\gamma-1} \\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\gamma-1}
\end{aligned}
$$

So,

$$
\begin{align*}
\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}} & =\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \\
\mathrm{~T}_{4} & =\frac{T_{3}}{\mathrm{~T}_{2}} \times \mathrm{T}_{1}=\frac{600}{450} \times 300=400 \mathrm{~K} \\
\mathrm{~W}_{0} & =\mathrm{c}_{\mathrm{v}}(600-450)-\mathrm{c}_{\mathrm{v}}(400-300) \\
& =\mathrm{c}_{\mathrm{v}}(150)-100 \mathrm{c}_{\mathrm{v}}=50 \mathrm{c}_{\mathrm{v}} \tag{ii}
\end{align*}
$$

And

From $\mathrm{p}-\nu$ diagram of brayton cycle, work done is,

$$
\begin{align*}
& W_{\mathrm{B}} & =\mathrm{Q}_{1}-\mathrm{Q}_{2}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)-\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right) \\
& \mathrm{T}_{4} & =\mathrm{T}_{1} \mathrm{~T}_{2} \times \mathrm{T}_{3}=\frac{300}{450} \times 550=366.67 \mathrm{~K} \\
& \mathrm{~W}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{p}}(550-450)-\mathrm{C}_{\mathrm{p}}(366.67-300)=33.33 \mathrm{c}_{\mathrm{p}}
\end{align*}
$$

Dividing equation (ii) by (iii), we get

$$
\frac{c_{p}}{c_{v}}=\gamma, \gamma=1.4
$$

From this, we see that,

$$
W_{0}>W_{B}
$$

sol 8.60 Option (D) is correct.
From saturated ammonia table column 5 and 8 are the specific enthalpy data column.
sol 8.61 Option (B) is correct.
The enthalpy of the fluid before throttling is equal to the enthalpy of fluid after throttling because in throttling process enthalpy remains constant.

$$
\begin{aligned}
\mathrm{h}_{1} & =\mathrm{h}_{2} \\
371.43 & =89.05+x(1418-89.05) \\
& =89.05+x(1328.95) \\
x & =\frac{282.38}{1328.95}=0.212
\end{aligned}
$$

soL 8.62 Option (C) is correct.
$\mathrm{W}=-5000 \mathrm{~kJ}$ (Negative sign shows that work is done on the system) $\mathrm{Q}=-2000 \mathrm{~kJ}$ (Negative sign shows that heat rejected by the system) From the first law of thermodynamics,

So,

$$
\begin{aligned}
& \Delta \mathrm{Q}=\Delta \mathrm{W}+\Delta \mathrm{U} \\
& \Delta \mathrm{U}=\Delta \mathrm{Q}-\Delta \mathrm{W}=-2000-(-5000)=3000 \mathrm{~kJ}
\end{aligned}
$$

sol 8.63 Option (A) is correct.
The T-s curve for simple gas power plant cycle (Brayton cycle) is shown below :

From the T -s diagram, Net work output for Unit M ass,

$$
\begin{equation*}
W_{\text {net }}=W_{T}-W_{c}=C_{p}\left[\left(T_{3}-T_{4}\right)-\left(T_{2}-T_{1}\right)\right] \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{W_{0}}{W_{B}}=\frac{50 c_{v}}{33.33 c_{p}}=\frac{50}{33.33 \gamma} \\
& =\frac{50}{33.33 \times 1.4}=\frac{50}{46.662}>1
\end{aligned}
$$

A nd from the T-s diagram,

$$
\mathrm{T}_{3}=\mathrm{T}_{\text {max }} \text { and } \mathrm{T}_{1}=\mathrm{T}_{\text {min }}
$$

Apply the general relation for reversible adiabatic process, for process 3-4 and 1-2,

$$
\begin{align*}
\mathrm{T}_{3} & =\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{4}}\right)^{\left(\frac{\gamma-1}{\gamma}\right)}=\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}} \\
\mathrm{~T}_{4} & =\mathrm{T}_{3}\left(\mathrm{r}_{\mathrm{p}}\right)^{-\left(\frac{\gamma-1}{\gamma}\right)} \quad \quad \mathrm{p}_{3} \\
\mathrm{p}_{4} & =\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\mathrm{r}_{\mathrm{p}}=\text { Pressure ratio } \\
\mathrm{T}_{2} & =\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}} \\
\mathrm{~T}_{2} & =\mathrm{T}_{1}\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}} \tag{ii}\\
\mathrm{~W}_{\text {net }} & =\mathrm{C}_{\mathrm{p}}\left[\mathrm{~T}_{3}-\mathrm{T}_{3}\left(\mathrm{r}_{\mathrm{p}}\right)^{-\left(\frac{\gamma-1}{\gamma}\right)}-\mathrm{T}_{1}\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}+\mathrm{T}_{1}\right] \quad
\end{align*}
$$

Differentiating equation (ii) w.r.t. $\left(r_{p}\right)$ and on equating it to the zero, we get

$$
\begin{aligned}
& \frac{d W_{\text {net }}}{d r_{p}}=C_{p}\left[-T_{3}\left(-\frac{\gamma-1}{\gamma}\right) r_{p}-\left(\frac{\gamma-1}{\gamma}\right)-1-T_{1}\left(\frac{\gamma-1}{\gamma}\right) r_{p}\left(\frac{\gamma-1}{\gamma}-1\right)\right] \\
& =C_{p}\left[-T_{3}\left(-\frac{\gamma-1}{\gamma}\right) r_{p}\left(\frac{-\gamma+1-\gamma}{\gamma}\right)-T_{1}\left(\frac{\gamma-1}{\gamma}\right) r_{p}\left(-\frac{1}{\gamma}\right)\right] \\
& =C_{p}\left[-T_{3}\left(-\frac{\gamma-1}{\gamma}\right) r_{p}\left(\frac{1-2 \gamma}{\gamma}\right)-T_{1}\left(\frac{\gamma-1}{\gamma}\right) r_{p}\left(-\frac{1}{\gamma}\right)\right] \\
& \mathrm{T}_{3} \mathrm{r}_{\mathrm{p}}^{\left(\frac{1}{\gamma}-2\right)}-\mathrm{T}_{1} \mathrm{r}_{\mathrm{p}}^{\left(-\frac{1}{\gamma}\right)}=0 \\
& \mathrm{~T}_{3} \mathrm{r}_{\mathrm{p}}^{\left(\frac{1}{\gamma}-2\right)}=\mathrm{T}_{1} \mathrm{r}_{\mathrm{p}}^{-\frac{1}{\gamma}} \\
& \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{1}}=\frac{\left(\mathrm{r}_{\mathrm{p}}\right)^{-\frac{1}{\gamma}}}{\mathrm{r}_{\mathrm{p}}^{\frac{1}{\gamma}-2}}=\left(\mathrm{r}_{\mathrm{p}}\right)^{-\frac{1}{\gamma}-\frac{1}{\gamma}+2}=\mathrm{r}_{\mathrm{p}}^{\frac{2(\gamma-1)}{\gamma}} \\
& \text { So, } \quad\left(r_{p}\right)_{\text {opt }}=\left(\frac{T_{3}}{T_{1}}\right)^{\frac{\gamma}{2(\gamma-1)}}=\left(T_{\text {max }} T_{\text {min }}\right)^{\frac{\gamma}{2(\gamma-1)}}
\end{aligned}
$$

sol 8.64 Option (C) is correct.

Stoichiometric mixture :

The S.M. is one in which there is just enough air for complete combustion of fuel.

SOL 8.65 Option (A) is correct.
Given : $\mathrm{m}=2000 \mathrm{~kg}, \mathrm{~T}_{1}=1250 \mathrm{~K}, \mathrm{~T}_{2}=450 \mathrm{~K}, \mathrm{~T}_{0}=303 \mathrm{~K}, \mathrm{c}=0.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ $\mathrm{Q}_{1}=$ A vailable E nergy + Unavailable energy

$$
\begin{equation*}
\mathrm{A} . \mathrm{E} .=\mathrm{Q}_{1}-\mathrm{U} . \mathrm{E} . \tag{i}
\end{equation*}
$$

And

$$
\mathrm{Q}_{1}=\mathrm{mc} \Delta \mathrm{~T}
$$

$$
\begin{align*}
& =2000 \times 0.5 \times 10^{3} \times(1250-450) \\
Q_{1} & =800 \times 10^{6}=800 \mathrm{MJ} \text { oule } \\
\text { U.E. } & =T_{0}(\Delta \mathrm{~s}) \tag{ii}
\end{align*}
$$

We know

$$
\begin{aligned}
\Delta S & =m c \ln \frac{T_{1}}{T_{2}}=2000 \times 0.5 \times 10^{3} \ln \frac{1250}{450} \\
& =10^{6} \ln \frac{1250}{450}=1.021 \times 10^{6} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Now, Substitute the value of Q_{1} and U.E. in equation (i),

$$
\begin{aligned}
\text { A.E. } & =800 \times 10^{6}-303 \times 1.021 \times 10^{6} \quad \text { From equation (ii) } \\
& =10^{6} \times[800-309.363] \\
& =490.637 \times 10^{6}=490.637 \simeq 490.44 \mathrm{MJ}
\end{aligned}
$$

sol 8.66 Option (C) is correct.
W hen all cylinders are firing then, power is $3037 \mathrm{~kW}=$ Brake P ower Power supplied by cylinders (Indicated power) is given below :

Cylinder No.	Power supplied (I.P.)
1.	I.P. $123037-2102=935 \mathrm{~kW}$
2.	I.P. $2=3037-2102=935 \mathrm{~kW}$
3.	I.P. $30307-2100=937 \mathrm{~kW}$
4.	I.P. $4=3037-2098=939 \mathrm{~kW}$

$$
\begin{aligned}
\text { I.P. } \mathrm{total} & =\text { I.P. } 1+\text { I.P } \cdot 2+\text { I.P. } 3+\text { I.P } \cdot 4 \\
& =935+935+937+939=3746 \mathrm{~kW}
\end{aligned}
$$

And,

$$
\eta_{\text {mech }}=\frac{\text { B.P. }}{\text { I.P. }}=\frac{3037}{3746}=0.8107 \text { or } 81.07 \%
$$

sol 8.67 Option (D) is correct.
Given : $\mathrm{D}=10 \mathrm{~cm}=0.1$ meter, $\mathrm{L}=15 \mathrm{~cm}=0.15$ meter $\gamma=\frac{C_{p}}{C_{v}}=1.4, \nu_{\mathrm{c}}=196.3 \mathrm{cc}, \mathrm{Q}=1800 \mathrm{~kJ} / \mathrm{kg}$

$$
\nu_{\mathrm{s}}=\mathrm{A} \times \mathrm{L}=\frac{\pi}{4} \mathrm{D}^{2} \times \mathrm{L}=\frac{\pi}{4} \times(10)^{2} \times 15=\frac{1500 \pi}{4}=1177.5 \mathrm{cc}
$$

And Compression ratio, $r=\frac{\nu_{\uparrow}}{\nu_{\mathrm{c}}}=\frac{\nu_{\mathrm{c}}+\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}}=\frac{196.3+1177.5}{196.3}=6.998 \simeq 7$
Cycle efficiency, $\quad \eta_{\text {otto }}=1-\frac{1}{(r)^{\gamma-1}}=1-\frac{1}{(7)^{1.4-1}}$
$=1-\frac{1}{2.1779}=1-0.4591=0.5409$
$\eta_{\text {otto }}=54.09 \%$
We know that, $\quad \eta=\frac{\text { W ork output }}{\text { Heat Supplied }}$

$$
\begin{aligned}
\text { Work output } & =\eta \times \text { Heat supplied } \\
& =0.5409 \times 1800=973.62 \mathrm{~kJ} \simeq 973.5 \mathrm{~kJ}
\end{aligned}
$$

sol 8.68 Option (A) is correct.

Solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$. This radiation is stored in the form of internal energy. Internal energy of fluid after absorbing
Solar radiation, $\Delta \mathrm{U}=\frac{1}{2} \times 0.6 \quad$ Efficiency of absorbing radiation is 50%

$$
\begin{aligned}
& =0.3 \mathrm{~kW} / \mathrm{m}^{2} \\
\eta_{\text {Engine }} & =1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{1}} \\
\mathrm{Q}_{1} & =\frac{\mathrm{W}_{\text {net }} \times \mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\frac{2.5 \times 350}{350-315}=25 \mathrm{~kW}
\end{aligned}
$$

Let, A is the minimum area of the solar collector.
So,

$$
\begin{aligned}
\mathrm{Q}_{1} & =\mathrm{A} \times \Delta \mathrm{U}=\mathrm{A} \times 0.3 \mathrm{~kW} / \mathrm{m}^{2} \\
\mathrm{~A} & =\frac{\mathrm{Q}_{1}}{0.3}=\frac{25}{0.3}=\frac{250}{3}=83.33 \mathrm{~m}^{2}
\end{aligned}
$$

SOL 8.69 Option (B) is correct.
Given : $\mathrm{h}_{1}=29.3 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{3}=3095 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{4}=2609 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{5}=3170 \mathrm{~kJ} / \mathrm{kg}$ $\mathrm{h}_{6}=2165 \mathrm{~kJ} / \mathrm{kg}$
Heat supplied to the plant,

$$
\begin{aligned}
Q_{S} & =\left(h_{3}-h_{1}\right)+\left(h_{5}-h_{4}\right) \quad \text { At boiler and reheater } \\
& =(3095-29.3)+(3170-2609)=3626.7 \mathrm{~kJ}
\end{aligned}
$$

Work output from the plant,

$$
W_{T}=\left(h_{3}-h_{4}\right)+\left(h_{5}-h_{6}\right)=(3095-2609)+(3170-2165)=1491 k J
$$

Now,

$$
\begin{array}{rlr}
\eta_{\text {thermal }} & =\frac{W_{T}-W_{p}}{Q_{s}}=\frac{W_{T}}{Q_{s}} \quad \text { Given, } W_{p}=0 \\
& =\frac{1491}{3626.7}=0.411=41.1 \% &
\end{array}
$$

sol 8.70 Option (D) is correct.
From the figure, we have enthalpy at exit of the pump must be greater than at inlet of pump because the pump supplies energy to the fluid.

$$
h_{2}>h_{1}
$$

So, from the given four options only one option is greater than h_{1}

$$
\mathrm{h}_{2}=33.3 \mathrm{~kJ} / \mathrm{kg}
$$

sol 8.71 Option (B) is correct. Equivalence Ratio or Fuel Air Ratio $\left(\frac{\mathrm{F}}{\mathrm{A}}\right)$

$$
\phi=\frac{\text { Actual F uel - Air ratio }}{\text { stoichiometric F uel air R atio }}=\frac{\left(\frac{\mathrm{F}}{\mathrm{~A}}\right)_{\text {actual }}}{\left(\frac{\mathrm{F}}{\mathrm{~A}}\right)_{\text {stoichiometric }}}
$$

If $\phi=1, \Rightarrow$ stoichiometric (Chemically correct) Mixture.
If $\phi>1, \Rightarrow$ rich mixture.
If $\phi<1$, \Rightarrow lean mixture.
Now, we can see from these three conditions that $\phi>1$, for both idling and peak power conditions, so rich mixture is necessary.
sol 8.72 Option (C) is correct.
The compression ratio of diesel engine ranges between 14 to 25 where as for S.I, engine between 6 to 12. Diesel Engine gives more power but efficiency of diesel engine is less than compare to the S.I. engine for same compression ratio.
sol 8.73 Option (C) is correct.

Fig: T -s curve of simple R ankine cycle
From the observation of the T-s diagram of the rankine cycle, it reveals that heat is transferred to the working fluid during process $2-2$ at a relatively
low temperature. This lowers the average heat addition temperature and thus the cycle efficiency.
To remove this remedy, we look for the ways to raise the temperature of the liquid leaving the pump (called the feed water) before it enters the boiler. One possibility is to transfer heat to the feed water from the expanding steam in a counter flow heat exchanger built into the turbine, that is, to use regeneration.
A practical regeneration process in steam power plant is accomplished by extracting steam from the turbine at various points. This steam is used to heat the feed water and the device where the feed water is heated by regeneration is called feed water heater. So, regeneration improves cycle efficiency by increasing the average temperature of heat addition in the boiler.
sol 8.74 Option (D) is correct.

Easily shows that the diagram that static pressure remains constant, while velocity decreases.
sol 8.75 Option (C) is correct.
Given: $\mathrm{p}=2 \mathrm{~kW}=2 \times 10^{3} \mathrm{~W}, \mathrm{t}=20$ minutes $=20 \times 60 \mathrm{sec}$,
$\mathrm{c}_{\mathrm{p}}=4.2 \mathrm{~kJ} / \mathrm{kgK}$
Heat supplied, $\quad \mathrm{Q}=\mathrm{P}$ ower \times Time

$$
=2 \times 10^{3} \times 20 \times 60=24 \times 10^{5} \mathrm{~J} \text { oule }
$$

And Specific heat at constant pressure,

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{mc}_{\mathrm{p}} \Delta \mathrm{~T} \\
\Delta \mathrm{~T} & =\frac{24 \times 10^{5}}{40 \times 4.2 \times 1000}=\frac{24 \times 100}{40 \times 4.2}=14.3^{\circ} \mathrm{C}
\end{aligned}
$$

soL 8.76 Option (D) is correct.
The T ds equation considering a pure, compressible system undergoing an internally reversible process.
From the first law of thermodynamics

$$
\begin{equation*}
(\delta Q)_{\text {rev. }}=\mathrm{dU}+(\delta \mathrm{W})_{\mathrm{rev}} \tag{i}
\end{equation*}
$$

By definition of simple compressible system, the work is

$$
(\delta \mathrm{W})_{\mathrm{rev}}=\mathrm{pd} \nu
$$

And entropy changes in the form of

$$
\begin{aligned}
\mathrm{ds} & =\left(\frac{\delta Q}{T}\right)_{\mathrm{rev}} \\
(\delta Q)_{\mathrm{rev}} & =\mathrm{T} \mathrm{ds}
\end{aligned}
$$

From equation (i), we get

$$
\mathrm{T} \mathrm{ds}=\mathrm{dU}+\mathrm{pd} \nu
$$

This equation is equivalent to the $\mathrm{I}^{\text {st }}$ law, for a reversible process.
sol 8.77 Option (A) is correct.

Given : $\mathrm{c}_{\mathrm{p}}=0.98 \mathrm{~kJ} / \mathrm{kgK}, ~ \eta_{\text {isen }}=0.94, \mathrm{c}_{\mathrm{v}}=0.7538 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{T}_{3}=1500 \mathrm{~K}$ $p_{3}=20 \mathrm{bar}=20 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{p}_{4}=1 \mathrm{bar}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
\gamma=\frac{c_{p}}{c_{v}}=\frac{0.98}{0.7538}=1.3
$$

Apply general Equation for the reversible adiabatic process between point 3 and 4 in T-s diagram,

$$
\begin{aligned}
\left(\frac{T_{3}}{T_{4}}\right) & =\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{4}}\right)^{\frac{\gamma-1}{\gamma}} \\
\frac{1500}{\mathrm{~T}_{4}} & =\left(\frac{20 \times 10^{5}}{1 \times 10^{5}}\right)^{\frac{1.3-1}{1.3}}=(20)^{\frac{0.3}{1.3}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}_{4} & \left.=\frac{1500}{(20)}\right)_{1.3}^{1.3}=751.37 \mathrm{~K} \\
\text { And } \quad \eta_{\text {sentropic }} & =\frac{\text { A ctual output }}{\text { Ideal output }}=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}^{\prime}}{\mathrm{T}_{3}-\mathrm{T}_{4}} \\
0.94 & =\frac{1500-\mathrm{T}_{4}^{\prime}}{1500-751.37} \\
0.94 \times 748.63 & =1500-\mathrm{T}_{4}^{\prime} \\
\mathrm{T}_{4}^{\prime} & =1500-703.71=796.3 \mathrm{~K} \\
\text { Turbine work, } \quad \mathrm{W}_{\mathrm{t}} & =\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}^{\prime}\right)=0.98(1500-796.3)=698.64 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

soL 8.78 Option (A) is correct.
Given : $\phi=\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{m}_{\mathrm{f}}}{\mathrm{m}_{\mathrm{a}}}=0.05, \eta_{v}=90 \%=0.90, \eta_{\text {th }}=30 \%=0.3$
$C V_{\text {fuel }}=45 \mathrm{MJ} / \mathrm{kg}, \rho_{\text {air }}=1 \mathrm{~kg} / \mathrm{m}^{3}$
We know that, volumetric efficiency is given by,

$$
\begin{align*}
& \eta_{N}=\frac{\text { Actual Volume }}{\text { Swept Volume }}=\frac{\nu_{\mathrm{ac}}}{\nu_{\mathrm{s}}} \\
& \nu_{\mathrm{ac}}=\eta_{\mathrm{v}} \nu_{\mathrm{s}}=0.90 \mathrm{~V}_{\mathrm{s}} \tag{i}\\
& \mathrm{~m}_{\mathrm{f}}=0.05 \times \mathrm{m}_{\mathrm{a}}=0.045 \nu_{\mathrm{s}} \\
& \eta_{\text {th }}=\frac{I . P .}{m_{f} \times C V}=\frac{p_{i m} L A N}{m_{f} \times C V} \quad \text { I.P. }=p_{i m} L A N \\
& \begin{aligned}
\mathrm{p}_{\text {im }} & =\frac{\eta_{\text {th }} \times \mathrm{m}_{\mathrm{f}} \times \mathrm{CV}}{\mathrm{LAN}} \\
& \frac{0.30 \times 0.045 \times \nu_{\mathrm{s}} \times 45 \times 10^{6}}{\nu_{\mathrm{s}}}=0.6075 \times 10^{6}
\end{aligned} \\
& =6.075 \times 10^{5} \mathrm{~Pa}=6.075 \mathrm{bar} \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}
\end{align*}
$$

soL 8.79 Option (D) is correct.
Given:

$$
\begin{aligned}
& \nu_{\mathrm{c}}=10 \% \text { of } \nu_{\mathrm{s}}=0.1 \nu_{\mathrm{s}} \\
& \frac{\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}}=\frac{1}{0.1}=10
\end{aligned}
$$

And specific heat ratio $\mathrm{c}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=\gamma=1.4$
We know compression ratio,

$$
\mathrm{r}=\frac{\nu_{\uparrow}}{\nu_{\mathrm{c}}}=\frac{\nu_{\mathrm{c}}+\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}}=1+\frac{\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}}=1+10=11
$$

Efficiency of Otto cycle,

$$
\eta_{\mathrm{otto}}=1-\frac{1}{(\mathrm{r})^{\gamma-1}}=1-\frac{1}{(11)^{1.4-1}}
$$

$$
=1-\frac{1}{(11)^{0.4}}=1-0.3832=0.6168 \simeq 61.7 \%
$$

SOL 8.80 Option (B) is correct.
Given : $\mathrm{p}_{1}=2 \mathrm{bar}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~T}_{1}=298 \mathrm{~K}=\mathrm{T}_{2}, \nu_{1}=1 \mathrm{~m}^{3}, \nu_{2}=2 \mathrm{~m}^{3}$
The process is isothermal,
So,

$$
\begin{aligned}
\mathrm{W} & =\mathrm{p}_{1} \nu_{1} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\mathrm{p}_{1} \nu_{1} \ln \left(\frac{\nu_{2}}{\nu_{1}}\right)=2 \times 10^{5} \times 1 \ln \left[\frac{2}{1}\right] \\
& =2 \times 0.6931 \times 10^{5}=138.63 \mathrm{~kJ} \simeq 138.6 \mathrm{~kJ}
\end{aligned}
$$

sol 8.81 Option (A) is correct.
Entropy, $\quad \Delta \mathrm{S}=\frac{\Delta \mathrm{Q}}{\mathrm{T}}$
From first law of thermodynamics,

$$
\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}
$$

For isothermal process,

$$
\begin{aligned}
\Delta \mathrm{U} & =0 \\
\Delta \mathrm{Q} & =\Delta \mathrm{W}
\end{aligned}
$$

From equation (i),

$$
\Delta \mathrm{S}=\frac{\Delta \mathrm{W}}{\mathrm{~T}}=\frac{138.63 \mathrm{~kJ}}{298 \mathrm{~K}}=0.4652 \mathrm{~kJ} / \mathrm{K}
$$

SOL 8.82 Option (A) is correct.
The Joule-T homson coefficient is a measure of the change in temperature with pressure during a constant enthalpy process.
$\begin{aligned} \mu & =\left(\frac{\partial T}{\partial p}\right)_{\mathrm{h}} \\ \text { If } \quad \mu_{J} & = \begin{cases}<0 & \text { temperature increases } \\ =0 & \text { Temperature remains constant } \\ >0 & \text { Temperature decreases during a throttling process }\end{cases} \end{aligned}$

sol 8.83 Option (B) is correct.

The greatest velocity and lowest pressure occurs at the throat and the diverging portion remains a subsonic diffuser. For correctly designed convergent divergent nozzle, the throat velocity is sonic and the nozzle is now chocked.

SOL 8.84 Option (B) is correct.
Given : $\eta=0.75, \mathrm{~T}_{1}=727^{\circ} \mathrm{C}=(727+273)=1000 \mathrm{~K}$
The efficiency of Otto cycle is given by,

$$
\begin{aligned}
\eta & =\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{1}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}=1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \\
\mathrm{~T}_{2} & =1-\eta \quad \Rightarrow \mathrm{T}_{2}=(1-\eta) \mathrm{T}_{1} \\
\mathrm{~T}_{2} & =(1-0.75) 1000=250 \mathrm{~K} \text { or }-23^{\circ} \mathrm{C}
\end{aligned}
$$

SOL 8.85 Option (A) is correct.
Given : $r=8.5, \gamma=1.4$
The efficiency of Otto cycle is,

$$
\eta=1-\frac{1}{(r)^{\gamma-1}}=1-\frac{1}{(8.5)^{1.4-1}}=1-\frac{1}{2.35}=57.5 \%
$$

sol 8.86 Option (B) is correct.

The average temperature at which heat is transferred to steam can be increased without increasing the boiler pressure by superheating the steam to high temperatures. The effect of superheating on the performance of vapour power cycle is shown on a T -s diagram the total area under the process curve 3-3' represents the increase in the heat input. Thus both the net work and heat input increase as a result of superheating the steam to a higher temperature. The overall effect is an increase in thermal efficiency, since the average temperature at which heat is added increases.

SOL 8.87 Option (A) is correct.
The R ateau turbine is a pressure compounded turbine.
sol 8.88 Option (B) is correct.

W hen $\mu<0$ then temperature increases and become warmer.

SOL 8.89 Option (A) is correct.
Given : $\mathrm{W}_{\text {net }}=50 \mathrm{~kJ}, \eta=75 \%=0.75$

We know, efficiency of heat engine is,

$$
\eta=\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{1}} \Rightarrow \mathrm{Q}_{1}=\frac{\mathrm{W}_{\text {net }}}{\eta}
$$

W here $Q_{1}=$ Heat transferred by the source to the system.

$$
\mathrm{Q}_{1}=\frac{50}{0.75}=66.67 \mathrm{~kJ}
$$

From the figure heat rejected Q_{2}
(From the energy balance)

$$
\begin{aligned}
& Q_{1}=Q_{2}+W_{\text {net }} \\
& Q_{2}=Q_{1}-W_{\text {net }}=66.67-50=16.67=16 \frac{2}{3} \mathrm{~kJ}
\end{aligned}
$$

SOL 8.90 Option (C) is correct.
Given : $p_{1}=1$ bar, $p_{2}=16$ bar
The intermediate pressure p_{x} (pressure ratio per stage) has an optimum value for minimum work of compression.
And

$$
p_{x}=\sqrt{p_{1} p_{2}}=\sqrt{1 \times 16}=4 \text { bar }
$$

sol 8.91 Option (B) is correct.
Let h_{1} and h_{2} are the enthalpies of steam at the inlet and at the outlet.
Given: $\quad h_{1}-h_{2}=0.8 \mathrm{~kJ} / \mathrm{kg}$

$$
V_{1}=0
$$

From the energy balance for unit mars of steam, the total energy at inlet must be equal to total energy at outlet.

So,

$$
\begin{aligned}
h_{1}+\frac{V_{1}^{2}}{2} & =h_{2}+\frac{V_{2}^{2}}{2} \\
V_{2}^{2} & =2\left(h_{1}-h_{2}\right) \\
V_{2} & =\sqrt{2 \times 0.8 \times 10^{3}}=40 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

sol 8.92 Option (B) is correct.
Given :

$$
r=5.5, W=23.625 \times 10^{5} \times \nu_{c}
$$

We know,

$$
\begin{equation*}
\mathrm{p}_{\text {mep }}=\frac{\mathrm{W}_{\text {net }}}{\nu_{\mathrm{s}}}=\frac{23.625 \times 10^{5}}{\nu_{\mathrm{s}} / \nu_{\mathrm{c}}} \tag{i}
\end{equation*}
$$

W here $\nu_{\mathrm{s}}=$ swept volume
And

$$
\begin{aligned}
r & =\frac{\nu}{\nu_{\mathrm{c}}}=\frac{\nu_{\mathrm{c}}+\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}}=1+\frac{\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}} \\
\frac{\nu_{\mathrm{s}}}{\nu_{\mathrm{c}}} & =(\mathrm{r}-1)
\end{aligned}
$$

W here

$$
\begin{aligned}
& \nu_{\mathrm{t}}=\text { Total volume } \\
& \nu_{\mathrm{c}}=\text { clearance volume }
\end{aligned}
$$

Substitute this value in equation (i), we get

$$
\mathrm{p}_{\text {mep }}=\frac{23.625 \times 10^{5}}{r-1}=\frac{23.625 \times 10^{5}}{5.5-1}=5.25 \times 10^{5}=5.25 \mathrm{bar}
$$

CHAPTER 9

REFRIGERATION \& AIR-CONDITIONING

YEAR 2012
ONE MARK

- Common Data For Q. 1 and Q. 2

A refrigerator operates between 120 kPa and 800 kPa in an ideal vapour compression cycle with R-134a as the refrigerant. The refrigerant enters the compressor as saturated vapour and leaves the condenser as saturated liquid. The mass flow rate of the refrigerant is $0.2 \mathrm{~kg} / \mathrm{s}$. Properties for R 134a are as follows :

Saturated R-134a					
$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{h}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}_{\mathrm{g}}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kgK})$	$\mathrm{s}_{\mathrm{g}}(\mathrm{kJ} / \mathrm{kgK})$
120	-22.32	22.5	237	0.093	0.95
800	31.31	95.5	267.3	0.354	0.918
Superheated R-134a					
$\mathrm{p}(\mathrm{kPa})$		$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kgK})$	
800		40	276.45	0.95	

MCQ 9.1 The rate at which heat is extracted, in kJ / s from the refrigerated space is
(A) 28.3
(B) 42.9
(C) 34.4
(D) 14.6

YEAR 2012

MCQ 9.2 The power required for the compressor in kW is
(A) 5.94
(B) 1.83
(C) 7.9
(D) 39.5

YEAR 2011
ONE MARK
MCQ 9.3 If a mass of moist air in an airtight vessel is heated to a higher temperature, then
(A) specific humidity of the air increases
(B) specific humidity of the air decreases
(C) relative humidity of the air increases
(D) relative humidity of the air decreases

YEAR 2010
ONE MARK
MCQ 9.4 A moist air sample has dry bulb temperature of $30^{\circ} \mathrm{C}$ and specific humidity of 11.5 g water vapour per kg dry air. A ssume molecular weight of air as 28.93. If the saturation vapour pressure of water at $30^{\circ} \mathrm{C}$ is 4.24 kPa and the total pressure is 90 kPa , then the relative humidity (in \%) of air sample is
(A) 50.5
(B) 38.5
(C) 56.5
(D) 68.5

YEAR 2009
ONE MARK
MCQ 9.5 In an ideal vapour compression refrigeration cycle, the specific enthalpy of refrigerant (in $\mathrm{kJ} / \mathrm{kg}$) at the following states is given as:

Inlet of condenser :283
Exit of condenser :116
Exit of evaporator :232
The COP of this cycle is
(A) 2.27
(B) 2.75
(C) 3.27
(D) 3.75

MCQ 9.6 Moist air at a pressure of 100 kPa is compressed to 500 kPa and then cooled to $35^{\circ} \mathrm{C}$ in an aftercooler. The air at the entry to the aftercooler is unsaturated and becomes just saturated at the exit of the aftercooler. The saturation pressure of water at $35^{\circ} \mathrm{C}$ is 5.628 kPa . The partial pressure of water vapour (in kPa) in the moist air entering the compressor is closest to
(A) 0.57
(B) 1.13
(C) 2.26
(D) 4.52

MCQ 9.7 Air (at atmospheric pressure) at a dry bulb temperature of $40^{\circ} \mathrm{C}$ and wet
bulb temperature of $20^{\circ} \mathrm{C}$ is humidified in an air washer operating with continuous water recirculation. The wet bulb depression (i.e. the difference between the dry and wet bulb temperature) at the exit is 25% of that at the inlet. The dry bulb temperature at the exit of the air washer is closest to
(A) $10^{\circ} \mathrm{C}$
(B) $20^{\circ} \mathrm{C}$
(C) $25^{\circ} \mathrm{C}$
(D) $30^{\circ} \mathrm{C}$

YEAR 2007
TWO MARKS
MCQ 9.8 A building has to be maintained at $21^{\circ} \mathrm{C}$ (dry bulb) and $14.5^{\circ} \mathrm{C}$ (wet bulb). The dew point temperature under these conditions is $10.17^{\circ} \mathrm{C}$. The outside temperature is $-23^{\circ} \mathrm{C}$ (dry bulb) and the internal and external surface heat transfer coefficients are $8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $23 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ respectively. If the building wall has a thermal conductivity of $1.2 \mathrm{~W} / \mathrm{m} \mathrm{K}$, the minimum thickness (in m) of the wall required to prevent condensation is
(A) 0.471
(B) 0.407
(C) 0.321
(D) 0.125

MCQ 9.9 Atmospheric air at a flow rate of $3 \mathrm{~kg} / \mathrm{s}$ (on dry basis) enters a cooling and dehumidifying coil with an enthalpy of $85 \mathrm{~kJ} / \mathrm{kg}$ of dry air and a humidity ratio of 19 grams/ kg of dry air. The air leaves the coil with an enthalpy of $43 \mathrm{~kJ} / \mathrm{kg}$ of dry air and a humidity ratio of 8 grams $/ \mathrm{kg}$ of dry air. If the condensate water leaves the coil with an enthalpy of $67 \mathrm{~kJ} / \mathrm{kg}$, the required cooling capacity of the coil in kW is
(A) 75.0
(B) 123.8
(C) 128.2
(D) 159.0

YEAR 2006

ONE MARK
MCQ 9.10 Dew point temperature is the temperature at which condensation begins when the air is cooled at constant
(A) volume
(B) entropy
(C) pressure
(D) enthalpy

YEAR 2006
TWO MARKS
MCQ 9.11 The statements concern psychrometric chart.

1. Constant relative humidity lines are uphill straight lines to the right
2. Constant wet bulb temperature lines are downhill straight lines to the right
3. Constant specific volume lines are downhill straight lines to the right
4. Constant enthalpy lines are coincident with constant wet bulb temperature lines
Which of the statements are correct ?
(A) 2 and 3
(B) 1 and 2
(C) 1 and 3
(D) 2 and 4

YEAR 2005 ONE MARK

MCQ 9.12 For a typical sample of ambient air (at $35^{\circ} \mathrm{C}, 75 \%$ relative humidity and standard atmosphere pressure), the amount of moisture in kg per kg of dry air will be approximately
(A) 0.002
(B) 0.027
(C) 0.25
(D) 0.75

MCQ 9.13 Water at $42^{\circ} \mathrm{C}$ is sprayed into a stream of air at atmospheric pressure, dry bulb temperature of $40^{\circ} \mathrm{C}$ and a wet bulb temperature of $20^{\circ} \mathrm{C}$. The air leaving the spray humidifier is not saturated. Which of the following statements is true?
(A) A ir gets cooled and humidified
(B) Air gets heated and humidified
(C) Air gets heated and dehumidified
(D) Air gets cooled and dehumidified

YEAR 2005
TWO MARKS
MCQ 9.14 The vapour compression refrigeration cycle is represented as shown in the figure below, with state 1 being the exit of the evaporator. The coordinate system used in this figure is

(A) $\mathrm{p}-\mathrm{h}$
(B) $\mathrm{T}-\mathrm{s}$
(C) $\mathrm{p}-\mathrm{s}$
(D) $\mathrm{T}-\mathrm{h}$

MCQ 9.15 Various psychometric processes are shown in the figure below.

Process in Figure

P. 0-1
Q. 0-2
R. 0-3
S. 0-4
T. 0-5

N ame of the process

(i). Chemical dehumidification
(ii). Sensible heating
(iii). Cooling and dehumidification
(iv). Humidification with steam injection
(v). Humidification with water injection

The matching pairs are
(A) P-(i), Q-(ii), R-(iii), S-(iv), T-(v)
(B) P-(ii), Q-(i), R-(iii), S-(v), T-(iv)
(C) P-(ii), Q-(i), R-(iii), S-(iv), T-(v)
(D) P-(iii), Q-(iv), R-(v), S-(i), T-(ii)

MCQ 9.16 A vapour absorption refrigeration system is a heat pump with three thermal reservoirs as shown in the figure. A refrigeration effect of 100 W is required at 250 K when the heat source available is at 400 K . Heat rejection occurs at 300 K . The minimum value of heat required (in W) is

(A) 167
(B) 100
(C) 80
(D) 20

YEAR 2004

ONE MARK
MCQ 9.17 In the window air conditioner, the expansion device used is
(A) capillary tube
(B) thermostatic expansion valve
(C) automatic expansion valve
(D) float valve

MCQ 9.18 During the chemical dehumidification process of air
(A) dry bulb temperature and specific humidity decreases
(B) dry bulb temperature increases and specific humidity decreases
(C) dry bulb temperature decreases and specific humidity increases
(D) dry bulb temperature and specific humidity increases

MCQ 9.19 E nvironment friendly refrigerant R 134 is used in the new generation domestic refrigerators. Its chemical formula is
(A) CHClF_{2}
(B) $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$
(C) $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}$
(D) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{4}$

YEAR 2004

TWO MARKS
MCQ 9.20 A heat engine having an efficiency of 70% is used to drive a refrigerator having a coefficient of performance of 5 . The energy absorbed from low temperature reservoir by the refrigerator for each kJ of energy absorbed from high temperature source by the engine is
(A) 0.14 kJ
(B) 0.71 kJ
(C) 3.5 kJ
(D) 7.1 kJ

MCQ 9.21 Dew point temperature of air at one atmospheric pressure (1.013 bar) is $18^{\circ} \mathrm{C}$. The air dry bulb temperature is $30^{\circ} \mathrm{C}$. The saturation pressure of water at $18^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ are 0.02062 bar and 0.04241 bar respectively. The specific heat of air and water vapour respectively are 1.005 and $1.88 \mathrm{~kJ} / \mathrm{kg}$ K and the latent heat of vaporization of water at $0^{\circ} \mathrm{C}$ is $2500 \mathrm{~kJ} / \mathrm{kg}$. The specific humidity ($\mathrm{kg} / \mathrm{kg}$ of dry air) and enthalpy ($\mathrm{kJ} / \mathrm{kg}$ or dry air) of this moist air respectively, are
(A) 0.01051, 52.64
(B) $0.01291,63.15$
(C) $0.01481,78.60$
(D) $0.01532,81.40$

MCQ 9.22 A R-12 refrigerant reciprocating compressor operates between the condensing temperature of $30^{\circ} \mathrm{C}$ and evaporator temperature of $-20^{\circ} \mathrm{C}$. The clearance
volume ratio of the compressor is 0.03 . Specific heat ratio of the vapour is 1.15 and the specific volume at the suction is $0.1089 \mathrm{~m}^{3} / \mathrm{kg}$. Other properties at various states are given in the figure. To realize 2 tons of refrigeration, the actual volume displacement rate considering the effect of clearance is

(A) $6.35 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
(B) $63.5 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
(C) $635 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
(D) $4.88 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$

YEAR 2003
ONE MARK
MCQ 9.23 An industrial heat pump operates between the temperatures of $27^{\circ} \mathrm{C}$ and $-13^{\circ} \mathrm{C}$. The rates of heat addition and heat rejection are 750 W and 1000 W, respectively. The COP for the heat pump is
(A) 7.5
(B) 6.5
(C) 4.0
(D) 3.0

MCQ 9.24 For air with a relative humidity of 80%
(A) the dry bulb temperature is less than the wet bulb temperature
(B) the dew point temperature is less than wet bulb temperature
(C) the dew point and wet bulb temperature are equal
(D) the dry bulb and dew point temperature are equal

YEAR 2003
TWO MARKS

- Common Data For Q. 25 and Q. 26

A refrigerator based on ideal vapour compression cycle operates between the temperature limits of $-20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The refrigerant enters the
condenser as saturated vapour and leaves as saturated liquid. The enthalpy and entropy values for saturated liquid and vapour at these temperatures are given in the table below.

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{h}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}_{\mathrm{g}}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kg} \mathrm{K})$	$\mathrm{s}_{\mathrm{g}}(\mathrm{kJ} / \mathrm{kg} \mathrm{K})$
-20	20	180	0.07	0.7366
40	80	200	0.3	0.67

MCQ 9.25 If refrigerant circulation rate is $0.025 \mathrm{~kg} / \mathrm{s}$, the refrigeration effect is equal to
(A) 2.1 kW
(B) 2.5 kW
(C) 3.0 kW
(D) 4.0 kW

MCQ 9.26 The COP of the refrigerator is
(A) 2.0
(B) 2.33
(C) 5.0
(D) 6.0

SOLUTION

sol 9.1 Option (A) is correct.

T -s diagram for given Refrigeration cycle is given above Since Heat is extracted in evaporation process.
So rate of heat extracted $=\dot{m}\left(h_{1}-h_{4}\right)$
From above diagram $\left(h_{3}=h_{4}\right)$ for throttling process, so

$$
\text { Heat extracted }=\dot{m}\left(h_{1}-h_{3}\right)
$$

From given table
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}$ at $120 \mathrm{kPa}, \mathrm{h}_{\mathrm{g}}=237 \mathrm{~kJ} / \mathrm{kg}$
$h_{3}=h_{f}$ at $120 \mathrm{kPa}, \mathrm{h}_{\mathrm{f}}=95.5 \mathrm{~kJ} / \mathrm{kg}$
Hence \quad Heat extracted $=\dot{m}\left(\mathrm{~h}_{\mathrm{g}}-\mathrm{h}_{\mathrm{f}}\right)=0.2 \times(237-95.5)=28.3 \mathrm{~kJ} / \mathrm{s}$
sol 9.2 Option (C) is correct.
Since power is required for compressor in refrigeration is in compression cycle (1-2)
Hence, Power required $=\dot{m}\left(h_{2}-h_{1}\right)=\dot{m}\left(h_{2}-h_{f}\right)$
Since for isentropic compression process.

$$
s_{1}=s_{2} \text { from figure. }=0.95
$$

For entropy $\mathrm{s}=0.95$ the enthalpy $\mathrm{h}=276.45 \mathrm{~kJ} / \mathrm{kg}$

$$
h=h_{2}=276.45 \text { (From table) }
$$

Hence

$$
\text { Power }=0.2(276.45-237)=7.89 \simeq 7.9 \mathrm{~kW}
$$

sol 9.3 Option (D) is correct.
From the given curve, we easily see that relative humidity of air decreases, when temperature of moist air in an airtight vessel increases. So, option (C) is correct. Specific humidity remain constant with temperature increase, so option a \& b are incorrect.

sol 9.4 Option (B) is correct.
Given : $\mathrm{t}_{\mathrm{DBT}}=30^{\circ} \mathrm{C}, \mathrm{W}=11.5 \mathrm{~g}$ water vapour/ kg dry air $p_{\mathrm{s}}=4.24 \mathrm{kPa}, \mathrm{p}=90 \mathrm{kPa}$
Specific humidity,

$$
W=0.622\left(\frac{p_{v}}{p-p_{v}}\right)
$$

Substitute the values, we get

$$
\begin{aligned}
& \qquad \begin{aligned}
11.5 \times 10^{-3} & =0.622\left(\frac{p_{v}}{90-p_{v}}\right) \\
18.489 \times 10^{-3} & =\frac{p_{v}}{90-p_{v}} \\
\left(90 \times 18.489-18.489 p_{v}\right) \times 10^{-3} & =p_{v} \Rightarrow p_{v}=1.634 \mathrm{kPa} \\
\text { Relative humidity } \quad \phi=\frac{p_{v}}{p_{s}} & =\frac{1.634}{4.24} \\
\phi=0.3853=38.53 \% & \simeq 38.5 \%
\end{aligned}
\end{aligned}
$$

sol 9.5 Option (A) is correct.
$\mathrm{p}-\mathrm{h}$ curve for vapour compression refrigeration cycle is as follows

The given specific enthalpies are
Inlet of condenser $h_{2}=283 \mathrm{~kJ} / \mathrm{kg}$
Exit of condenser $h_{3}=116 \mathrm{~kJ} / \mathrm{kg}=\mathrm{h}_{4} \quad$ From p -h curve
Exit of evaporator $h_{1}=232 \mathrm{~kJ} / \mathrm{kg}$
\quad Now, $\quad C O P=\frac{\text { Refrigerating effect }}{\text { W ork done }}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}$
Substitute the values, we get

$$
C O P=\frac{232-116}{283-232}=\frac{116}{51}=2.27
$$

sol 9.6 Option (B) is correct.
Given : $\mathrm{p}_{1}=100 \mathrm{kPa}, \mathrm{p}_{2}=500 \mathrm{kPa}, \mathrm{p}_{\mathrm{v} 1}=$?
$\mathrm{p}_{\mathrm{v} 2}=5.628 \mathrm{kPa}$ (Saturated pressure at $35^{\circ} \mathrm{C}$)
We know that,
Specific humidity $W=0.622\left(\frac{p_{v}}{p-p_{v}}\right)$
For case II:

$$
W=0.622\left(\frac{5.628}{500-5.628}\right)=7.08 \times 10^{-3} \mathrm{~kg} / \mathrm{kg} \text { of dry air }
$$

For saturated air specific humidity remains same. So, for case (I) :

$$
\mathrm{W}=0.622\left(\frac{p_{\mathrm{v} 1}}{\mathrm{p}_{1}-\mathrm{p}_{\mathrm{v} 1}}\right)
$$

On substituting the values, we get

$$
7.08 \times 10^{-3}=0.622\left(\frac{p_{\mathrm{v} 1}}{100-\mathrm{p}_{\mathrm{v} 1}}\right)
$$

$$
\begin{aligned}
11.38 \times 10^{-3}\left(100-p_{\mathrm{v} 1}\right) & =p_{\mathrm{v} 1} \\
1.138 & =1.01138 \mathrm{p}_{\mathrm{v} 1} \\
\mathrm{p}_{\mathrm{v} 1} & =1.125 \mathrm{kPa} \simeq 1.13 \mathrm{kPa}
\end{aligned}
$$

sol 9.7 Option (C) is correct.
Given : At inlet $\mathrm{t}_{\text {DBT }}=40^{\circ} \mathrm{C}, \mathrm{t}_{\text {wBT }}=20^{\circ} \mathrm{C}$
We know that, wet bulb depression $=\mathrm{t}_{\mathrm{DBT}}-\mathrm{t}_{\text {WBT }}=40-20=20^{\circ} \mathrm{C}$
A nd given wet bulb depression at the exit $=25 \%$ of wet bulb depression at inlet

This process becomes adiabatic saturation and for this process,

$$
\mathrm{t}_{\text {WBT } \text { (inlet) }}=\mathrm{t}_{\mathrm{WBT} \text { (outlet) }}
$$

So,

$$
\begin{aligned}
t_{D B T} \text { (exit) }-20 & =0.25 \times 20 \\
t_{D B T} \text { (exit) } & =20+5=25^{\circ} \mathrm{C}
\end{aligned}
$$

sol 9.8 Option (B) is correct.

Let $h_{1} \& h_{2}$ be the internal and external surface heat transfer coefficients respectively and building wall has thermal conductivity k .
Given: $\mathrm{h}_{1}=8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~h}_{2}=23 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=1.2 \mathrm{~W} / \mathrm{m} \mathrm{K}, \mathrm{T}_{\mathrm{DPT}}=10.17^{\circ} \mathrm{C}$ Now to prevent condensation, temperature of inner wall should be more than or equal to the dew point temperature. It is the limiting condition to prevent condensation
So, $\quad \mathrm{T}_{\mathrm{s} 1}=10.17^{\circ} \mathrm{C}$
Here $T_{s 1} \& T_{s 2}$ are internal \& external wall surface temperature of building. Hence, heat flux per unit area inside the building,

$$
\begin{align*}
& q_{i}=\frac{Q}{A}=h_{1}\left(T_{D B T 1}-T_{s 1}\right) \\
& q_{i}=8(21-10.17)=8 \times 10.83=86.64 \mathrm{~W} / \mathrm{m}^{2} \tag{i}
\end{align*}
$$

\& Heat flux per unit area outside the building is

$$
\begin{equation*}
\mathrm{q}_{0}=\mathrm{h}_{2}\left(\mathrm{~T}_{\mathrm{s} 2}-\mathrm{T}_{\text {DBT } 2}\right)=23\left(\mathrm{~T}_{\mathrm{s} 2}+23\right) \tag{ii}
\end{equation*}
$$

Heat flow will be same at inside \& outside the building. So from equation (i) \& (ii)

$$
\begin{aligned}
\mathrm{q}_{\mathrm{i}} & =\mathrm{q}_{0} \\
86.64 & =23\left(\mathrm{~T}_{\mathrm{s} 2}+23\right) \\
\mathrm{T}_{\mathrm{s} 2}+23 & =3.767 \\
\mathrm{~T}_{\mathrm{s} 2} & =3.767-23=-19.23^{\circ} \mathrm{C}
\end{aligned}
$$

For minimum thickness of the wall, use the fourier's law of conduction for the building. Heat flux through wall,

$$
\mathrm{q}=\frac{\mathrm{k}\left(\mathrm{~T}_{\mathrm{s} 1}-\mathrm{T}_{\mathrm{s} 2}\right)}{\mathrm{X}}=\frac{1.2 \times(10.17+19.23)}{\mathrm{X}}
$$

Substitute the value of q_{i} from equation (i), we get

$$
\begin{aligned}
86.64 & =\frac{1.2 \times 29.4}{x} \\
x & =\frac{35.28}{86.64}=0.407 \mathrm{~m}
\end{aligned}
$$

Note :- Same result is obtained with the value of q_{0}
sol 9.9 Option (C) is correct.
Given : $\dot{\mathrm{m}}_{\mathrm{a}}=3 \mathrm{~kg} / \mathrm{sec}$,
Using subscript 1 and 2 for the inlet and outlet of the coil respectively.
$\mathrm{h}_{1}=85 \mathrm{~kJ} / \mathrm{kg}$ of dry air, $\mathrm{W}_{1}=19 \mathrm{grams} / \mathrm{kg}$ of dry air $=19 \times 10^{-3} \mathrm{~kg} / \mathrm{kg}$ of dry air
$h_{2}=43 \mathrm{~kJ} / \mathrm{kg}$ of dry air, $\mathrm{W}_{2}=8 \mathrm{grams} / \mathrm{kg}$ of dry air $=8 \times 10^{-3} \mathrm{~kg} / \mathrm{kg}$ of dry air
$h_{3}=67 \mathrm{~kJ} / \mathrm{kg}$
M ass flow rate of water vapour at the inlet of the coil is,

$$
\begin{array}{ll}
\dot{\mathrm{m}}_{\mathrm{v} 1}=\mathrm{W}_{1} \times \dot{\mathrm{m}}_{\mathrm{a}} \\
\dot{\mathrm{~m}}_{\mathrm{v} 1}=19 \times 10^{-3} \times 3=57 \times 10^{-3} \mathrm{~kg} / \mathrm{sec} & W=\frac{\dot{\mathrm{m}}_{\mathrm{v}}}{\dot{\mathrm{~m}}_{\mathrm{a}}}
\end{array}
$$

A nd mass flow rate of water vapour at the outlet of coil is,

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{v} 2} & =\mathrm{W}_{2} \times \dot{\mathrm{m}}_{\mathrm{a}} \\
& =8 \times 10^{-3} \times 3=24 \times 10^{-3} \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

So, mass of water vapour condensed in the coil is,

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{v}} & =\dot{\mathrm{m}}_{\mathrm{v} 1}-\dot{\mathrm{m}}_{\mathrm{v} 2} \\
& =(57-24) \times 10^{-3}=33 \times 10^{-3} \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Therefore, required cooling capacity of the coil = change in enthalpy of dry air + change in enthalpy of condensed water

$$
\begin{aligned}
& =(85-43) \times 3+67 \times 33 \times 10^{-3} \\
& =128.211 \mathrm{~kW}
\end{aligned}
$$

sol 9.10 Option (C) is correct.

It is the temperature of air recorded by a thermometer, when the moisture (water vapour) present in it begins to condense.
If a sample of unsaturated air, containing superheated water vapour, is cooled at constant pressure, the partial pressure (p_{v}) of each constituent remains constant until the water vapour reaches the saturated state as shown by point B. At this point B the first drop of dew will be formed and hence the temperature at point B is called dew point temperature.
sol 9.11 Option (A) is correct.

Dry Bulb Temperature ${ }^{\circ} \mathrm{C} \quad \mathrm{Sp}$. Volume, $\mathrm{m}^{3} / \mathrm{kg}$ of dry air
Hence, the statement $2 \& 3$ are correct.

SOL 9.12 Option (B) is correct.
From steam table, saturated air pressure corresponding to dry bulb temperature of $35^{\circ} \mathrm{C}$ is $\mathrm{p}_{\mathrm{s}}=0.05628$ bar.
R elative humidity,

$$
\begin{aligned}
\phi & =\frac{\mathrm{p}_{\mathrm{v}}}{\mathrm{p}_{\mathrm{s}}}=0.75 \\
\mathrm{p}_{\mathrm{v}} & =0.75 \times \mathrm{p}_{\mathrm{s}} \\
& =0.75 \times 0.05628=0.04221 \mathrm{bar}
\end{aligned}
$$

Now the amount of moisture in kg/kg of dry air, (Specific Humidity) is

$$
\begin{array}{rlr}
\mathrm{W} & =0.622 \times \frac{p_{v}}{p_{b}-p_{v}} \quad \mathrm{p}_{\mathrm{b}}=\mathrm{p}_{\mathrm{atm}}=1.01 \mathrm{bar} \\
& =0.622 \times \frac{0.04221}{1.01-0.04221} \\
& =0.622 \times 0.04362 & \\
& =0.0271 \mathrm{~kg} / \mathrm{kg} \text { of dry air }
\end{array}
$$

sOL 9.13 Option (B) is correct.
Given: $\mathrm{t}_{\mathrm{sp}}=42^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{db}}=40^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{wb}}=20^{\circ} \mathrm{C}$
Here we see that $t_{\text {sp }}>t_{d b}$
Hence air gets heated, Also water is added to it, so it gets humidified.
soL 9.14 Option (A) is correct.
Given curve is the theoretical p-h curve for vapour compression refrigeration cycle.
sol 9.15 Option (B) is correct.

Dry Bulb Temperature (${ }^{\circ} \mathrm{C}$)

Process	Process Name	$\mathbf{t}_{\text {DBT }}$	\mathbf{W}
$\mathbf{0 - 1}$	Sensible Heating	Increase	Constant
$\mathbf{0 - 2}$	Chemical dehumidification	Increase	Decrease
$\mathbf{0 - 3}$	Cooling and dehumidification	Decrease	Decrease
$\mathbf{0 - 4}$	Humidification with water injection	Decrease	Increase
$\mathbf{0 - 5}$	Humidification with steam injection	Increase	Increase

Hence, curve given in question is a ideal $\mathrm{p}-\mathrm{h}$ curve for vapour compression refrigeration cycle.
sol 9.16 Option (C) is correct.

$$
\begin{aligned}
(C O P)_{\text {ref. }} & =\frac{\text { Refrigeration Effect }}{W \text { ork done }}=\frac{T_{1}}{T_{2}-T_{1}} \\
\frac{100}{W} & =\frac{250}{300-250} \\
W & =\frac{100}{250} \times 50=20 \mathrm{~W} \text { att }
\end{aligned}
$$

For supply this work, heat is taken from reservoir 3 \& rejected to sink 2. So efficiency,

$$
\eta=\frac{\mathrm{W}}{\mathrm{Q}_{3}}=\frac{\mathrm{T}_{3}-\mathrm{T}_{2}}{\mathrm{~T}_{3}} \quad \text { It works as a heat engine. }
$$

$$
\frac{20}{\mathrm{Q}_{3}}=\frac{400-300}{400} \quad \Rightarrow \mathrm{Q}_{3}=80 \mathrm{~W} \text { att }
$$

sol 9.17 Option (A) is correct.
Air conditioner mounted in a window or through the wall are self-contained units of small capacity of 1 TR to 3 TR. The capillary tube is used as an expansion device in small capacity refrigeration units.
sol 9.18 Option (B) is correct.

In the process of chemical dehumidification of air, the air is passed over chemicals which have an affinity for moisture and the moisture of air gets condensed out and gives up its latent heat. Due to the condensation, the specific humidity decreases and the heat of condensation supplies sensible heat for heating the air and thus increasing its dry bulb temperature. So chemical dehumidification increase dry bulb temperature \& decreases specific humidity.
sol 9.19 Option (D) is correct.
If a refrigerant is written in the from of Rabc .
The first digit on the right (c) is the number of fluorine (F) atoms, the second digit from the right (b) is one more than the number of hydrogen (H) atoms required \& third digit from the right (a) is one less than the Number of carbon (C) atoms in the refrigerant. So, For R 134
First digit from the Right $=4=$ Number of Fluorine atoms
Second digit from the right $=3-1=2=$ Number of hydrogen atoms
Third digit from the right $=1+1=2=$ Number of carbon atoms
Hence, Chemical formula is $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{4}$
sol 9.20 Option (C) is correct.

Given : $(C O P)_{\text {refrigerator }}=5,(\eta)_{\text {н.E }}=70 \%=0.7$

$$
\begin{align*}
(\mathrm{COP})_{\text {ref. }} & =\frac{\mathrm{Q}_{3}}{\mathrm{~W}}=5 \tag{i}\\
(\eta)_{\text {H.E. }} & =\frac{\mathrm{W}}{\mathrm{Q}_{1}}=0.7 \tag{ii}
\end{align*}
$$

By multiplying equation (i) \& (ii),

$$
\frac{Q_{3}}{W} \times \frac{W}{Q_{1}}=5 \times 0.7 \quad \Rightarrow \frac{Q_{3}}{Q_{1}}=3.5
$$

Hence, Energy absorbed $\left(Q_{3}\right)$ from low temperature reservoir by the refrigerator for each $k J$ of energy absorbed $\left(Q_{1}\right)$ from high temperature source by the engine $=3.5 \mathrm{~kJ}$
sol 9.21 Option (B) is correct.
Given : $\mathrm{t}_{\mathrm{dp}}=18^{\circ} \mathrm{C}=(273+18) \mathrm{K}=291 \mathrm{~K}, \mathrm{p}=\mathrm{p}_{\mathrm{atm}}=1.013 \mathrm{bar}$
$\mathrm{t}_{\mathrm{db}}=30^{\circ} \mathrm{C}=(273+30) \mathrm{K}=303 \mathrm{~K}$
$p_{v}=0.02062$ bar (for water vapour at dew point).
$C_{\text {air }}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{C}_{\text {water }}=1.88 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Latent heat of vaporization of water at $0^{\circ} \mathrm{C}$.

$$
\mathrm{h}_{\mathrm{fgdp}}=2500 \mathrm{~kJ} / \mathrm{kg}
$$

Specific humidity, $\quad W=\frac{0.622 \times p_{v}}{p-p_{v}}=\frac{0.622 \times 0.02062}{1.013-0.02062}$

$$
=\frac{0.01282}{0.99238}=0.01291 \mathrm{~kg} / \mathrm{kg} \text { of dry air }
$$

Enthalpy of moist air is given by,

$$
\begin{aligned}
\mathrm{h} & =1.022 \mathrm{t}_{\mathrm{db}}+\mathrm{W}\left(\mathrm{~h}_{\text {fgdp }}+2.3 \mathrm{t}_{\mathrm{dp}}\right) \mathrm{kJ} / \mathrm{kg} \\
& =1.022 \times 30+0.01291[2500+2.3 \times 18] \\
& =30.66+0.01291 \times 2541.4=63.46 \mathrm{~kJ} / \mathrm{kg} \simeq 63.15 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

sol 9.22 Option (A) is correct.
Given : $C=0.03, \mathrm{n}=1.15$, Specific volume at suction $=0.1089 \mathrm{~m}^{3} / \mathrm{kg}$
Net refrigeration effect $=2$ ton $\quad 1$ TR $=1000 \times 335 \mathrm{~kJ}$ in 24 hr

$$
=\frac{2 \times 1000 \times 335}{24 \times 60 \times 60}=7.75 \mathrm{~kJ} / \mathrm{sec}
$$

Let net mass flow rate $=\dot{m}$
Net refrigeration effect $=\dot{m}\left(h_{1}-h_{4}\right)$
Substitute the values from equation (i), and from the p-h curve,

$$
\begin{aligned}
7.75 & =\dot{m}(176-65) \\
\mathrm{m} & =\frac{7.75}{111}=0.06981 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Specific volume, $\quad \frac{\nu}{\dot{\mathrm{m}}}=0.1089$

$$
\nu=0.1089 \times 0.06981=0.00760=7.60 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}
$$

We know that volumetric efficiency,

$$
\eta_{v}=1+\mathrm{C}-\mathrm{C}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{1}{n}}
$$

W here, p_{1} is the suction pressure and p_{2} is the discharge pressure.

$$
\begin{aligned}
& =1+0.03-0.03 \times\left(\frac{7.45}{1.50}\right)^{\frac{1}{1.15}} \\
& =1.03-0.12089=0.909
\end{aligned}
$$

Now actual volume displacement rate is,

$$
\begin{aligned}
\nu_{\text {actual }} & =\nu \times \eta_{\nu}=7.60 \times 10^{-3} \times 0.909 \\
& =6.90 \times 10^{-3} \simeq 6.35 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

soL 9.23 Option (C) is correct.
Given : $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}$,
$\mathrm{T}_{2}=-13^{\circ} \mathrm{C}=(-13+273) \mathrm{K}=260 \mathrm{~K}, \mathrm{Q}_{1}=1000 \mathrm{~W}, \mathrm{Q}_{2}=750 \mathrm{~W}$

So, $\quad(C O P)_{\text {н.P. }}=\frac{Q_{1}}{Q_{1}-Q_{2}}=\frac{1000}{1000-750}=4$

Alternate M ethod :

From energy balance

$$
\begin{aligned}
\mathrm{W}_{\mathrm{in}}+\mathrm{Q}_{2} & =\mathrm{Q}_{1} \\
\mathrm{~W}_{\text {in }} & =\mathrm{Q}_{1}-\mathrm{Q}_{2}=1000-750=250 \mathrm{~W}
\end{aligned}
$$

And

$$
(C O P)_{\text {H.P. }}=\frac{\text { Desired effect }}{W_{\text {in }}}=\frac{Q_{1}}{W_{\text {in }}}=\frac{1000}{250}=4
$$

sol 9.24 Option (B) is correct.
We know that for saturated air, the relative humidity is 100% and the dry bulb temperature, wet bulb temperature and dew point temperature is same. But when air is not saturated, dew point temperature is always less than the wet bulb temperature.
DPT < WBT
sol 9.25 Option (A) is correct.

Entropy
(A) T-S Diagram

Enthalpy
(B) p - h Diagram

Given : $\mathrm{T}_{1}=\mathrm{T}_{4}=-20^{\circ} \mathrm{C}=(-20+273) \mathrm{K}=253 \mathrm{~K}, \mathrm{~m}=0.025 \mathrm{~kg} / \mathrm{sec}$
$\mathrm{T}_{2}-\mathrm{T}_{3}=40^{\circ} \mathrm{C}=(40+273) \mathrm{K}=313 \mathrm{~K}$
From the given table,
$\mathrm{At}, \mathrm{T}_{2}=40^{\circ} \mathrm{C}, \mathrm{h}_{2}=200 \mathrm{~kJ} / \mathrm{kg}$
And $\quad h_{3}=h_{4}=80 \mathrm{~kJ} / \mathrm{kg}$
From the given T -s curve

$$
\begin{aligned}
& s_{1}=s_{2} \\
& s_{2}=s_{\mathrm{f}}+\mathrm{xs}_{\mathrm{fg}} \\
& \mathrm{x}=\text { Dryness fraction } \\
&\left\{\mathrm{s}_{2} \text { is taken } 0.67 \text { because } \mathrm{s}_{2} \text { at the temperature } 40^{\circ} \mathrm{C} \& \text { at } 2\right. \text { high temperature }
\end{aligned}
$$

and pressure vapour refrigerant exist.\}

$$
\begin{aligned}
0.67 & =0.07+x(0.7366-0.07) \quad \mathrm{s}_{\mathrm{fg}}=\mathrm{s}_{\mathrm{g}}-\mathrm{s}_{\mathrm{f}} \\
0.67-0.07 & =\mathrm{x} \times 0.6666 \\
0.6 & =\mathrm{x} \times 0.6666 \\
\mathrm{x} & =\frac{0.6}{0.6666}=0.90
\end{aligned}
$$

And Enthalpy at point 1 is,

$$
\begin{aligned}
h_{1} & =h_{f}+x h_{f g}=h_{f}+x\left(h_{g}-h_{f}\right) \\
& =20+0.90(180-20)=164 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Now refrigeration effect is produce in the evaporator.
Heat extracted from the evaporator or refrigerating effect,

$$
\mathrm{R}_{\mathrm{E}}=\dot{\mathrm{m}}\left(\mathrm{~h}_{1}-\mathrm{h}_{4}\right)=0.025(164-80)=2.1 \mathrm{~kW}
$$

sol 9.26 Option (B) is correct.

$$
\begin{aligned}
(C O P)_{\text {refrigerator }} & =\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{\text { Refrigerating effect }}{W \text { ork done }} \\
& =\frac{164-80}{200-164}=\frac{84}{36}=2.33
\end{aligned}
$$

CHAPTER 10

MANUFACTURING ENGINEERING

YEAR 2012
MCQ 10.1 In abrasive jet machining, as the distance between the nozzle tip and the work surface increases, the material removal rate
(A) increases continuously.
(B) decreases continuously.
(C) decreases, becomes stable and then increases.
(D) increases, becomes stable and then decreases.

MCQ 10.2 Match the following metal forming processes with their associated stresses in the workpiece.

M etal forming process

1. Coining
2. Wire Drawing
3. Blanking
4. Deep Drawing
(A) 1-S, 2-P, 3-Q, 4-R
(C) 1-P, 2-Q, 3-S, 4-R

Types of stress

P. Tensile
Q. Shear
R. Tensile and compressive
S. Compressive
(B) 1-S, 2-P, 3-R, 4-Q
(D) 1-P, 2-R, 3-Q, 4-S

MCQ 10.3 In an interchangeable assembly, shafts of size $25.000^{-0.0010} \mathrm{~mm}$ mate with holes of size $25.000^{+0.0200} \mathrm{~mm}$. The maximum interference (in microns) in the assembly is
(A) 40
(B) 30
(C) 20
(D) 10

MCQ 10.4 During normalizing process of steel, the specimen is heated
(A) between the upper and lower critical temperature and cooled in still air.
(B) above the upper critical temperature and cooled in furnace.
(C) above the upper critical temperature and cooled in still air.
(D) between the upper and lower critical temperature and cooled in furnace

MCQ 10.5 A CNC vertical milling machine has to cut a straight slot of 10 mm width and 2 mm depth by a cutter of 10 mm diameter between points $(0,0)$ and $(100,100)$ on the XY plane (dimensions in mm). The feed rate used for milling is $50 \mathrm{~mm} / \mathrm{min}$. Milling time for the slot (in seconds) is
(A) 120
(B) 170
(C) 180
(D) 240

MCQ 10.6 A solid cylinder of diameter 100 mm and height 50 mm is forged between two frictionless flat dies to a height of 25 mm . The percentage change in diameter is
(A) 0
(B) 2.07
(C) 20.7
(D) 41.4

YEAR 2012
TWO MARKS
MCQ 10.7 Detail pertaining to an orthogonal metal cutting process are given below

Chip thickness ratio	0.4
Undeformed thickness	0.6 mm
R ake angle	$+10^{\circ}$
Cutting speed	$2.5 \mathrm{~m} / \mathrm{s}$
M ean thickness of primary shear zone	25 microns

The shear strain rate in s^{-1} during the process is
(A) 0.1781×10^{5}
(B) 0.7754×10^{5}
(C) 1.0104×10^{5}
(D) 4.397×10^{5}

MCQ $\mathbf{1 0 . 8}$ In a single pass drilling operation, a through hole of 15 mm diameter is to be drilled in a steel plate of 50 mm thickness. Drill spindle speed is 500 rpm , feed is $0.2 \mathrm{~mm} / \mathrm{rev}$ and drill point angle is 118°. A ssuming 2 mm clearance at approach and exit, the total drill time (in seconds) is
(A) 35.1
(B) 32.4
(C) 31.2
(D) 30.1

MCQ 10.9 Calculate the punch size in mm, for a circular blanking operation for which details are given below.

Size of the blank	25 mm
Thickness of the sheet	2 mm
Radial clearance between punch and die	0.06 mm
Die allowance	0.05 mm

(A) 24.83
(B) 24.89
(C) 25.01
(D) 25.17

MCQ 10.10 In a single pass rolling process using 410 mm diameter steel rollers, a strip of width 140 mm and thickness 8 mm undergoes 10% reduction of thickness. The angle of bite in radians is
(A) 0.006
(B) 0.031
(C) 0.062
(D) 0.600

MCQ 10.11 In a DC are welding operation, the voltage-arc length characteristic was obtained as $\mathrm{V}_{\text {arc }}=20+5$ l where the arc length I was varied between 5 mm and 7 mm . Here $\mathrm{V}_{\text {arc }}$ denotes the arc voltage in Volts. The arc current was varied from 400 A to 500 A . A ssuming linear power source characteristic, the open circuit voltage and short circuit current for the welding operation are
(A) $45 \mathrm{~V}, 450 \mathrm{~A}$
(B) $75 \mathrm{~V}, 750 \mathrm{~A}$
(C) $95 \mathrm{~V}, 950 \mathrm{~A}$
(D) $150 \mathrm{~V}, 1500 \mathrm{~A}$

YEAR 2011
ONE MARK
MCQ 10.12 The maximum possible draft in cold rolling of sheet increases with the
(A) increase in coefficient of friction
(B) decrease in coefficient of friction
(C) decrease in roll radius
(D) increase in roll velocity

MCQ 10.13 Theoperation in which oil is permeated into the pores of a powder metallurgy product is known as
(A) mixing
(B) sintering
(C) impregnation
(D) infiltration

MCQ 10.14 A hole is of dimension $\phi 9_{+0}^{+0.015} \mathrm{~mm}$. The corresponding shaft is of dimension $\phi 9_{+0.001}^{+0.010} \mathrm{~mm}$. The resulting assembly has
(A) loose running fit
(B) close running fit
(C) transition fit
(D) interference fit

MCQ 10.15 Green sand mould indicates that
(A) polymeric mould has been cured
(B) mould has been totally dried
(C) mould is green in color
(D) mould contains moisture

MCQ 10.16 Which one among the following welding processes uses non-consumable electrode?
(A) Gas metal arc welding
(B) Submerged arc welding
(C) Gas tungsten arc welding
(D) Flux coated arc welding

MCQ 10.17 The crystal structure of austenite is
(A) body centered cubic
(B) face centered cubic
(C) hexagonal closed packed
(D) body centered tetragonal

YEAR 2011

TWO MARKS
MCQ 10.18 A single-point cutting tool with 12° rake angle is used to machine a steel work-piece. The depth of cut, i.e., uncut thickness is 0.81 mm . The chip thickness under orthogonal machining condition is 1.8 mm . The shear angle is approximately
(A) 22°
(B) 26°
(C) 56°
(D) 76°

MCQ 10.19 Match the following non-traditional machining processes with the corresponding material removal mechanisms :

M achining process

P. Chemical machining
Q. Electro-chemical machining
R. Electro-discharge machining
S. Ultrasonic machining
(A) P-2, Q-3, R-4, S-1
(B) P-2, Q-4, R-3, S-1
(C) P-3, Q-2, R-4, S-1
(D) P-2, Q-3, R-1, S-4

MCQ 10.20 A cubic casting of 50 mm side undergoes volumetric solidification shrinkage and volumetric solid contraction of 4% and 6% respectively. No riser is used. A ssume uniform cooling in all directions. The side of the cube after solidification and contraction is
(A) 48.32 mm
(B) 49.90 mm
(C) 49.94 mm
(D) 49.96 mm

MCQ 10.21 The shear strength of a sheet metal is 300 M Pa . The blanking force required to produce a blank of 100 mm diameter from a 1.5 mm thick sheet is close to
(A) 45 kN
(B) 70 kN
(C) 141 kN
(D) 3500 kN

MCQ 10.22 The material property which depends only on the basic crystal structure is
(A) fatigue strength
(B) work hardening
(C) fracture strength
(D) elastic constant

MCQ 10.23 In a gating system, the ratio 1:2:4 represents
(A) sprue base area : runner area : ingate area
(B) pouring basin area : ingate area : runner area
(C) sprue base area : ingate area : casting area
(D) runner area : ingate area : casting area

MCQ 10.24 A shaft has a dimension, $\phi 35_{-0.025}^{-0.009}$. The respective values of fundamental deviation and tolerance are
(A) $-0.025, \pm 0.008$
(B) $-0.025,0.016$
(C) $-0.009, \pm 0.008$
(D) $-0.009,0.016$

MCQ 10.25 In a CNC program block, N002 GO2 G 91 X 40 Z40......,GO2 and G 91 refer to
(A) circular interpolation in counterclockwise direction and incremental dimension
(B) circular interpolation in counterclockwise direction and absolute dimension
(C) circular interpolation in clockwise direction and incremental dimension
(D) circular interpolation in clockwise direction and absolute dimension

YEAR 2010
TWO MARKS
MCQ 10.26 For tool A, Taylor's tool life exponent (n) is 0.45 and constant (K) is 90. Similarly for tool $B, n=0.3$ and $K=60$. The cutting speed (in $\mathrm{m} / \mathrm{min}$) above which tool A will have a higher tool life than tool B is
(A) 26.7
(B) 42.5
(C) 80.7
(D) 142.9

MCQ 10.27 T wo pipes of inner diameter 100 mm and outer diameter 110 mm each are joined by flash-butt welding using 30 V power supply. At the interference, 1 mm of material melts from each pipe which has a resistance of 42.4Ω. If the unit melt energy is $64.4 \mathrm{MJ} \mathrm{m}^{-3}$, then time required for welding (in s) is
(A) 1
(B) 5
(C) 10
(D) 20

MCQ 10.28 A taper hole is inspected using a CM M , with a probe of 2 mm diameter. At a height, $Z=10 \mathrm{~mm}$ from the bottom, 5 points are touched and a diameter of circle (not compensated for probe size) is obtained as 20 mm . Similarly, a 40 mm diameter is obtained at a height $Z=40 \mathrm{~mm}$. T he smaller diameter (in mm) of hole at $Z=0$ is

(A) 13.334
(B) 15.334
(C) 15.442
(D) 15.542

- Common Data For Q. 28 and Q. 29

In shear cutting operation, a sheet of 5 mm thickness is cut along a length of 200 mm . The cutting blade is 400 mm long (see fig.) and zero-shear ($\mathrm{S}=0$) is provided on the edge. The ultimate shear strength of the sheet is 100 M Pa and penetration to thickness ratio is 0.2. Neglect friction.

MCQ 10.29 A ssuming force vs displacement curve to be rectangular, the work done (in J) is
(A) 100
(B) 200
(C) 250
(D) 300

MCQ 10.30 A shear of $20 \mathrm{~mm}(S=0 \mathrm{~mm})$ is now provided on the blade. A ssuming force vs displacement curve to be trapezoidal, the maximum force (in kN) exerted is
(A) 5
(B) 10
(C) 20
(D) 40

MCQ 10.31 Friction at the tool-chip interface can be reduced by
(A) decreasing the rake angle
(B) increasing the depth of cut
(C) decreasing the cutting speed
(D) increasing the cutting speed

MCQ 10.32 Two streams of liquid metal which are not hot enough to fuse properly result into a casting defect known as
(A) cold shut
(B) swell
(C) sand wash
(D) scab

MCQ 10.33 The effective number of lattice points in the unit cell of simple cubic, body centered cubic, and face centered cubic space lattices, respectively, are
(A) 1, 2, 2
(B) 1, 2, 4
(C) 2, 3, 4
(D) 2, 4, 4

MCQ 10.34 W hich of the following is the correct data structure for solid models ?
(A) solid part \rightarrow faces \rightarrow edges \rightarrow vertices
(B) solid part \rightarrow edges \rightarrow faces \rightarrow vertices
(C) vertices \rightarrow edges \rightarrow faces \rightarrow solid parts
(D) vertices \rightarrow faces \rightarrow edges \rightarrow solid parts

YEAR 2009
TWO MARKS
MCQ 10.35 M inimum shear strain in orthogonal turning with a cutting tool of zero rake angle is
(A) 0.0
(B) 0.5
(C) 1.0
(D) 2.0

MCQ 10.36 Electrochemical machining is performed to remove material from an iron surface of $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ under the following conditions:

Inter electrode gap $=0.2 \mathrm{~mm}$
Supply voltage (DC) $=12 \mathrm{~V}$
Specific resistance of electrolyte $=2 \Omega \mathrm{~cm}$
Atomic weight of Iron $=55.85$
Valency of Iron $=2$
Faraday's constant $=96540$ Coulombs
The material removal rate (in g / s) is
(A) 0.3471
(B) 3.471
(C) 34.71
(D) 347.1

MCQ 10.37 M atch the following:

NC code

P. M 05
Q. G 01
R. G 04
S. G 09
(A) P-2, Q-3, R-4, S-1
(B) P-3, Q-4, R-1, S-2
(C) P-3, Q-4, R-2, S-1
(D) P-4, Q-3, R-2, S-1

Definition

1. A bsolute coordinate system
2. Dwell
3. Spindle stop
4. Linear interpolation

MCQ 10.38 W hat are the upper and lower limits of the shaft represented by $60 \mathrm{f}_{8}$? Use the following data :
Diameter 60 lies in the diameter step of 50-80 mm.
Fundamental tolerance unit, i in $\mu \mathrm{m}=0.45 \mathrm{D}^{1 / 3}+0.001 \mathrm{D}$
W here D is the representative size in mm;
Tolerance value for $\mathrm{IT} 8=25 \mathrm{i}$,
Fundamental deviation for ' f ' shaft $=-5.5 D^{0.41}$
(A) Lower limit $=59.924 \mathrm{~mm}$, U pper limit $=59.970 \mathrm{~mm}$
(B) Lower limit $=59.954 \mathrm{~mm}$, Upper limit $=60.000 \mathrm{~mm}$
(C) Lower limit $=59.970 \mathrm{~mm}$, Upper limit $=60.016 \mathrm{~mm}$
(D) Lower limit $=60.000 \mathrm{~mm}$, Upper limit $=60.046 \mathrm{~mm}$

MCQ 10.39 M atch the items in Column I and Column II.

Column I

P. Metallic Chills
Q. M etallic Chaplets
R. Riser
S. Exothermic Padding
(A) P-1, Q-3, R-2, S-4
(B) P-1, Q-4, R-2, S-3
(C) P-3, Q-4, R-2, S-1
(D) P-4, Q-1, R-2, S-3

Column II

1. Support for the core
2. Reservoir of the molten metal
3. Control cooling of critical sections
4. Progressive solidification

MCQ 10.40 The exponent (n) and constant (K) of the Taylor's tool life equation are
(A) $n=0.5$ and $K=540$
(B) $n=1$ and $K=4860$
(C) $\mathrm{n}=-1$ and $\mathrm{K}=0.74$
(D) $\mathrm{n}=-0.5$ and $\mathrm{K}=1.155$

MCQ 10.41 W hat is the percentage increase in tool life when the cutting speed is halved ?
(A) 50\%
(B) 200\%
(C) 300%
(D) 400%

YEAR 2008
ONE MARK
MCQ 10.42 For generating a Coon's surface we require
(A) a set of grid points on the surface
(B) a set of grid control points
(C) four bounding curves defining the surface
(D) two bounding curves and a set of grid control points

MCQ 10.43 Internal gear cutting operation can be performed by
(A) milling
(B) shaping with rack cutter
(C) shaping with pinion cutter
(D) hobbing

YEAR 2008
TWO MARKS
MCQ 10.44 While cooling, a cubical casting of side 40 mm undergoes $3 \%, 4 \%$ and 5% volume shrinkage during the liquid state, phase transition and solid state, respectively. The volume of metal compensated from the riser is
(A) 2%
(B) 7%
(C) 8%
(D) 9%

MCQ 10.45 In a single point turning tool, the side rake angle and orthogonal rake angle are equal. φ is the principal cutting edge angle and its range is $0^{\circ} \leq \varphi \leq 90^{\circ}$. The chip flows in the orthogonal plane. The value of φ is closest to
(A) 0°
(B) 45°
(C) 60°
(D) 90°

MCQ 10.46 A researcher conducts electrochemical machining (ECM) on a binary alloy (density $6000 \mathrm{~kg} / \mathrm{m}^{3}$) of iron (atomic weight 56, valency 2) and metal (atomic weight 24, valency 4). Faraday's constant $=96500$ coulomb/mole. Volumetric material removal rate of the alloy is $50 \mathrm{~mm}^{3} / \mathrm{s}$ at a current of 2000 A . The percentage of the metal P in the alloy is closest to
(A) 40
(B) 25
(C) 15
(D) 79

MCQ $\mathbf{1 0 . 4 7}$ In a single pass rolling operation, a 20 mm thick plate with plate width of 100 mm , is reduced to 18 mm . The roller radius is 250 mm and rotational speed is 10 rpm . The average flow stress for the plate material is 300 MPa .

The power required for the rolling operation in kW is closest to
(A) 15.2
(B) 18.2
(C) 30.4
(D) 45.6

MCQ 10.48 In arc welding of a butt joint, the welding speed is to be selected such that highest cooling rate is achieved. Melting efficiency and heat transfer efficiency are 0.5 and 0.7 , respectively. The area of the weld cross section is $5 \mathrm{~mm}^{2}$ and the unit energy required to melt the metal is $10 \mathrm{~J} / \mathrm{mm}^{3}$. If the welding power is 2 kW , the welding speed in mm / s is closest to
(A) 4
(B) 14
(C) 24
(D) 34

MCQ 10.49 In the deep drawing of cups, blanks show a tendency to wrinkle up around the periphery (flange). The most likely cause and remedy of the phenomenon are, respectively,
(A) Buckling due to circumferential compression; Increase blank holder pressure
(B) High blank holder pressure and high friction; Reduce blank holder pressure and apply lubricant
(C) High temperature causing increase in circumferential length; Apply coolant to blank
(D) Buckling due to circumferential compression; decrease blank holder pressure

MCQ 10.50 The figure shows an incomplete schematic of a conventional lathe to be used for cutting threads with different pitches. The speed gear box U_{v} is shown and the feed gear box U_{s} is to be placed. P, Q, R and S denote locations and have no other significance. Changes in U_{v} should NOT affect the pitch of the thread being cut and changes in U_{s} should NOT affect the cutting speed.

The correct connections and the correct placement of U_{s} are given by (A) Q and E are connected. U_{s} is placed between P and Q .
(B) S and E are connected. U_{s} is placed between R and S
(C) Q and E are connected. U_{s} is placed between Q and E
(D) S and E are connected. U_{s} is placed between S and E

MCQ 10.51 A displacement sensor (a dial indicator) measure the lateral displacement of a mandrel mounted on the taper hole inside a drill spindle. The mandrel axis is an extension of the drill spindle taper hole axis and the protruding portion of the mandrel surface is perfectly cylindrical measurements are taken with the sensor placed at two positions P and Q as shown in the figure. The reading are recorded as $\mathrm{R}_{\mathrm{x}}=$ maximum deflection minus minimum deflection, corresponding to sensor position at X, over one rotation.

If $R_{P}=R_{Q}>0$, which one of the following would be consistent with the observation ?
(A) The drill spindle rotational axis is coincident with the drill spindle taper hole axis
(B) The drill spindle rotational axis intersects the drill spindle taper hole axis at point P
(C) The drill spindle rotational axis is parallel to the drill spindle taper hole axis
(D) The drill spindle rotational axis intersects the drill spindle taper hole axis at point Q

- Common Data For Q. 52 and Q. 53

Orthogonal turning is performed on a cylindrical workpiece with the shear strength of 250 MPa . The following conditions are used: cutting velocity is $180 \mathrm{~m} / \mathrm{min}$, feed is $0.20 \mathrm{~mm} / \mathrm{rev}$, depth of cut is 3 mm , chip thickness ratio $=0.5$. The orthogonal rake angle is 7°. Apply Merchant's theory for analysis.

MCQ 10.52 The shear plane angle (in degree) and the shear force respectively are
(A) $52,320 \mathrm{~N}$
(B) $52,400 \mathrm{~N}$
(C) $28,400 \mathrm{~N}$
(D) $28,320 \mathrm{~N}$

MCQ 10.53 The cutting and frictional forces, respectively, are
(A) $568 \mathrm{~N}, 387 \mathrm{~N}$
(B) $565 \mathrm{~N}, 381 \mathrm{~N}$
(C) $440 \mathrm{~N}, 342 \mathrm{~N}$
(D) $480 \mathrm{~N}, 356 \mathrm{~N}$

- Common Data For Q. 54 and Q. 55

In the feed drive of a Point-to-Point open loop CNC drive, a stepper motor rotating at 200 steps/ rev drives a table through a gear box and lead screw-nut mechanism (pitch=4 mm, number of starts=1). The gear ratio $=\left(\frac{\text { Output rotational speed }}{\text { Input rotational speed }}\right)$ is given by $U=\frac{1}{4}$. The stepper motor (driven by voltage pulses from a pulse generator) executes 1 step/ pulse of the pulse generator. The frequency of the pulse train from the pulse generator is $f=10,000$ pulses per minute.

MCQ 10.54 The basic Length Unit (BLU), i.e, the table movement corresponding to 1 pulse of the pulse generator, is
(A) 0.5 microns
(B) 5 microns
(C) 50 microns
(D) 500 microns

MCQ 10.55 A customer insists on a modification to change the BLU of the CNC drive to 10 microns without changing the table speed. The modification can be accomplished by
(A) changing U to $\frac{1}{2}$ and reducing f to $\frac{f}{2}$
(B) changing U to $\frac{1}{8}$ and increasing f to $2 f$
(C) changing U to $\frac{1}{2}$ and keeping f unchanged
(D) keeping U unchanged and increasing f to $2 f$

YEAR 2007
ONE MARK
MCQ $\mathbf{1 0 . 5 6}$ If a particular Fe-C alloy contains less than 0.83% carbon, it is called
(A) high speed steel
(B) hypoeutectoid steel
(C) hypereutectoid steel
(D) cast iron

MCQ 10.57 W hich of the following engineering materials is the most suitable candidate for hot chamber die casting ?
(A) Iow carbon steel
(B) titanium
(C) copper
(D) tin

MCQ 10.58 W hich one of the following is a solid state joining process?
(A) gas tungsten arc welding
(B) resistance spot welding
(C) friction welding
(D) submerged arc welding

MCQ 10.59 In orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool, the cutting velocity is $90 \mathrm{~m} / \mathrm{min}$. The feed is $0.24 \mathrm{~mm} /$ rev and the depth of cut is 2 mm . The chip thickness obtained is 0.48 mm . If the orthogonal rake angle is zero and the principle cutting edge angle is 90°, the shear angle in degree is
(A) 20.56
(B) 26.56
(C) 30.56
(D) 36.56

MCQ 10.60 W hich type of motor is NOT used in axis or spindle drives of CNC machine tools?
(A) induction motor
(B) dc servo motor
(C) stepper motor
(D) linear servo motor

MCQ 10.61 Volume of a cube of side 'I' and volume of a sphere of radius ' r ' are equal. Both the cube and the sphere are solid and of same material. They are being cast. The ratio of the solidification time of the cube to the same of the sphere is
(A) $\left(\frac{4 \pi}{6}\right)^{3}\binom{r}{T}^{6}$
(B) $\left(\frac{4 \pi}{6}\right)\left(\frac{r}{\Gamma}\right)^{2}$
(C) $\left(\frac{4 \pi}{6}\right)^{2}\left(\frac{r}{T}\right)^{3}$
(D) $\left(\frac{4 \pi}{6}\right)^{2}\left(\frac{r}{T}\right)^{4}$

YEAR 2007
TWO MARKS
MCQ 10.62 In electrodischarge machining (EDM), if the thermal conductivity of tool is high and the specific heat of work piece is low, then the tool wear rate and material removal rate are expected to be respectively
(A) high and high
(B) low and low
(C) high and low
(D) low and high

MCQ 10.63 In orthogonal turning of medium carbon steel, the specific machining energy is $2.0 \mathrm{~J} / \mathrm{mm}^{3}$. The cutting velocity, feed and depth of cut are $120 \mathrm{~m} / \mathrm{min}$, $0.2 \mathrm{~mm} / \mathrm{rev}$. and 2 mm respectively. The main cutting force in N is
(A) 40
(B) 80
(C) 400
(D) 800

MCQ 10.64 A direct current welding machine with a linear power source characteristic provides open circuit voltage of 80 V and short circuit current of 800 A . During welding with the machine, the measured arc current is 500 A corresponding to an arc length of 5.0 mm and the measured arc current is 460 A corresponding to an arc length of 7.0 mm . The linear voltage (E) arc length (L) characteristic of the welding arc can be given as (where E is in volt and L in in mm)
(A) $\mathrm{E}=20+2 \mathrm{~L}$
(B) $\mathrm{E}=20+8 \mathrm{~L}$
(C) $\mathrm{E}=80+2 \mathrm{~L}$
(D) $\mathrm{E}=80+8 \mathrm{~L}$

MCQ 10.65 A hole is specified as $40_{0.000}^{0.050} \mathrm{~mm}$. The mating shaft has a clearance fit with minimum clearance of 0.01 mm . The tolerance on the shaft is 0.04 mm . The maximum clearance in mm between the hole and the shaft is
(A) 0.04
(B) 0.05
(C) 0.10
(D) 0.11

MCQ $\mathbf{1 0 . 6 6}$ In orthogonal turning of low carbon steel pipe with principal cutting edge angle of 90°, the main cutting force is 1000 N and the feed force is 800 N . The shear angle is 25° and orthogonal rake angle is zero. E mploying Merchant's theory, the ratio of friction force to normal force acting on the cutting tool is
(A) 1.56
(B) 1.25
(C) 0.80
(D) 0.64

MCQ 10.67 T wo metallic sheets, each of 2.0 mm thickness, are welded in a lap joint configuration by resistance spot welding at a welding current of 10 kA and welding time of 10 millisecond. A spherical fusion zone extending up to full thickness of each sheet is formed. The properties of the metallic sheets are given as:
A mbient temperature $=293 \mathrm{~K}$
M elting temperature $\quad=1793 \mathrm{~K}$
Density $\quad=7000 \mathrm{~kg} / \mathrm{m}^{3}$
Latent heat of fusion $\quad=300 \mathrm{~kJ} / \mathrm{kg}$
Specific heat $\quad=800 \mathrm{~J} / \mathrm{kgK}$

Assume:

(i) contact resistance along sheet interface is 500 micro-ohm and along electrode-sheet interface is zero;
(ii) no conductive heat loss through the bulk sheet materials; and
(iii) the complete weld fusion zone is at the melting temperature.

The melting efficiency (in \%) of the process is
(A) 50.37
(B) 60.37
(C) 70.37
(D) 80.37

MCQ 10.68 In open-die forging, disc of diameter 200 mm and height 60 mm is compressed without any barreling effect. The final diameter of the disc is 400 mm . The true strain is
(A) 1.986
(B) 1.686
(C) 1.386
(D) 0.602

MCQ 10.69 The thickness of a metallic sheet is reduced from an initial value of 16 mm to a final value of 10 mm in one single pass rolling with a pair of cylindrical rollers each of diameter of 400 mm . The bite angle in degree will be.
(A) 5.936
(B) 7.936
(C) 8.936
(D) 9.936

MCQ 10.70 M atch the correct combination for following metal working processes.

Processes

P: Blanking
Q: Stretch Forming
R: Coining
S: Deep Drawing

A ssociated state of stress

1. Tension
2. Compression
3. Shear
4. Tension and Compression
5. Tension and Shear
(A) $\mathrm{P}-2, \mathrm{Q}-1, \mathrm{R}-3, \mathrm{~S}-4$
(B) $P-3, Q-4, R-1, S-5$
(C) $P-5, Q-4, R-3, S-1$
(D) $P-3, Q-1, R-2, S-4$

MCQ 10.71 The force requirement in a blanking operation of low carbon steel sheet is 5.0 kN . The thickness of the sheet is ' t ' and diameter of the blanked part is ' d '. For the same work material, if the diameter of the blanked part is increased to 1.5 d and thickness is reduced to 0.4 t , the new blanking force in kN is
(A) 3.0
(B) 4.5
(C) 5.0
(D) 8.0

MCQ 10.72 A 200 mm long down sprue has an area of cross-section of $650 \mathrm{~mm}^{2}$ where the pouring basin meets the down sprue (i.e at the beginning of the down sprue). A constant head of molten metal is maintained by the pouring basin. The molten metal flow rate is $6.5 \times 10^{5} \mathrm{~mm}^{3} / \mathrm{s}$. Considering the end of down sprue to be open to atmosphere and an acceleration due to gravity
of $10^{4} \mathrm{~mm} / \mathrm{s}^{2}$, the area of the down sprue in mm^{2} at its end (avoiding aspiration effect) should be

(A) 650.0
(B) 350.0
(C) 290.7
(D) 190.0

MCQ 10.73 M atch the most suitable manufacturing processes for the following parts.

Parts

P. Computer chip
Q. Metal forming dies and molds
R. Turbine blade
S. Glass
(A) $P-4, Q-3, R-1, S-2$
(B) $P-4, Q-3, R-2, S-1$
(C) $P-3, Q-1, R-4, S-2$
(D) $P-1, Q-2, R-4, S-3$

M anufacturing Process

1. Electrochemical Machining
2. Ultrasonic Machining
3. Electrodischarge M achining
4. Photochemical Machining

- Common Data For Q. 74 and Q. 75

A low carbon steel bar of 147 mm diameter with a length of 630 mm is being turned with uncoated carbide insert. The observed tool lives are 24 min and 12 min for cutting velocities of $90 \mathrm{~m} / \mathrm{min}$ and $120 \mathrm{~m} / \mathrm{min}$. respectively. The feed and depth of cut are $0.2 \mathrm{~mm} / \mathrm{rev}$ and 2 mm respectively. Use the unmachined diameter to calculate the cutting velocity.

MCQ 10.74 When tool life is 20 min , the cutting velocity in $\mathrm{m} / \mathrm{min}$ is
(A) 87
(B) 97
(C) 107
(D) 114

MCQ 10.75 Neglect over-travel or approach of the tool. When tool life is 20 min ., the machining time in min for a single pass is
(A) 5
(B) 10
(C) 15
(D) 20

YEAR 2006

ONE MARK
MCQ 10.76 An expendable pattern is used in
(A) slush casting
(B) squeeze casting
(C) centrifugal casting
(D) investment casting

MCQ 10.77 The main purpose of spheroidising treatment is to improve
(A) hardenability of low carbon steels
(B) machinability of low carbon steels
(C) hardenability of high carbon steels
(D) machinability of high carbon steels

MCQ 10.78 NC contouring is an example of
(A) continuous path positioning
(B) point-to-point positioning
(C) absolute positioning
(D) incremental positioning

MCQ 10.79 A ring gauge is used to measure
(A) outside diameter but not roundness
(B) roundness but not outside diameter
(C) both outside diameter and roundness
(D) only external threads

YEAR 2006
TWO MARKS
MCQ 10.80 The ultimate tensile strength of a material is 400 M Pa and the elongation up to maximum load is 35%. If the material obeys power law of hardening, then the true stress-true strain relation (stress in M Pa) in the plastic deformation range is
(A) $\sigma=540 \varepsilon^{0.30}$
(B) $\sigma=775 \varepsilon^{0.30}$
(C) $\sigma=540 \varepsilon^{0.35}$
(D) $\sigma=775 \varepsilon^{0.35}$

MCQ 10.81 In a sand casting operation, the total liquid head is maintained constant
such that it is equal to the mould height. The time taken to fill the mould with a top gate is t_{A}. If the same mould is filled with a bottom gate, then the time taken is t_{B}. Ignore the time required to fill the runner and frictional effects. A ssume atmospheric pressure at the top molten metal surfaces. The relation between t_{A} and t_{B} is
(A) $t_{B}=\sqrt{2} t_{A}$
(B) $t_{B}=2 t_{A}$
(C) $t_{B}=\frac{t_{A}}{\sqrt{2}}$
(D) $t_{B}=2 \sqrt{2} t_{A}$

MCQ 10.82 A 4 mm thick sheet is rolled with 300 mm diameter roll to reduce thickness without any change in its width. The friction coefficient at the work-roll interface is 0.1. The minimum possible thickness of the sheet that can be produced in a single pass is
(A) 1.0 mm
(B) 1.5 mm
(C) 2.5 mm
(D) 3.7 mm

MCQ 10.83 In a wire drawing operation, diameter of a steel wire is reduced from 10 mm to 8 mm . The mean flow stress of the material is 400 MPa . The ideal force required for drawing (ignoring friction and redundant work) is
(A) 4.48 kN
(B) 8.97 kN
(C) 20.11 kN
(D) 31.41 kN

MCQ 10.84 M atch the item in columns I and II

Column I

P. Wrinkling
Q. Orange peel
R. Stretcher strains
S. Earing

Column II

1. Y ield point elongation
2. A nisotropy
3. Large grain size
4. Insufficient blank holding force
5. Fine grain size
6. Excessive blank holding force
(A) P-6, Q-3, R-1, S-2
(B) $\mathrm{P}-4, \mathrm{Q}-5, \mathrm{R}-6, \mathrm{~S}-1$
(C) $\mathrm{P}-2, \mathrm{Q}-5, \mathrm{R}-3, \mathrm{~S}-1$
(D) P-4, Q-3, R-1, S-2

MCQ 10.85 In an arc welding process, the voltage and current are 25 V and 300 A respectively. The arc heat transfer efficiency is 0.85 and welding speed is 8 $\mathrm{mm} / \mathrm{sec}$. The net heat input (in J / mm) is
(A) 64
(B) 797
(C) 1103
(D) 79700

MCQ 10.86 If each abrasive grain is viewed as a cutting tool, then which of the following represents the cutting parameters in common grinding operations ?
(A) Large negative rake angle, low shear angle and high cutting speed
(B) Large positive rake angle, low shear angle and high cutting speed
(C) Large negative rake angle, high shear angle and low cutting speed
(D) Zero rake angle, high shear angle and high cutting speed

MCQ 10.87 Arrange the processes in the increasing order of their maximum material removal rate.
Electrochemical M achining (ECM)
Ultrasonic M achining (USM)
Electron B eam Machining (EBM)
Laser Beam M achining (LBM) and
Electric Discharge M achining (EDM)
(A) USM, LBM, EBM, EDM, ECM
(B) EBM, LBM, USM, ECM, EDM
(C) LBM, EBM, USM, ECM, EDM
(D) LBM, EBM, USM, EDM, ECM

MCQ 10.88 M atch the items in columns I and II.

Column I

P. Charpy test
Q. K noop test
R. Spiral test
S. Cupping test

Column II

1. Fluidity
2. Microhardness
3. Formability
4. Toughness
5. Permeability
(A) P-4, Q-5, R-3, S-2
(B) $P-3, Q-5, R-1, S-4$
(C) $P-2, Q-4, R-3, S-5$
(D) P-4, Q-2, R-1, S-3

- Common Data For Q.89, 90 and Q. 91

In an orthogonal machining operation:
Uncut thickness $=0.5 \mathrm{~mm}$
Cutting speed $\quad=20 \mathrm{~m} / \mathrm{min}$
Rake angel $\quad=15^{\circ}$
Width of cut $\quad=5 \mathrm{~mm}$ Chip thickness $=0.7 \mathrm{~mm}$

Thrust force $\quad=200 \mathrm{~N} \quad$ Cutting force $=1200 \mathrm{~N}$

> A ssume M erchant's theory.

MCQ 10.89 The values of shear angle and shear strain, respectively, are
(A) 30.3° and 1.98
(B) 30.3° and 4.23
(C) 40.2° and 2.97
(D) 40.2° and 1.65

MCQ $\mathbf{1 0 . 9 0}$ The coefficient of friction at the tool-chip interface is
(A) 0.23
(B) 0.46
(C) 0.85
(D) 0.95

MCQ 10.91 The percentage of total energy dissipated due to friction at the tool-chip interface is
(A) 30%
(B) 42%
(C) 58%
(D) 70%

YEAR 2005
ONE MARK
MCQ 10.92 Match the items of List-I (Equipment) with the items of List-II (Process) and select the correct answer using the given codes.

List-I (Equipment)

P. Hot Chamber Machine
Q. Muller
R. Dielectric Baker
S. Sand Blaster
(A) P-2, Q-1, R-4, S-5
(B) $P-4, Q-2, R-3, S-5$
(C) $P-4, Q-5, R-1, S-2$
(D) P-3, Q-5, R-2, S-1

List-II (Process)

1. Cleaning
2. Core making
3. Die casting
4. A nnealing
5. Sand mixing

MCQ 10.93 W hen the temperature of a solid metal increases,
(A) strength of the metal decreases but ductility increases
(B) both strength and ductility of the metal decreases
(C) both strength and ductility of the metal increases
(D) strength of the metal increases but ductility decreases

MCQ 10.94 The strength of a brazed joint
(A) decreases with increase in gap between the two joining surfaces
(B) increases with increase in gap between the two joining surfaces
(C) decreases up to certain gap between the two joining surfaces beyond which it increases
(D) increases up to certain gap between the two joining surfaces beyond which it decreases

MCQ 10.95 A zigzag cavity in a block of high strength alloy is to be finish machined. This can be carried out by using.

(A) electric discharge machining
(B) electric-chemical machining
(C) laser beam machining
(D) abrasive flow machining

MCQ $\mathbf{1 0 . 9 6}$ In order to have interference fit, it is essential that the lower limit of the shaft should be
(A) greater than the upper limit of the hole
(B) lesser than the upper limit of the hole
(C) greater than the lower limit of the hole
(D) lesser than the lower limit of the hole

MCQ 10.97 When 3-2-1 principle is used to support and locate a three dimensional work-piece during machining, the number of degrees of freedom that are restricted is
(A) 7
(B) 8
(C) 9
(D) 10

MCQ 10.98 W hich among the NC operations given below are continuous path operations ?
Arc Welding (AW)
Drilling (D)
Laser Cutting of Sheet M etal (LC)
Milling (M)
Punching in Sheet M etal (P)
Spot Welding (SW)
(A) AW, LC and M
(B) AW, D, LC and M
(C) D, LC, P and SW
(D) D, LC, and SW

MCQ $\mathbf{1 0 . 9 9}$ The figure below shows a graph which qualitatively relates cutting speed and cost per piece produced.

The three curves 1,2 and 3 respectively represent
(A) machining cost, non-productive cost, tool changing cost
(B) non-productive cost, machining cost, tool changing cost
(C) tool changing cost, machining cost, non-productive cost
(D) tool changing cost, non-productive cost, machining cost

YEAR 2005
TWO MARKS
MCQ 10.100 A mould has a downsprue whose length is 20 cm and the cross sectional area at the base of the downsprue is $1 \mathrm{~cm}^{2}$. The downsprue feeds a horizontal runner leading into the mould cavity of volume $1000 \mathrm{~cm}^{3}$. The time required to fill the mould cavity will be
(A) 4.05 s
(B) 5.05 s
(C) 6.05 s
(D) 7.25 s

MCQ 10.101 Spot welding of two 1 mm thick sheets of steel (density $=8000 \mathrm{~kg} / \mathrm{m}^{3}$) is carried out successfully by passing a certain amount of current for 0.1 second through the electrodes. The resultant weld nugget formed is 5 mm in diameter and 1.5 mm thick. If the latent heat of fusion of steel is $1400 \mathrm{~kJ} / \mathrm{kg}$ and the effective resistance in the welding operation is $200 \mu \Omega$, the current passing through the electrodes is approximately
(A) 1480 A
(B) 3300 A
(C) 4060 A
(D) 9400 A

MCQ 10.102 A 2 mm thick metal sheet is to be bent at an angle of one radian with a bend radius of 100 mm . If the stretch factor is 0.5 , the bend allowance is

(A) 99 mm
(B) 100 mm
(C) 101 mm
(D) 102 mm

MCQ 10.103 A $600 \mathrm{~mm} \times 30 \mathrm{~mm}$ flat surface of a plate is to be finish machined on a shaper. The plate has been fixed with the 600 mm side along the tool travel direction. If the tool over-travel at each end of the plate is 20 mm , average cutting speed is $8 \mathrm{~m} / \mathrm{min}$., feed rate is $0.3 \mathrm{~mm} /$ stroke and the ratio of return time to cutting time of the tool is $1: 2$, the time required for machining will be
(A) 8 minutes
(B) 12 minutes
(C) 16 minutes
(D) 20 minutes

MCQ 10.104 The tool of an NC machine has to move along a circular arc from $(5,5)$ to (10, 10) while performing an operation. The centre of the arc is at (10, 5). Which one of the following NC tool path command performs the above mentioned operation ?
(A) N 010 G 02×10 Y 10×5 Y 5 R 5
(B) N 010 G 03×10 Y 10×5 Y $5 R 5$
(C) N 010 G 01×5 Y 5×10 Y 10 R 5
(D) N010 GO2 X 5 Y 5×10 Y 10 R 5

MCQ 10.105 Two tools P and Q have signatures $5^{\circ}-5^{\circ}-6^{\circ}-6^{\circ}-8^{\circ}-30^{\circ}-0$ and $5^{\circ}-5^{\circ}-7^{\circ}-7^{\circ}-$ $8^{\circ}-15^{\circ}-0$ (both ASA) respectively. They are used to turn components under the same machining conditions. If h_{p} and h_{Q} denote the peak-to-valley heights of surfaces produced by the tools P and Q, the ratio h_{P} / h_{Q} will be
(A) $\frac{\tan 8^{\circ}+\cot 15^{\circ}}{\tan 8^{\circ}+\cot 30^{\circ}}$
(B) $\frac{\tan 15^{\circ}+\cot 8^{\circ}}{\tan 30^{\circ}+\cot 8^{\circ}}$
(C) $\frac{\tan 15^{\circ}+\cot 7^{\circ}}{\tan 30^{\circ}+\cot 7^{\circ}}$
(D) $\frac{\tan 7^{\circ}+\cot 15^{\circ}}{\tan 7^{\circ}+\cot 30^{\circ}}$

MCQ 10.106 In an interchangeable assembly, shafts of size $25.000_{-0.0100}^{+0.040} \mathrm{~mm}$ mate with holes of size $25.000_{-0.000}^{+0.020} \mathrm{~mm}$. The maximum possible clearance in the assembly will be
(A) 10 microns
(B) 20 microns
(C) 30 microns
(D) 60 microns

MCQ 10.107 During the execution of a CNC part program block NO20 GO2 X45.0 Y 25.0 R 5.0 the type of tool motion will be
(A) circular Interpolation - clockwise
(B) circular Interpolation - counterclockwise
(C) linear Interpolation
(D) rapid feed

MCQ 10.108 The mechanism of material removal in EDM process is
(A) M elting and Evaporation
(B) M elting and Corrosion
(C) Erosion and Cavitation
(D) Cavitation and Evaporation

MCQ 10.109 T wo 1 mm thick steel sheets are to be spot welded at a current of 5000 A . A ssuming effective resistance to be $200 \mu \mathrm{~m}$ and current flow time of 0.2 second, heat generated during the process will be
(A) 0.2 J oule
(B) 1 J oule
(C) 5 J oule
(D) 1000 J oule

MCQ 10.110 M isrun is a casting defect which occurs due to
(A) very high pouring temperature of the metal
(B) insufficient fluidity of the molten metal
(C) absorption of gases by the liquid metal
(D) improper alignment of the mould flasks

MCQ 10.111 The percentage of carbon in gray cast iron is in the range of
(A) 0.25 to 0.75 percent
(B) 1.25 to 1.75 percent
(C) 3 to 4 percent
(D) 8 to 10 percent

YEAR 2004
TWO MARKS
MCQ 10.112 GO and NO-GO plug gauges are to be designed for a hole $20.000_{+0.010}^{+0.050} \mathrm{~mm}$. Gauge tolerances can be taken as 10% of the hole tolerance. Following ISO system of gauge design, sizes of GO and NO-GO gauge will be respectively
(A) 20.010 mm and 20.050 mm
(B) 20.014 mm and 20.046 mm
(C) 20.006 mm and 20.054 mm
(D) 20.014 mm and 20.054 mm

MCQ $\mathbf{1 0 . 1 1 3} 10 \mathrm{~mm}$ diameter holes are to be punched in a steel sheet of 3 mm thickness. Shear strength of the material is $400 \mathrm{~N} / \mathrm{mm}^{2}$ and penetration is 40%. Shear provided on the punch is 2 mm . The blanking force during the operation will be
(A) 22.6 kN
(B) 37.7 kN
(C) 61.6 kN
(D) 94.3 kN

MCQ 10.114 Through holes of 10 mm diameter are to be drilled in a steel plate of 20 mm thickness. Drill spindle speed is 300 rpm , feed $0.2 \mathrm{~mm} / \mathrm{rev}$ and drill point angle is 120°. A ssuming drill overtravel of 2 mm , the time for producing a hole will be
(A) 4 seconds
(B) 25 seconds
(C) 100 seconds
(D) 110 seconds

MCQ 10.115 Gray cast iron blocks $200 \times 100 \times 10 \mathrm{~mm}$ are to be cast in sand moulds. Shrinkage allowance for pattern making is 1%. The ratio of the volume of pattern to that of the casting will be
(A) 0.97
(B) 0.99
(C) 1.01
(D) 1.03

MCQ 10.116 In a 2-D CAD package, clockwise circular arc of radius 5, specified from $P_{1}(15,10)$ to $P_{2}(10,15)$ will have its centre at
(A) $(10,10)$
(B) $(15,10)$
(C) $(15,15)$
(D) $(10,15)$

MCQ 10.117 In an orthogonal cutting test on mild steel, the following data were obtained
Cutting speed : $40 \mathrm{~m} / \mathrm{min}$

Depth of cut : 0.3 mm
Tool rake angle : $+5^{\circ}$
Chip thickness : 1.5 mm
Cutting force : 900 N
Thrust force : 450 N
Using M erchant's analysis, the friction angle during the machining will be
(A) 26.6°
(B) 31.5°
(C) 45°
(D) 63.4°

MCQ 10.118 In a rolling process, sheet of 25 mm thickness is rolled to 20 mm thickness. R oll is of diameter 600 mm and it rotates at 100 rpm . The roll strip contact length will be
(A) 5 mm
(B) 39 mm
(C) 78 mm
(D) 120 mm

MCQ 10.119 In a machining operation, doubling the cutting speed reduces the tool life to $\frac{1}{8}$ th of the original value. The exponent n in Taylor's tool life equation $\mathrm{VT}^{\mathrm{i}}=\mathrm{C}$, is
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$

MCQ 10.120 M atch the following

Feature to be inspected

P. Pitch and A ngle errors of screw thread
Q. Flatness error of a surface
R. Alignment error of a machine slideway
S. Profile of a cam

Instrument

1. Auto Collimator
2. Optical Interferometer
3. Dividing Head and Dial Gauge
4. Spirit Level
5. Sine bar
6. Tool maker's M icroscope
(A) P-6 $\quad \mathrm{Q}-2 \quad \mathrm{R}-4 \quad \mathrm{~S}-6$
(B) $\quad \mathrm{P}-5 \quad \mathrm{Q}-2 \quad \mathrm{R}-1 \quad \mathrm{~S}-6$
(C) P-6 $\quad \mathrm{Q}-4 \quad \mathrm{R}-1 \quad \mathrm{~S}-3$
(D) P-1 $\quad \mathrm{Q}-4 \quad \mathrm{R}-5 \quad \mathrm{~S}-2$

MCQ 10.121 M atch the following

Product

P. M olded Iuggage
Q. Packaging containers for Liquid
R. Long structural shapes
S. Collapsible tubes

Process

1. Injection molding
2. Hot rolling
3. Impact extrusion
4. Transfer molding
5. Blow molding
6. Coining
(A) $\quad \mathrm{P}-1 \quad \mathrm{Q}-4 \quad \mathrm{R}-6 \quad \mathrm{~S}-3$
(B) P-4 $\quad \mathrm{Q}-5 \quad \mathrm{R}-2 \quad \mathrm{~S}-3$
(C) $\quad \mathrm{P}-1 \quad \mathrm{Q}-5 \quad \mathrm{R}-3 \quad \mathrm{~S}-2$
(D) P-5 $\quad \mathrm{Q}-1 \quad \mathrm{R}-2 \quad \mathrm{~S}-4$

MCQ 10.122 Typical machining operations are to be performed on hard-to-machine materials by using the processes listed below. Choose the best set of Operation-P rocess combinations

Operation

P. Deburring (internal surface)
Q. Die sinking
R. Fine hole drilling in thin sheets
S. Tool sharpening

Process

1. Plasma A rc M achining
2. Abrasive Flow Machining
3. Electric Discharge M achining
4. Ultrasonic M achining
5. Laser beam M achining
6. Electrochemical Grinding
(A) $\quad \mathrm{P}-1 \quad \mathrm{Q}-5 \quad \mathrm{R}-3 \quad \mathrm{~S}-4$
(B) $\quad \mathrm{P}-1 \quad \mathrm{Q}-4 \quad \mathrm{R}-1 \quad \mathrm{~S}-2$
(C) P-5 $\quad \mathrm{Q}-1 \quad \mathrm{R}-2 \quad \mathrm{~S}-6$
(D) P-2 $\mathrm{Q}-3 \quad \mathrm{R}-5 \quad \mathrm{~S}-6$

MCQ 10.123 From the lists given below choose the most appropriate set of heat treatment process and the corresponding process characteristics

Process

P. Tempering
Q. A ustempering
R. M artempering

Characteristics

1. A ustenite is converted into bainite
2. A ustenite is converted into martensite
3. Cementite is converted into globular structure
4. B oth hardness and brittleness are reduced
5. Carbon is absorbed into the metal
(A) $\mathrm{P}-3$
Q-1 R-5
(B) $\quad \mathrm{P}-4 \quad \mathrm{Q}-3 \quad \mathrm{R}-2$
(C) $\quad \mathrm{P}-4 \quad \mathrm{Q}-1 \quad \mathrm{R}-2$
(D) $\quad \mathrm{P}-1 \quad \mathrm{Q}-5 \quad \mathrm{R}-4$

YEAR 2003
ONE MARK
MCQ 10.124 During heat treatment of steel, the hardness of various structures in increasing order is
(A) martensite, fine pearlite, coarse pearlite, spherodite
(B) fine pearlite, M artensite, spherodite, coarse pearlite
(C) martensite, coarse pearlite, fine pearlite, spherodite
(D) spherodite, coarse pearlite, fine pearlite, martensite

MCQ 10.125 Hardness of green sand mould increases with
(A) increase in moisture content beyond 6 percent
(B) increase in permeability
(C) decrease in permeability
(D) increase in both moisture content and permeability

MCQ 10.126 In Oxyacetylene gas welding, temperature at the inner cone of the flame is around
(A) $3500^{\circ} \mathrm{C}$
(B) $3200^{\circ} \mathrm{C}$
(C) $2900^{\circ} \mathrm{C}$
(D) $2550^{\circ} \mathrm{C}$

MCQ 10.127 Cold working of steel is defined as working
(A) at its recrystallisation temperature
(B) above its recrystallisation temperature
(C) below its recrystallisation temperature
(D) at two thirds of the melting temperature of the metal

MCQ 10.128 Quality screw threads are produced by
(A) thread milling
(B) thread chasing
(C) thread cutting with single point tool
(D) thread casting

MCQ 10.129 As tool and work are not in contact in EDM process
(A) no relative motion occurs between them
(B) no wear of tool occurs
(C) no power is consumed during metal cutting
(D) no force between tool and work occurs

MCQ 10.130 The dimensional limits on a shaft of 25 h 7 are
(A) $25.000,25.021 \mathrm{~mm}$
(B) $25.000,24.979 \mathrm{~mm}$
(C) $25.000,25.007 \mathrm{~mm}$
(D) $25.000,24.993 \mathrm{~mm}$

YEAR 2003
TWO MARKS
MCQ 10.131 Hardness of steel greatly improves with
(A) annealing
(B) cyaniding
(C) normalizing
(D) tempering

MCQ 10.132 W ith a solidification factor of $0.97 \times 10^{6} \mathrm{~s} / \mathrm{m}^{2}$, the solidification time (in seconds) for a spherical casting of 200 mm diameter is
(A) 539
(B) 1078
(C) 4311
(D) 3233

MCQ 10.133 A shell of 100 mm diameter and 100 mm height with the corner radius of 0.4 mm is to be produced by cup drawing. The required blank diameter is
(A) 118 mm
(B) 161 mm
(C) 224 mm
(D) 312 mm

MCQ 10.134 A brass billet is to be extruded from its initial diameter of 100 mm to a final diameter of 50 mm . The working temperature of $700^{\circ} \mathrm{C}$ and the extrusion constant is 250 MPa . The force required for extrusion is
(A) 5.44 M N
(B) 2.72 M N
(C) 1.36 M N
(D) 0.36 M N

MCQ 10.135 A metal disc of 20 mm diameter is to be punched from a sheet of 2 mm thickness. The punch and the die clearance is 3%. The required punch diameter is
(A) 19.88 mm
(B) 19.84 mm
(C) 20.06 mm
(D) 20.12 mm

MCQ 10.136 A batch of 10 cutting tools could produce 500 components while working at 50 rpm with a tool feed of $0.25 \mathrm{~mm} / \mathrm{rev}$ and depth of cut of 1 mm . A similar batch of 10 tools of the same specification could produce 122 components while working at 80 rpm with a feed of $0.25 \mathrm{~mm} / \mathrm{rev}$ and 1 mm depth of cut. How many components can be produced with one cutting tool at 60 rpm ?
(A) 29
(B) 31
(C) 37
(D) 42

MCQ 10.137 A thread nut of M16 ISO metric type, having 2 mm pitch with a pitch diameter of 14.701 mm is to be checked for its pitch diameter using two or three number of balls or rollers of the following sizes
(A) Rollers of $2 \mathrm{~mm} \varphi$
(B) Rollers of $1.155 \mathrm{~mm} \varphi$
(C) Balls of $2 \mathrm{~mm} \varphi$
(D) Balls of $1.155 \mathrm{~mm} \varphi$

MCQ 10.138 T wo slip gauges of 10 mm width measuring 1.000 mm and 1.002 mm are kept side by side in contact with each other lengthwise. An optical flat is kept resting on the slip gauges as shown in the figure. M onochromatic light of wavelength 0.0058928 mm is used in the inspection. The total number of straight fringes that can be observed on both slip gauges is

Slip gauges
(A) 2
(B) 6
(C) 8
(D) 13

MCQ 10.139 A part shown in the figure is machined to the sizes given below

$P=35.00 \pm 0.08 \mathrm{~mm}, \mathrm{Q}=12.00 \pm 0.02 \mathrm{~mm}, \mathrm{R}=13.00_{-0.02}^{+0.04} \mathrm{~mm}$ W ith 100% confidence, the resultant dimension W will have the specification
(A) $9.99 \pm 0.03 \mathrm{~mm}$
(B) $9.99 \pm 0.13 \mathrm{~mm}$
(C) $10.00 \pm 0.03 \mathrm{~mm}$
(D) $10.00 \pm 0.13 \mathrm{~mm}$

MCQ 10.140 M atch the following

Working material

P. A luminium
Q. Die steel
R. Copper wire
S. Titanium sheet

Type of Joining

1. Submerged Arc Welding
2. Soldering
3. Thermit Welding
4. Atomic Hydrogen Welding
5. Gas Tungsten Arc Welding
6. Laser Beam Welding
(A) $\quad \mathrm{P}-2 \quad \mathrm{Q}-5 \quad \mathrm{R}-1 \quad \mathrm{~S}-3$
(B) P-6 $\mathrm{Q}-3 \quad \mathrm{R}-4 \quad \mathrm{~S}-1$
(C) P-4 $\quad \mathrm{Q}-1 \quad \mathrm{R}-6 \quad \mathrm{~S}-2$
(D) $\quad \mathrm{P}-5 \quad \mathrm{Q}-4 \quad \mathrm{R}-2 \quad \mathrm{~S}-6$

- Common Data For Q. 141 and Q. 142

A cylinder is turned on a lathe with orthogonal machining principle. Spindle rotates at 200 rpm . The axial feed rate is 0.25 mm per revolution. Depth of cut is 0.4 mm . The rake angle is 10°. In the analysis it is found that the shear angle is 27.75°.

MCQ 10.141 The thickness of the produced chip is
(A) 0.511 mm
(B) 0.528 mm
(C) 0.818 mm
(D) 0.846 mm

MCQ 10.142 In the above problem, the coefficient of friction at the chip tool interface obtained using E arnest and M erchant theory is
(A) 0.18
(B) 0.36
(C) 0.71
(D) 0.98

YEAR 2002
ONE MARK
MCQ 10.143 A lead-screw with half nuts in a lathe, free to rotate in both directions has
(A) V-threads
(B) W hitworth threads
(C) Buttress threads
(D) A cme threads

MCQ 10.144 The primary purpose of a sprue in a casting mould is to
(A) feed the casting at a rate consistent with the rate of solidification.
(B) act as a reservoir for molten metal
(C) feed molten metal from the pouring basin to the gate
(D) help feed the casting until all solidification takes place

MCQ 10.145 Hot rolling of mild steel is carried out
(A) at re-crystallization temperature
(B) between $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
(C) between recrystallization temperature
(D) above recrystallization temperature

MCQ 10.146 Which of the following arc welding processes does not use consumable electrodes?
(A) GMAW
(B) GTAW
(C) Submerged Arc Welding
(D) None of these

MCQ 10.147 Trepanning is performed for
(A) finishing a drilled hole
(B) producing a large hole without drilling
(C) truing a hole for alignment
(D) enlarging a drilled hole

MCQ 10.148 The hardness of a grinding wheel is determined by the
(A) hardness of abrasive grains
(B) ability of the bond to retain abrasives
(C) hardness of the bond
(D) ability of the grinding wheel to penetrate the work piece

MCQ 10.149 In centrifugal casting, the impurities are
(A) uniformly distributed
(B) forced towards the outer surface
(C) trapped near the mean radius of the casting
(D) collected at the centre of the casting

MCQ 10.150 The ductility of a material with work hardening
(A) increases
(B) decreases
(C) remains unaffected
(D) unpredictable

MCQ 10.151 The temperature of a carburising flame in gas welding isthat of a neutral or an oxidising flame.
(A) lower than
(B) higher than
(C) equal to
(D) unrelated to

MCQ 10.152 In a blanking operation, the clearance is provided on
(A) the die
(B) both the die and the punch equally
(C) the punch
(D) neither the punch nor the die

MCQ 10.153 A built-up-edge is formed while machining
(A) ductile materials at high speed
(B) ductile materials at low speed
(C) brittle materials at high speed
(D) brittle materials at low speed

MCQ 10.154 The time taken to drill a hole through a 25 mm thick plate with the drill rotating at 300 rpm and moving at a feed rate of $0.25 \mathrm{~mm} / \mathrm{rev}$ is
(A) 10 s
(B) 20 s
(C) 60 s
(D) 100 s

YEAR 2001
MCQ 10.155 Shrinkage allowance on pattern is provided to compensate for shrinkage when
(A) the temperature of liquid metal drops from pouring to freezing temperature.
(B) the metal changes from liquid to solid state at freezing temperature
(C) the temperature of solid phase drops from freezing to room temperature
(D) the temperature of metal drops from pouring to room temperature

MCQ 10.156 The cutting force in punching and blanking operations mainly depends on
(A) the modulus of elasticity of metal
(B) the shear strength of metal
(C) the bulk modulus of metal
(D) the yield strength of metal

MCQ 10.157 In ECM, the material removal is due to
(A) corrosion
(B) erosion
(C) fusion
(D) ion displacement

MCQ 10.158 T wo plates of the same metal having equal thickness are to be butt welded with electric arc. When the plate thickness changes, welding is achieved by (A) adjusting the current
(B) adjusting the duration of current
(C) changing the electrode size
(D) changing the electrode coating

MCQ 10.159 Allowance in limits and fits refers to
(A) maximum clearance between shaft and hole
(B) minimum clearance between shaft and hole
(C) difference between maximum and minimum sizes of hole
(D) difference between maximum and minimum sizes of shaft.

YEAR 2001
TWO MARKS
MCQ 10.160 The height of the downsprue is 175 mm and its cross-sectional area at the base is $200 \mathrm{~mm}^{2}$. The cross-sectional area of the horizontal runner is also $200 \mathrm{~mm}^{2}$, assuming no losses, indicate the correct choice for the time (in sec) required to fill a mold cavity of volume $10^{6} \mathrm{~mm}^{3}$. (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$).
(A) 2.67
(B) 8.45
(C) 26.72
(D) 84.50

MCQ 10.161 For rigid perfectly plastic work material, negligible interface friction and no redundant work, the theoretically maximum possible reduction in the wire drawing operation is
(A) 0.36
(B) 0.63
(C) 1.00
(D) 2.72

MCQ 10.162 During orthogonal cutting of mild steel with a 10° rake angle, the chip thickness ratio was obtained as 0.4 . The shear angle (in degree) evaluated from this data is
(A) 6.53
(B) 20.22
(C) 22.94
(D) 50.00

MCQ 10.163 Resistance spot welding is performed on two plates of 1.5 mm thickness with 6 mmdiameter electrode, using 15000 A current for a time duration of 0.25 s . A ssuming the interface resistance to be 0.0001Ω, the heat generated to form the weld is
(A) 5625 W -s
(B) 8437 W -s
(C) $22500 \mathrm{~W}-\mathrm{s}$
(D) $33750 \mathrm{~W}-\mathrm{s}$

MCQ 10.164 3-2-1 method of location in a jig or fixture would collectively restrict the work piece in n degrees of freedom, where the value of n is
(A) 6
(B) 8
(C) 9
(D) 12

MCQ 10.165 In an NC machining operation, the tool has to be moved from point $(5,4)$ to point $(7,2)$ along a circular path with centre at $(5,2)$. B efore starting the operation, the tool is at $(5,4)$. The correct G and N codes for this motion are
(A) N 010 GO3 X 7.0 Y 2.0 I 5.0 J 2.0
(B) N 010 GO2 X 7.0 Y 2.0 I 5.0 J 2.0
(C) N 010 GO1 X 7.0 Y 2.0 I 5.0 J 2.0
(D) N010 G00 X 7.0 Y 2.0 I 5.0 J 2.0

SOLUTION

sol 10.1 Option (D) is correct.

Graph for abrasive jet machining for the distance between the nozzle tip and work surface (I) and abrasive flow rate is given in figure.
It is clear from the graph that the material removal rate is first increases because of area of jet increase than becomes stable and then decreases due to decrease in jet velocity.
sol 10.2 Option (A) is correct.

Metal forming process

1. Coining
2. Wire Drawing
3. Blanking
4. Deep Drawing

Types of stress

S. Compressive
P. Tensile
Q. Shear
R. Tensile and compressive

Hence, correct match list is, 1-S, 2-P, 3-Q, 4-R
sol 10.3 Option (C) is correct.
An interference fit for shaft and hole is as given in figure below.

M aximum Interference
$=M$ aximum limit of shat $-M$ inimum limit of hole

$$
\begin{aligned}
& =(25+0.040)-(25+0.020) \\
& =0.02 \mathrm{~mm}=20 \text { microns }
\end{aligned}
$$

sol 10.4 Option (C) is correct Normalising involves prolonged heating just above the critical temperature to produce globular form of carbine and then cooling in air.

SOL 10.5 Option (B) is correct.
Given : width $(b)=10 \mathrm{~mm}$, depth $=2 \mathrm{~mm}$

Distance travelled for cut between points $(0,0)$ and $(100,100)$
By Pythagoras theorem

$$
\begin{aligned}
\mathrm{d} & =\sqrt{100^{2}+100^{2}}=141.42 \mathrm{~mm} \\
\text { Feed rate } \mathrm{f} & =50 \mathrm{~mm} / \mathrm{min} \\
& =\frac{50}{60}=0.833 \mathrm{~mm} / \mathrm{sec} .
\end{aligned}
$$

Time required to cut distance (d)

$$
t=\frac{d}{f}=\frac{141.42}{0.833}=169.7 \simeq 170 \mathrm{sec}
$$

SOL 10.6 Option (D) is correct.
Since volume of cylinder remains same. Therefore
Volume before forging $=\mathrm{V}$ olume after forging

$$
\begin{aligned}
\pi \frac{\mathrm{d}_{1}^{2}}{4} \times \mathrm{h}_{1} & =\pi \frac{\mathrm{d}_{2}^{2}}{4} \times \mathrm{h}_{2} \\
\pi \times \frac{100^{2}}{4} \times 50 & =\pi \times \frac{\mathrm{d}_{2}^{2}}{4} \times 25 \\
\mathrm{~d}_{2}^{2} & =(100)^{2} \times 2 \\
\mathrm{~d}_{2} & =100 \times \sqrt{2}=141.42
\end{aligned}
$$

Percentage change in diameter

$$
=\frac{\mathrm{d}_{2}-\mathrm{d}_{1}}{\mathrm{~d}_{1}} \times 100=\frac{141.42-100}{100} \times 100
$$

$$
\% \text { change in }(\mathrm{d})=41.42 \%
$$

soL 10.7 Option (C) is correct.
Shear strain rate $=\frac{\cos \alpha}{\cos (\phi-\alpha)} \times \frac{\mathrm{V}}{\Delta \mathrm{y}}$
Where

$$
\alpha=\text { Rake angle }=10^{\circ}
$$

$$
\mathrm{V}=\text { cutting speed }=2.5 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta y=M \text { ean thickness of primary shear zone }
$$

$$
=25 \text { microns }=25 \times 10^{-6} \mathrm{~m}
$$

$\phi=$ shear angle
Shear angle, $\quad \tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}$
where $r=$ chip thickness ratio $=0.4$

$$
\begin{aligned}
\tan \phi & =\frac{0.4 \times \cos 10^{\circ}}{1-0.4 \sin 10^{\circ}}=0.4233 \\
\phi & =\tan ^{-1}(0.4233) \cong 23^{\circ}
\end{aligned}
$$

Shear Strain rate $=\frac{\cos 10^{\circ}}{\cos (23-10)} \times \frac{2.5}{25 \times 10^{-6}}=1.0104 \times 10^{5} \mathrm{~s}^{-1}$
sol 10.8 Option (A) is correct.
Drill bit tip is shown as below.

$B C=$ radius of hole or drill bit $(R)=\frac{15}{2}=7.5 \mathrm{~mm}$
From $\triangle A B C \quad \tan 59^{\circ}=\frac{B C}{A B}=\frac{7.5}{A B}$

$$
A B=\frac{7.5}{\tan 59^{\circ}}=4.506 \mathrm{~mm}
$$

Travel distance of drill bit
$\mathrm{I}=$ thickness of steel plate $(\mathrm{t})+$ clearance at approach + clearance at exit

$$
=50 \mathrm{~mm}+2+2+4.506=58.506 \mathrm{~mm}
$$

Total drill time $=\frac{\text { distance }}{\text { feed rate }}$

$$
\mathrm{f}=0.2 \mathrm{~mm} / \mathrm{rev}=\frac{0.2 \times \mathrm{rpm}}{60}=\frac{0.2 \times 500}{60}=1.66 \mathrm{~mm} / \mathrm{s}
$$

Hence drill time,

$$
\mathrm{t}=\frac{58.506}{1.60}=35.1 \mathrm{sec}
$$

sol 10.9 Option (A) is correct.
Punch diameter,
$\mathrm{d}=\mathrm{D}-2 \mathrm{c}-\mathrm{a}$
where
$\mathrm{D}=$ Blank diameter $=25 \mathrm{~mm}$
c $=$ Clearance $=0.06 \mathrm{~mm}$
$a=$ Dieallowance $=0.05 \mathrm{~mm}$
Hence,
$\mathrm{d}=25-2 \times 0.06-0.05=24.83 \mathrm{~mm}$
sol 10.10 Option (C) is correct.
Given: $\quad \mathrm{t}_{1}=8 \mathrm{~mm}, \mathrm{~d}=410 \mathrm{~mm}, \mathrm{r}=205 \mathrm{~mm}$
Reduction of thickness, $\Delta \mathrm{t}=10 \%$ of $\mathrm{t}_{1}=\frac{10}{100} \times 8=0.8 \mathrm{~mm}$

$$
\mathrm{y}=\frac{\Delta \mathrm{t}}{2}=0.4 \mathrm{~mm}
$$

From $\triangle \mathrm{OPQ}, \quad \cos \theta=\left(\frac{r-y}{r}\right)$

$$
\begin{aligned}
& =\left[\frac{205-0.4}{205}\right]=0.99804 \\
\theta & =\cos ^{-1}(0.99804)=3.58^{\circ}
\end{aligned}
$$

A ngle of bite in radians is

$$
\theta=3.58 \times \frac{\pi}{180} \mathrm{rad}=0.062 \mathrm{rad}
$$

Alternate M ethod :

A ngle of bite, $\quad \theta=\tan ^{-1}\left[\sqrt{\frac{t_{i}-t_{f}}{r}}\right]$
Where, $\quad t_{i}=$ Initial thickness $=8 \mathrm{~mm}$

$$
\begin{aligned}
\mathrm{t}_{\mathrm{f}} & =\text { F inal reduced thickness }=8-8 \times \frac{10}{100}=7.2 \mathrm{~mm} \\
\mathrm{r} & =\text { radius of roller }=\frac{410}{2}=205 \mathrm{~mm} \\
\theta & =\tan ^{-1}\left[\sqrt{\frac{8-7.2}{205}}\right]=3.5798^{\circ}
\end{aligned}
$$

A nd in radians, $\quad \theta=3.5798 \times \frac{\pi}{180}=0.0624 \mathrm{rad}$.
sol 10.11 Option (C) is correct.
From power source characteristic,

$$
\begin{equation*}
\frac{V}{O C V}+\frac{1}{S C C}=1 \tag{i}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{V} & =\text { Voltage } \\
\mathrm{OCV} & =\text { Open circuit voltage } \\
\mathrm{SCC} & =\text { Short circuit current } \\
\mathrm{I} & =\text { Current. }
\end{aligned}
$$

From voltage arc length characteristic

$$
V_{\text {arc }}=20+5
$$

For $\mathrm{I}_{1}=5 \mathrm{~mm}, \quad \mathrm{~V}_{1}=20+5 \times 5=45 \mathrm{~V}$
For $\mathrm{I}_{2}=7 \mathrm{~mm}, \quad \mathrm{~V}_{2}=20+5 \times 7=55 \mathrm{~V}$
and $\quad I_{1}=500 \mathrm{Amp}$. and $\mathrm{I}_{2}=400 \mathrm{Amp}$.
Substituting these value in Eq. (i)

$$
\begin{align*}
& \frac{V_{1}}{O C V}+\frac{I_{1}}{S C C}=1 \\
& \frac{45}{O C V}+\frac{500}{S C C}=1 \tag{ii}\\
& \frac{V_{2}}{O C V}+\frac{I_{2}}{S C C}=1 \quad \Rightarrow \frac{55}{O C V}+\frac{400}{S C C}=1 \tag{iii}
\end{align*}
$$

Solving Eq. (ii) and (iii), we get

$$
\begin{aligned}
\mathrm{OCV} & =95 \mathrm{~V} \\
\mathrm{SCC} & =950 \mathrm{Amp} .
\end{aligned}
$$

sol 10.12 Option (A) is correct.
The main objective in rolling is to decrease the thickness of the metal.
The relation for the rolling is given by

$$
\mathrm{F}=\mu \mathrm{P}_{\mathrm{r}}
$$

Where ; $\quad \mathrm{F}=$ tangential frictional force
$\mu=$ C oefficient of friction
$\mathrm{P}_{\mathrm{r}}=$ Normal force between the roll and work piece

Now, from the increase in μ, the draft in cold rolling of sheet increases.
sol 10.13 Option (C) is correct.
If the pores in a sintered compact are filled with an oil, the operation is called as impregnation. The lubricants are added to the porous bearings, gears and pump rotors etc.
sol 10.14 Option (C) is correct.
In transition fit, the tolerance zones of holes and shaft overlap.
Upper limit of hole $\quad=9+0.015=9.015 \mathrm{~mm}$
Lower limit of hole $\quad=9+0.000=9.000 \mathrm{~mm}$
Upper limit of shaft $\quad=9+0.010=9.010 \mathrm{~mm}$
Lower limit of shaft $\quad=9+0.001=9.001 \mathrm{~mm}$

Now, we can easily see from figure dimensions that it is a transition fit.

SOL 10.15 Option (D) is correct.
A green sand mould is composed of a mixture of sand (silica sand, SiO_{2}), clay (which acts as binder) and water.
The word green is associated with the condition of wetness or freshness and because the mould is left in the damp condition, hence the name " green sand mould".
sol 10.16 Option (C) is correct.
GTAW is also called as Tungsten Inert Gas Welding (TIG). The arc is maintained between the work piece and a tungsten electrode by an inert gas. The electrode is non-consumable since its melting point is about $3400^{\circ} \mathrm{C}$.
sol 10.17 Option (B) is correct.
A ustenite is a solid solution of carbon in γ-iron. It has F.C.C structure. It has a solid solubility of upto $2 \% \mathrm{C}$ at $1130^{\circ} \mathrm{C}$.
soL 10.18 Option (B) is correct.
Given : $\alpha=12^{\circ}, \mathrm{t}=0.81 \mathrm{~mm}, \mathrm{t}_{\mathrm{c}}=1.8 \mathrm{~mm}$
Shear angle,

$$
\begin{equation*}
\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha} \tag{i}
\end{equation*}
$$

Chip thickness ratio,

$$
r=\frac{t}{t_{c}}=\frac{0.81}{1.8}=0.45
$$

From equation (i),

$$
\begin{aligned}
\tan \phi & =\frac{0.45 \cos 12^{\circ}}{1-0.45 \sin 12^{\circ}} \\
\phi & =\tan ^{-1}(0.486)=25.91^{\circ} \simeq 26^{\circ}
\end{aligned}
$$

sol 10.19 Option (A) is correct.

M achining process

P. Chemical machining
Q. Electro-chemical machining
R. Electro-discharge machining
S. Ultrasonic machining

Mechanism of material removal

2. Corrosive reaction
3. Ion displacement
4. Fusion and vaporization
5. Erosion

So, correct pairs are, P-2, Q-3, R-4, S-1

SOL 10.20 Option (A) is correct.
Given : $a=50 \mathrm{~mm}, \mathrm{~V}=\mathrm{a}^{3}=(50)^{3}=125000 \mathrm{~mm}^{3}$
Firstly side undergoes volumetric solidification shrinkage of 4%.
So, Volume after shrinkage,

$$
\mathrm{V}_{1}=125000-125000 \times \frac{4}{100}=120000 \mathrm{~mm}^{3}
$$

A fter this, side undergoes a volumetric solid contraction of 6%.
So, volume after contraction,

$$
V_{2}=120000-120000 \times \frac{6}{100}=112800 \mathrm{~mm}^{3}
$$

Here V_{2} is the combined volume after shrinkage and contraction. Let at volume V_{2}, side of cube is b.
So,

$$
\mathrm{b}^{3}=112800=\sqrt[3]{112800}=48.32 \mathrm{~mm}
$$

sol 10.21 Option (C) is correct.
Given : $\tau=300 \mathrm{MPa}, \mathrm{D}=100 \mathrm{~mm}, \mathrm{t}=1.5 \mathrm{~mm}$
Blanking force

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}} & =\tau \times \text { A rea }=\tau \times \pi \mathrm{Dt} \\
\mathrm{~F}_{\mathrm{b}} & =300 \times 10^{6} \times 3.14 \times 100 \times 1.5 \times 10^{-6} \\
& =141300 \mathrm{~N}=141.3 \mathrm{kN} \simeq 141 \mathrm{kN}
\end{aligned}
$$

soL 10.22 Option (C) is correct.
Fracture strength be a material property which depends on the basic crystal structure. Fracture strength depends on the strength of the material.

SOL 10.23 Option (A) is correct.
Gate R atio is defined as the ratio of sprue base area, followed by the total runner area and the total ingate area. The sprue base area is taken is unity.
So, 1:2:4 = Sprue base area : R unner area :T otal ingate area
sol 10.24 Option (D) is correct.
We know that, shaft tolerance

$$
\begin{aligned}
& =\text { U pper limit of shaft }- \text { Lower limit of shaft } \\
& =(35-0.009)-(35-0.025)=34.991-34.975=0.016
\end{aligned}
$$

Fundamental deviation for basic shaft is lower deviation.

$$
=-0.009
$$

sol 10.25 Option (C) is correct.
GO2 represent circular interpolation in clockwise direction.
G91 represent incremental dimension.
sol 10.26 Option (A) is correct.
For Tool A,
$\mathrm{n}=0.45, \mathrm{~K}=90$
For Tool B,
$\mathrm{n}=0.3, \mathrm{~K}=60$
Now, From the Taylor's tool life equation ($\mathrm{VT}^{\mathrm{n}}=\mathrm{K}$)
For Tool A, $\quad \mathrm{V}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}{ }^{0.45}=90$
For Tool B, $\quad V_{B} T_{B}{ }^{0.3}=60$
Dividing equation (i) by equation (ii), we get

$$
\begin{equation*}
\left(\frac{V_{A}}{V_{B}}\right) \times \frac{T_{A}^{0.45}}{T_{B}^{0.3}}=\frac{90}{60} \tag{iii}
\end{equation*}
$$

Let V is the speed above which tool A will have a higher life than B. But at $\mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$
T hen

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V} \text { (let) } \\
& \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}=\mathrm{T} \text { (let) }
\end{aligned}
$$

So, from equation(iii)

$$
\begin{aligned}
\frac{T^{0.45}}{T^{0.3}} & =\frac{3}{2} \Rightarrow T^{0.45-0.3}=\frac{3}{2} \\
\mathrm{~T} & =\left(\frac{3}{2}\right)^{\frac{1}{0.15}}=14.92 \mathrm{~min} .
\end{aligned}
$$

From equation (i), $\quad \mathrm{V} \times \mathrm{T}^{0.45}=90$

$$
V \times(14.92)^{0.45}=90
$$

$$
V=26.67 \mathrm{~m} / \mathrm{min} \simeq 26.7 \mathrm{~m} / \mathrm{min}
$$

SOL 10.27 Option (C) is correct.
Given : $\mathrm{d}_{\mathrm{i}}=100 \mathrm{~mm}, \mathrm{~d}_{0}=110 \mathrm{~mm}, \mathrm{~V}=30 \mathrm{~V}$ olt, $\mathrm{R}=42.4 \Omega, \mathrm{E}_{\mathrm{u}}=64.4 \mathrm{MJ} / \mathrm{m}^{3}$ Each pipe melts 1 mm of material. So, thickness of material melt, $\mathrm{t}=2 \times 1=2 \mathrm{~mm}$
M elting energy in whole volume is given by

$$
\begin{align*}
\mathrm{Q} & =\text { A rea } \times \text { thickness } \times \mathrm{E}_{u}=\frac{\pi}{4}\left(\mathrm{~d}_{0}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right) \times \mathrm{t} \times \mathrm{E}_{\mathrm{u}} \\
\mathrm{Q} & =\frac{\pi}{4}\left[(110)^{2}-(100)^{2}\right] \times 10^{-6} \times 2 \times 10^{-3} \times 64.4 \times 10^{6} \\
& =212.32 \mathrm{~J} \tag{i}
\end{align*}
$$

The amount of heat generated at the contacting area of the element to be weld is,

$$
\begin{aligned}
\mathrm{Q} & =I^{2} R t=\frac{V^{2}}{R} t \\
t & =\frac{Q \times R}{V^{2}}
\end{aligned} \quad I=\frac{V}{R}
$$

Substitute the values, we get

$$
\mathrm{t}=\frac{212.32 \times 42.4}{(30)^{2}}=10 \mathrm{sec}
$$

sol 10.28 Option (A) is correct
Draw a perpendicular from the point A on the line $B F$, which intersect at point C.

Let \quad Angle $\angle \mathrm{BAC}=\theta$
$A E=x$
Now, take the right angle triangle $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\tan \theta=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{10}{30}=\frac{1}{3} \tag{i}
\end{equation*}
$$

From the same triangle $\triangle \mathrm{ADE}$,

$$
\tan \theta=\frac{x}{D E}=\frac{x}{10}
$$

Put the value of $\tan \theta$, from the equation (i),
So,

$$
\frac{1}{3}=\frac{x}{10} \Rightarrow x=\frac{10}{3} \mathrm{~mm}=3.333 \mathrm{~mm}
$$

Now, diameter at $Z=0$ is,

$$
d=20-2 x=20-2 \times 3.333=13.334 \mathrm{~mm}
$$

SOL 10.29 Option (B) is correct.
Given : $\mathrm{t}=5 \mathrm{~mm}, \mathrm{~L}=200 \mathrm{~mm}, \tau_{\mathrm{s}}=100 \mathrm{MPa}$
P enetration to thickness ratio $\frac{\mathrm{p}}{\mathrm{t}}=0.2=\mathrm{k}$
Force vs displacement curve to be rectangle,
So, Shear area,

$$
A=(200+200) \times 5=2000 \mathrm{~mm}^{2}
$$

W ork done,

$$
\mathrm{W}=\tau \times \mathrm{A} \times \mathrm{k} \times \mathrm{t}
$$

Substitute the values, we get

$$
\begin{aligned}
\mathrm{W} & =100 \times 10^{6} \times 2000 \times 10^{-6} \times 0.2 \times 5 \times 10^{-3} \\
& =100 \times 2 \times 0.2 \times 5=200 \mathrm{~J} \text { oule }
\end{aligned}
$$

SOL 10.30 Option (B) is correct.
Given: \quad Shear $S=20 \mathrm{~mm}$
Now force vs displacement curve to be trapezoidal.
So, maximum force is given by,

$$
\begin{aligned}
F_{\max } & =\frac{W}{(\mathrm{kt}+\text { Shear })}=\frac{200}{(0.2 \times 5+20) \times 10^{-3}} \\
& =\frac{200}{21} \times 10^{-3}=9.52 \times 10^{3} \simeq 10 \mathrm{kN}
\end{aligned}
$$

sol 10.31 Option (D) is correct.
The cutting forces decrease with an increase in cutting speed, but it is substantially smaller than the increase in speed. W ith the increase in speed, friction decreases at the tool chip interface. The thickness of chip reduces by increasing the speed.

SOL 10.32 Option (A) is correct.
Two streams of liquid metal which are not hot enough to fuse properly result into a casting defect known as cold shut. This defect is same as in sand mould casting. The reasons are :-
(i) Cooling of die or loss of plasticity of the metal.
(ii) Shot speed less.
(iii) Air-vent or overflow is closed.
soL 10.33 Option (B) is correct.

(i) Simple Cubic

Effective no. of Lattice

$$
\frac{1}{8} \times 8=1
$$

(ii) BCC

Effective no. of Lattice

$$
\frac{1}{8} \times 8+1=2
$$

(iii) FCC

Effective no. of Lattice
$\frac{1}{8} \times 8+\frac{1}{2} \times 6=4$
sol 10.34 Option (C) is correct.
Correct data structure for solid models is given by,
Vertices \rightarrow edges \rightarrow faces \rightarrow solid parts
sol 10.35 Option (D) is correct.
Given : $\alpha=0^{\circ}$
We know that, shear strain

$$
\begin{array}{lr}
\mathrm{s}=\cot \phi+\tan (\phi-\alpha) & \alpha=0^{\circ} \\
\mathrm{S}=\cot \phi+\tan \phi & \ldots \text { (i) }
\end{array}
$$

For minimum value of shear strain differentiate equation (i) w.r.t. ϕ

$$
\begin{equation*}
\frac{\mathrm{ds}}{\mathrm{~d} \phi}=\frac{\mathrm{d}}{\mathrm{~d} \phi}(\cot \phi+\tan \phi)=-\operatorname{cosec}^{2} \phi+\sec ^{2} \phi \tag{ii}
\end{equation*}
$$

A gain differentiate w.r.t. to ϕ,

$$
\begin{array}{r}
\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{~d} \phi^{2}}=-2 \operatorname{cosec} \phi \times(-\operatorname{cosec} \phi \cot \phi)+2 \sec \phi \times(\sec \phi \tan \phi) \\
=+2 \operatorname{cosec}^{2} \phi \cot \phi+2 \sec ^{2} \phi \tan \phi \tag{iii}
\end{array}
$$

U sing the principle of minima - maxima and put $\frac{\mathrm{ds}}{\mathrm{d} \phi}=0$ in equation(ii)

$$
\begin{aligned}
-\operatorname{cosec}^{2}+\sec ^{2} \phi & =0 \\
-\frac{1}{\sin ^{2} \phi}+\frac{1}{\cos ^{2} \phi} & =0 \\
\frac{\cos ^{2} \phi-\sin ^{2} \phi}{\sin ^{2} \phi \times \cos ^{2} \phi} & =0 \\
\cos ^{2} \phi-\sin ^{2} \phi & =0
\end{aligned}
$$

$$
\begin{aligned}
\cos 2 \phi & =0 \\
2 \phi & =\cos ^{-1}(0)=\frac{\pi}{2} \\
\phi & =\frac{\pi}{4}
\end{aligned}
$$

From equation (iii), at $\phi=\frac{\pi}{4}$

$$
\begin{aligned}
& \left(\frac{d^{2} s}{d \phi^{2}}\right)_{\phi=\frac{\pi}{4}}=2 \operatorname{cosec}^{2} \frac{\pi}{4} \times \cot \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{4} \tan \frac{\pi}{4} \\
& \left(\frac{d^{2} s}{d \phi^{2}}\right)_{\phi=\frac{\pi}{4}}=2 \times 2 \times 1+2 \times 2 \times 1=8 \\
& \left(\frac{d^{2} s}{d \phi^{2}}\right)_{\phi=\frac{\pi}{4}}>0
\end{aligned}
$$

Therefore it is minimum at $\phi=\frac{\pi}{4}$, so from equation (i),

$$
(\mathrm{s})_{\min }=\cot \frac{\pi}{4}+\tan \frac{\pi}{4}=1+1=2
$$

SOL 10.36 Option (A) is correct.
Given : $\mathrm{L}=0.2 \mathrm{~mm}, \mathrm{~A}=20 \mathrm{~mm} \times 20 \mathrm{~mm}=400 \mathrm{~mm}^{2}, \mathrm{~V}=12 \mathrm{~V}$ olt $\rho=2 \Omega \mathrm{~cm}=2 \times 10 \Omega \mathrm{~mm}, \mathrm{Z}=55.85, \mathrm{v}=2, \mathrm{~F}=96540$ Coulombs We know that R esistance is given by the relation

$$
\begin{aligned}
\mathrm{R} & =\frac{\rho \mathrm{L}}{\mathrm{~A}}=\frac{2 \times 10 \times 0.2}{20 \times 20}=0.01 \Omega \\
\mathrm{I} & =\frac{\mathrm{V}}{\mathrm{R}}=\frac{12}{0.01}=1200 \mathrm{~A}
\end{aligned}
$$

Rate of mass removal $\dot{\mathrm{m}}=\frac{\mathrm{I}}{\mathrm{F}} \times \frac{\mathrm{Z}}{\mathrm{V}}=\frac{1200}{96540} \times \frac{55.85}{2}=0.3471 \mathrm{~g} / \mathrm{sec}$
sol 10.37 Option (C) is correct.

NC code

P. M 05
Q. G 01
R. G 04
S. G 09

D efinition

3. Spindle stop
4. Linear interpolation
5. Dwell
6. A bsolute coordinate system

So, correct pairs are, P-3, Q-4, R-2, S-1

SOL 10.38 Option (A) is correct.
Since diameter 60 lies in the diameter step of $50-80 \mathrm{~mm}$, therefore the geometric mean diameter.

$$
D=\sqrt{50 \times 80}=63.246 \mathrm{~mm}
$$

Fundamental tolerance unit.

$$
\begin{aligned}
\mathrm{i} & =0.45 \mathrm{D}^{1 / 3}+0.001 \mathrm{D}=0.45(63.246)^{1 / 3}+0.001 \times 63.246 \\
& =1.856 \mu \mathrm{~m}=0.00186 \mathrm{~mm}
\end{aligned}
$$

Standard tolerance for the hole of grades 8 (IT 8)

$$
=25 i=25 \times 0.00186=0.0465 \mathrm{~mm}
$$

Fundamental deviation for ' f ' shaft

$$
\begin{aligned}
\mathrm{e}_{f} & =-5.5 \mathrm{D}^{0.41}=-5.5(63.246)^{0.41} \\
& =-30.115 \mu \mathrm{~m}=-0.030115 \mathrm{~mm}
\end{aligned}
$$

Upper limit of shaft $=B$ asic size $+F$ undamental deviation

$$
=60-0.030115=59.970 \mathrm{~mm}
$$

Lower limit of shaft $=$ Upper limit - T olerance $=59.970-0.0465$

$$
=59.924
$$

sol 10.39 Option (D) is correct.

Column I

P. M etallic Chills
Q. M etallic Chaplets
R. Riser
S. Exothermic Padding

Column II

4. Progressive solidification
5. Support for the core
6. Reservoir of the molten metal
7. Control cooling of critical sections

So, correct pairs are P-4, Q-1, R-2, S-3

SOL 10.40 Option (A) is correct.
Given : $\mathrm{V}_{1}=60 \mathrm{~m} / \mathrm{min}, \mathrm{T}_{1}=81 \mathrm{~min}, \mathrm{~V}_{2}=90 \mathrm{~m} / \mathrm{min}, \mathrm{T}_{2}=36 \mathrm{~min}$.
From the Taylor's tool life Equation

$$
\mathrm{V} \mathrm{~T}^{\mathrm{n}}=\text { Constant }(\mathrm{K})
$$

For case (I),

$$
\mathrm{V}_{1} \mathrm{~T}_{1}^{\mathrm{n}}=\mathrm{K}
$$

$$
\begin{equation*}
60 \times(81)^{n}=K \tag{i}
\end{equation*}
$$

For case (II), $\quad \mathrm{V}_{2} \mathrm{~T}_{2}{ }^{\mathrm{n}}=\mathrm{K}$

$$
\begin{equation*}
90 \times(36)^{n}=K \tag{ii}
\end{equation*}
$$

By dividing equation (i) by equation (ii),

$$
\begin{aligned}
\frac{60 \times(81)^{n}}{90 \times(36)^{n}} & =\frac{K}{K}=1 \\
\left(\frac{81}{36}\right)^{n} & =\frac{90}{60} \\
\left(\frac{9}{4}\right)^{n} & =\left(\frac{3}{2}\right)
\end{aligned}
$$

Taking (log) both the sides,

$$
\begin{aligned}
\mathrm{n} \log \left(\frac{9}{4}\right) & =\log \left(\frac{3}{2}\right) \\
\mathrm{n} \times 0.3522 & =0.1760 \\
\mathrm{n} & =0.5
\end{aligned}
$$

Substitute $\mathrm{n}=0.5$ in equation (i), we get

$$
K=60 \times(81)^{0.5}=540
$$

So,
$\mathrm{n}=0.5$ and $\mathrm{K}=540$
sol 10.41 Option (C) is correct.
Take,

$$
\mathrm{n}=0.5
$$

From Taylor's tool life equation

$$
\begin{align*}
\mathrm{VT}^{\mathrm{n}} & =\mathrm{C} \\
\mathrm{VT}^{0.5} & =\mathrm{C} \\
\mathrm{~V} & =\frac{1}{\sqrt{\mathrm{~T}}} \tag{i}
\end{align*}
$$

Given that cutting speed is halved

$$
\mathrm{V}_{2}=\frac{1}{2} \mathrm{~V}_{1} \quad \Rightarrow \mathrm{~V}_{2}=\frac{1}{2}
$$

Now, from equation (i),

$$
\begin{aligned}
V_{2} & =\sqrt{T_{1}} \\
\frac{T_{2}}{2} & =\sqrt{T_{1}} \\
\frac{1}{T_{2}} & =\frac{T_{1}}{T_{2}} \\
\frac{T_{2}}{T_{1}} & =4 \quad \Rightarrow T_{2}=4 T_{1}
\end{aligned}
$$

Now, percentage increase in tool life is given by

$$
\begin{aligned}
& =\frac{T_{2}-T_{1}}{T_{1}} \times 100=\frac{4 T_{1}-T_{1}}{T_{1}} \times 100 \\
& =\frac{3 T_{1}}{T_{1}} \times 100=300 \%
\end{aligned}
$$

sol 10.42 Option (C) is correct

Coon's surface is obtained by blending four boundary curves. The main advantage of Coon's surface is its ability to fit a smooth surface through digitized points in space such as those used in reverse engineering.
sol 10.43 Option (C) is correct.
Internal gear cutting operation can be performed by shaping with pinion cutter. In the case of 'rotating pinion type cutter', such an indexing is not required, therefore, this type is more productive and so common.
soL 10.44 Option (B) is correct.
Since metal shrinks on solidification and contracts further on cooling to room temperature, linear dimensions of patterns are increased in respect of those of the finished casting to be obtained. This is called the "Shrinkage allowance".
The riser can compensate for volume shrinkage only in the liquid or transition stage and not in the solid state.
So, Volume of metal that compensated from the riser $=3 \%+4 \%=7 \%$
sol 10.45 Option (D) is correct.
Interconversion between ASA (American Standards Association) system and ORS (Orthogonal Rake System)

$$
\begin{aligned}
\tan \alpha_{\mathrm{s}} & =\sin \phi \tan \alpha-\cos \phi \tan \mathrm{i} \\
\alpha_{\mathrm{s}} & =\text { Side rake angle } \\
\alpha & =\text { orthogonal rake angle } \\
\phi & =\text { principle cutting edge angle }=0 \leq \phi \leq 90^{\circ} \\
\mathrm{i} & =\text { inclination angle (i=0 for ORS) } \\
\alpha_{\mathrm{s}} & =\alpha(\text { Given }) \\
\tan \alpha_{\mathrm{s}} & =\sin \phi \tan \alpha-\cos \phi \tan \left(0^{\circ}\right) \\
\tan \alpha_{\mathrm{s}} & =\sin \phi \tan \alpha \\
\frac{\tan \alpha_{\mathrm{s}}}{\tan \alpha} & =\sin \phi \\
1 & =\sin \phi \\
\phi & =\sin ^{-1}(1)=90^{\circ}
\end{aligned}
$$

$$
\text { where } \quad \alpha_{\mathrm{s}}=\text { Side rake angle }
$$

soL 10.46 Option (B) is correct.
Given: $\quad \rho=6000 \mathrm{~kg} / \mathrm{m}^{3}=6 \mathrm{gm} / \mathrm{cm}^{3}, \mathrm{~F}=96500$ coulomb/mole $M R R=50 \mathrm{~mm}^{3} / \mathrm{s}=50 \times 10^{-3} \mathrm{~cm}^{3} / \mathrm{s}, \mathrm{I}=2000 \mathrm{~A}$
For Iron: Atomic weight $=56$
Valency $=2$

For Metal P :Atomic weight $=24$

$$
\text { Valency }=4
$$

The metal Removal rate

$$
\begin{aligned}
\mathrm{MRR} & =\frac{\mathrm{el}}{\mathrm{~F} \rho} \\
50 \times 10^{-3} & =\frac{\mathrm{e} \times 2000}{96500 \times 6} \\
\mathrm{e} & =\frac{50 \times 10^{-3} \times 96500 \times 6}{2000}=14.475
\end{aligned}
$$

Let the percentage of the metal P in the alloy is x.
So,

$$
\begin{aligned}
\frac{1}{\mathrm{e}} & =\frac{100-\mathrm{x}}{100} \times \frac{\mathrm{V}_{\mathrm{Fe}}}{\mathrm{~A}_{\mathrm{t}_{\mathrm{fe}}}}+\frac{\mathrm{x}}{100} \times \frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{~A}_{\mathrm{tp}}} \\
\frac{1}{14.475} & =\frac{100-\mathrm{x}}{100} \times \frac{2}{56}+\frac{\mathrm{x}}{100} \times \frac{4}{24} \\
\frac{1}{14.475} & =\left(1-\frac{\mathrm{x}}{100}\right) \frac{1}{28}+\frac{\mathrm{x}}{100} \times \frac{1}{6} \\
\frac{1}{14.475} & =\mathrm{x}\left[\frac{1}{600}-\frac{1}{2800}\right]+\frac{1}{28} \\
\frac{1}{14.475-\frac{1}{28}} & =x \times \frac{11}{8400} \\
\frac{541}{16212} & =\frac{11 \mathrm{x}}{8400} \\
x & =\frac{541 \times 8400}{16212 \times 11} \simeq 25
\end{aligned}
$$

SOL 10.47 Option None of these.
Given : $\mathrm{t}_{\mathrm{i}}=20 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=18 \mathrm{~mm}, \mathrm{~b}=100 \mathrm{~mm}$,
$\mathrm{R}=250 \mathrm{~mm}, \mathrm{~N}=10 \mathrm{rpm}, \sigma_{0}=300 \mathrm{MPa}$
We know, R oll strip contact length is given by,

$$
\begin{aligned}
L=\theta \times R & =\sqrt{\frac{t_{i}-t_{f}}{R}} \times R \\
& =\sqrt{R\left(t_{i}-t_{f}\right)}
\end{aligned}
$$

So,

$$
\begin{aligned}
\mathrm{L} & =\sqrt{250 \times 10^{-3}(20-18) 10^{-3}} \\
& =22.36 \times 10^{-3}
\end{aligned}
$$

Rolling load,

$$
F=L b \sigma_{0}
$$

$$
=22.36 \times 10^{-3} \times 100 \times 10^{-3} \times 300 \times 10^{6}
$$

$$
=670.8 \mathrm{kN}
$$

Power

$$
\begin{aligned}
P & =F \times v=670.8 \times\left(\frac{\pi \mathrm{DN}}{60}\right) \\
& =670.8 \times\left(\frac{3.14 \times 0.5 \times 10}{60}\right)=175.5 \mathrm{~kW}
\end{aligned}
$$

soL 10.48 Option (B) is correct.
Given : $\eta_{\mathrm{m}}=0.5, \eta_{\mathrm{h}}=0.7, \mathrm{~A}=5 \mathrm{~mm}^{2}, \mathrm{E}_{\mathrm{u}}=10 \mathrm{~J} / \mathrm{mm}^{3}, \mathrm{P}=2 \mathrm{~kW}$,
$\mathrm{V}(\mathrm{mm} / \mathrm{s})=$?
Total energy required to melt,

$$
E=E_{u} \times A \times V=10 \times 5 \times v=50 \mathrm{VJ} / \mathrm{sec}
$$

Power supplied for welding,

$$
\mathrm{P}_{\mathrm{s}}=\mathrm{P} \times \eta_{\mathrm{h}} \times \eta_{\mathrm{m}}=2 \times 10^{3} \times 0.5 \times 0.7=700 \mathrm{~W}
$$

From energy balance,
Energy required to melt = Power supplied for welding

$$
50 \mathrm{~V}=700 \quad \Rightarrow \mathrm{~V}=14 \mathrm{~mm} / \mathrm{sec}
$$

sol 10.49 Option (A) is correct.
Seamless cylinders and tubes can be made by hot drawing or cupping.
The thickness of the cup is reduced and its length increased by drawing it through a series of dies having reduced clearance between the die and the punch. Due to reduction in its thickness, blanks shows a tendency to wrinkle up around the periphery because of buckling due to circumferential compression an due to this compression blank holder pressure increases.

SOL 10.50 Option (C) is correct.
The feed drive serves to transmit power from the spindle to the second operative unit of the lathe, that is, the carriage. It, thereby converts the rotary motion of the spindle into linear motion of the carriage.
So, Q and E are connected $\& U_{s}$ is placed between Q and E.
sol 10.51 Option (C) is correct.
A dial indicator (gauge) or clock indicator is a very versatile and sensitive instrument. It is used for :
(i) determining errors in geometrical form, for example, ovality, out-of roundness, taper etc.
(ii) determining positional errors of surface
(iii) taking accurate measurements of deformation.

Here equal deflections are shown in both the sensor P and sensor Q. So drill spindle rotational axis is parallel to the drill spindle tape hole axis.

SOL 10.52 Option (D) is correct.
Given : $\tau_{\mathrm{s}}=250 \mathrm{MPa}, \mathrm{V}=180 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.20 \mathrm{~mm} / \mathrm{rev}$
$\mathrm{d}=3 \mathrm{~mm}, \mathrm{r}=0.5, \alpha=7^{\circ}$
We know from merchant's theory,

Shear plane angle $\quad \tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}=\frac{0.5 \cos 7^{\circ}}{1-0.7 \sin 7^{\circ}}=\frac{0.496}{0.915}=0.54$

$$
\phi=\tan ^{-1}(0.54)=28.36 \simeq 28^{\circ}
$$

A verage stress on the shear plane area are

$$
\tau_{\mathrm{s}}=\frac{\mathrm{F}_{\mathrm{s}}}{\mathrm{~A}_{\mathrm{s}}} \quad \Rightarrow \mathrm{~F}_{\mathrm{s}}=\tau_{\mathrm{s}} \times \mathrm{A}_{\mathrm{s}}
$$

where, A_{S} is the shear plane area $=\frac{b t}{\sin \phi}$
for orthogonal operation $\quad b \cdot t=d \cdot f$
So, $\quad F_{s}=\frac{\tau_{\mathrm{s}} \times \mathrm{d} \times \mathrm{f}}{\sin \phi}=\frac{250 \times 3 \times 0.20}{\sin 28^{\circ}}=319.50 \simeq 320 \mathrm{~N}$
SOL 10.53 Option (B) is correct.
Now we have to find cutting force (F_{c}) and frictional force (F_{t}).
From merchant's theory, $2 \phi+\beta-\alpha=90^{\circ}$

$$
\beta=90^{\circ}+\alpha-2 \phi=90^{\circ}+7-2 \times 28=41^{\circ}
$$

We know that

$$
\begin{aligned}
& \frac{\mathrm{F}_{\mathrm{c}}}{\mathrm{~F}_{\mathrm{s}}}=\frac{\cos (\beta-\alpha)}{\cos (\phi+\beta-\alpha)} \quad \mathrm{F}_{\mathrm{s}}=\text { Share force } \\
& \mathrm{F}_{\mathrm{c}}=320 \times \frac{\cos \left(41^{\circ}-7^{\circ}\right)}{\cos \left(28^{\circ}+41^{\circ}-7^{\circ}\right)}=320 \times 1.766 \simeq 565 \mathrm{~N}
\end{aligned}
$$

And

$$
\mathrm{F}_{\mathrm{s}}=\mathrm{F}_{\mathrm{c}} \cos \phi-\mathrm{F}_{\mathrm{t}} \sin \phi
$$

So,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}} & =\frac{\mathrm{F}_{\mathrm{c}} \cos \phi-\mathrm{F}_{\mathrm{s}}}{\sin \phi}=\frac{565 \times \cos 28^{\circ}-320}{\sin 28^{\circ}}=\frac{178.865}{0.47} \\
& =381.56 \mathrm{~N} \simeq 381 \mathrm{~N}
\end{aligned}
$$

soL 10.54 Option (B) is correct.
Given : $N=200$ step/rev., $p=4 \mathrm{~mm}, \mathrm{U}=\frac{1}{4}, \mathrm{f}=10000 \mathrm{P}$ ulse/ min.
In a CNC machine basic length unit (BLU) represents the smallest distance.
Revolution of motor in one step $=\frac{1}{200}$ rev./ step

$$
\text { M ovement of lead screw }=\frac{1}{200} \times \frac{1}{4}=\frac{1}{800} \text { rev. of load screw }
$$

M ovement from lead screw is transferred to table.

$$
\begin{aligned}
\text { i.e. M ovement of table } & =\frac{1}{800} \times \text { Pitch }=\frac{1}{800} \times 4=\frac{1}{200} \\
& =0.005=5 \text { microns. }
\end{aligned}
$$

soL 10.55 Option (C) is correct.
We know $\quad B L U=$ Revolution of motor \times Gear ratio \times pitch

$$
=\frac{1}{200} \times \frac{1}{2} \times 4=\frac{1}{100}=10 \text { micros }
$$

We see that f is unchanged and value of G ear ratio is changed by $1 / 2$.

SOL 10.56 Option (B) is correct.
The carbon alloy having less than 2% carbon are called "steels" and those containing over 2% carbon are called cast irons.
Now, steel may further be classified into two groups.
(i) Steels having less than 0.83% carbon are called "hypo-eutectoid steels"
(ii) Those having more than 0.83% carbon called "hyper-eutectoid steels"
soL 10.57 Option (D) is correct.
The hot chamber die casting process is used for low melting temperature alloys.
Tin is a low melting temperature alloy.
soL 10.58 Option (C) is correct.
Friction welding is defined as " A solid state welding process wherein coalescence is produced by heat obtained from mechanically induced sliding motion between rubbing surfaces.
soL 10.59 Option (B) is correct.
Given: $D=150 \mathrm{~mm}, \mathrm{~V}=90 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.24 \mathrm{~mm} / \mathrm{rev}$.
$\mathrm{d}=2 \mathrm{~mm}, \mathrm{t}_{\mathrm{c}}=0.48 \mathrm{~mm}, \alpha=0^{\circ}, \lambda=90^{\circ}$
Uncut chip thickness, $\quad \mathrm{t}=\mathrm{f} \sin \lambda=0.24 \times \sin 90^{\circ}=0.24 \mathrm{~mm}$
Chip thickness ratio, $\quad r=\frac{t}{\mathrm{t}_{\mathrm{c}}}=\frac{0.24}{0.48}=\frac{1}{2}$
From merchant's theory,
Shear angle, $\quad \tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}=\frac{0.5 \cos 0^{\circ}}{1-0.5 \times \sin 0^{\circ}}=0.5$

$$
\phi=\tan ^{-1}(0.5)=26.56^{\circ}
$$

sol 10.60 Option (C) is correct.
A spindle motor is a small, high precision, high reliability electric motor that is used to rotate the shaft or spindle used in machine tools for performing a wide rang of tasks like drilling, grinding, milling etc.
A stepper motor have not all these characteristic due to change of direction of rotation with time interval.
sol 10.61 Option (D) is correct.

A ccording to Caine's relation
Solidification time,

$$
(T)=q\left(\frac{V}{A}\right)^{2}
$$

W here : $\mathrm{V}=\mathrm{V}$ olume, $\mathrm{A}=$ Surface area, $\mathrm{Q}=\mathrm{F}$ low rate
$q=$ constant of proportionality depends upon composition of cast metal
Using the subscript c for the cube and subscript s for the sphere.
Given : $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{s}}$ So, $\mathrm{T} \propto \frac{1}{\mathrm{~A}^{2}}$
So,

$$
\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{~T}_{\mathrm{s}}}=\left(\frac{\mathrm{A}_{s}}{\mathrm{~A}_{\mathrm{c}}}\right)^{2}=\left(\frac{4 \pi r^{2}}{6 l^{2}}\right)^{2}=\left(\frac{4 \pi}{6}\right)^{2}\left(\frac{r}{\Gamma}\right)^{4}
$$

SOL 10.62 Question (A) is correct.
Metal removel rate depends upon current density and it increases with current. The MRR increase with thermal conductivity also

$$
\text { W ear ratio }=\frac{\text { V olume of metal removed work }}{\text { V olume of metal removed tool }}
$$

The volume of metal removed from the tool is very less compare to the volume of metal removed from the work.
So, Wear ration \propto volume of metal removed work.
Hence, both the wear rate and MRR are expected to be high.

SOL 10.63 Option (D) is correct.
Given : $E=2 \mathrm{~J} / \mathrm{mm}^{3}, \mathrm{~V}=120 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.2 \mathrm{~mm} / \mathrm{rev} .=\mathrm{t}, \mathrm{d}=2 \mathrm{~mm}=\mathrm{b}$
The specific energy. $\quad E=\frac{F_{c}}{b \cdot t}$
In orthogonal cutting $b \times t=d \times f$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{c}} & =\mathrm{E} \times \mathrm{b} \times \mathrm{t}=\mathrm{E} \times \mathrm{d} \times \mathrm{f} \\
& =2 \times 10^{9} \times 2 \times 10^{-3} \times 0.2 \times 10^{-3}=800 \mathrm{~N}
\end{aligned}
$$

SOL 10.64 Option (A) is correct.
Given: $\mathrm{OCV}=80 \mathrm{~V}, \mathrm{SCC}=800 \mathrm{~A}$
In Case (I): $I=500 \mathrm{~A}$ and $\mathrm{L}=5.0 \mathrm{~mm}$
And in, Case (II): $I=460 \mathrm{~A}$, and $\mathrm{L}=7.0 \mathrm{~mm}$
We know that, for welding arc,

$$
\begin{equation*}
\mathrm{E}=\mathrm{a}+\mathrm{bL} \tag{i}
\end{equation*}
$$

A nd For power source,

$$
\begin{equation*}
E=O C V-\left(\frac{O C V}{S C C}\right) I=80-\left(\frac{80}{800}\right) I \tag{ii}
\end{equation*}
$$

Where : $\mathrm{I}=$ Arc current, $\mathrm{E}=\mathrm{Arc}$ voltage
For stable arc,

$$
\begin{align*}
& \text { Welding arc }=\text { P ower source } \\
& 80-\left(\frac{80}{800}\right) I=\mathrm{a}+\mathrm{bL} \tag{iii}
\end{align*}
$$

Find the value of $a \& b$, from the case (I) \& (II)
For case (I), $\quad I=500 \mathrm{~A}, \mathrm{~L}=5 \mathrm{~mm}$
So, $\quad 80-\left(\frac{80}{800}\right) \times 500=a+5 b$

$$
\begin{align*}
80-50 & =a+5 b \\
a+5 b & =30 \tag{iv}
\end{align*}
$$

For case II,

$$
\mathrm{I}=460 \mathrm{~A}, \mathrm{~L}=7 \mathrm{~mm}
$$

So,

$$
\begin{align*}
80-\frac{80}{800} \times 460 & =a+7 b \\
80-46 & =a+7 b \\
a+7 b & =34 \tag{v}
\end{align*}
$$

Subtracting equation (iv) from equation (v),

$$
\begin{aligned}
(a+7 b)-(a+5 b) & =34-30 \\
2 b & =4 \quad \Rightarrow b=2
\end{aligned}
$$

From equation (iv), put $b=2$

$$
a+5 \times 2=30 \quad \Rightarrow a=20
$$

Substituting the value of $a \& b$ in equation (i), we get

$$
E=20+2 L
$$

SOL 10.65 Option (C) is correct.
Given: Hole, $40_{+0.000}^{+0.050} \mathrm{~mm}$
M inimum hole size $=40 \mathrm{~mm}$
M inimum clearance $=0.01 \mathrm{~mm}$
M aximum size of hole $=40+0.050=40.050 \mathrm{~mm}$
Tolerance of shaft $=0.04 \mathrm{~mm}$

Given that the mating shaft has a clearance fit with minimum clearance of 0.01 mm.

So, M aximum size of shaft $=M$ inimum holesize $-M$ inimum clearance

$$
=40-0.01=39.99 \mathrm{~mm}
$$

And M inimum size of shaft $=M$ aximum shaft size $-T$ olerance of shaft

$$
=39.99-0.04=39.95
$$

M aximum clearance,

$$
\begin{aligned}
c & =M \text { aximum size of hole }-M \text { inimum size of shaft } \\
& =40.050-39.95=0.1 \mathrm{~mm}
\end{aligned}
$$

sol 10.66 Option (C) is correct
Given : $\lambda=90^{\circ}, \mathrm{F}_{\mathrm{c}}=1000 \mathrm{~N}, \mathrm{~F}_{\mathrm{t}}=800 \mathrm{~N}, \phi=25^{\circ}, \alpha=0^{\circ}$
We know that, from the merchant's theory,

$$
\frac{\mathrm{Friction} \mathrm{force}^{(F)}}{\text { Normal force }(N)}=\mu=\frac{\mathrm{F}_{\mathrm{c}} \tan \alpha+\mathrm{F}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{t}} \tan \alpha}
$$

Substitute the values, we get

$$
\frac{\mathrm{F}}{\mathrm{~N}}=\frac{1000 \tan 0^{\circ}+800}{1000-800 \tan 0^{\circ}}=\frac{800}{1000}=0.80
$$

SOL 10.67 Option (C) is correct.
Given: $\mathrm{w}=2 \mathrm{~mm}, \mathrm{I}=10 \mathrm{kA}=10^{4} \mathrm{~A}, \mathrm{t}=10 \mathrm{milli}$ second $=10^{-2} \mathrm{sec}$.
$\mathrm{T}_{\mathrm{a}}=293 \mathrm{~K}, \mathrm{~T}_{\mathrm{m}}=1793 \mathrm{~K}, \rho=7000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~L}_{\mathrm{f}}=300 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{C}=800 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \mathrm{R}=500 \mathrm{micro}-\mathrm{ohm}=500 \times 10^{-6} \mathrm{ohm}$
Radius of sphere, $\quad r=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
Heat supplied at the contacting area of the element to be welded is

$$
Q_{s}=I^{2} R t=\left(10^{4}\right)^{2} \times 500 \times 10^{-6} \times 10^{-2}=500 J
$$

As fusion zone is spherical in shape.
M ass,

$$
\begin{aligned}
\mathrm{m} & =\rho \times \mathrm{v}=7000 \times \frac{4}{3} \times 3.14 \times\left(2 \times 10^{-3}\right)^{3} \\
& =2.344 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

Total heat for melting (heat input)

$$
Q_{i}=m L_{f}+m c\left(T_{m}-T_{a}\right)
$$

W here
$\mathrm{mL}_{\mathrm{f}}=$ L atent heat
Substitute the values, we get

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{i}}= & 2.344 \times 10^{-4}\left[300 \times 10^{3}+800(1793-293)\right] \\
& =2.344 \times 10^{-4}\left[300 \times 10^{3}+800 \times 1500\right]=351.6 \mathrm{~J} \\
& \text { Efficiency } \eta=\frac{\text { Heat input }\left(\mathrm{Q}_{\mathrm{i}}\right)}{\text { Heat supplied }\left(\mathrm{Q}_{\mathrm{s}}\right)} \times 100
\end{aligned}
$$

$$
\eta=\frac{351.6}{500} \times 100=70.32 \% \simeq 70.37 \%
$$

sol 10.68 Option (C) is correct.
Given: $d_{i}=200 \mathrm{~mm}, h_{i}=l_{i}=60 \mathrm{~mm}, d_{f}=400 \mathrm{~mm}$
Volume of disc remains unchanged during the whole compression process.
So Initial volume $=$ Final volume.

$$
\begin{aligned}
\frac{\pi}{4} d_{i}^{2} \times I_{i} & =\frac{\pi}{4} d_{f}^{2} \times I_{f} \\
I_{f} & =\frac{d_{i}^{2}}{\mathrm{I}_{f}^{2}} \\
I_{f} & =60 \times\left(\frac{200}{400}\right)^{2}=60 \times \frac{1}{4}=15 \mathrm{~mm} \\
\varepsilon & =\frac{\Delta I}{T}=\frac{I_{i}-I_{f}}{I_{f}}=\frac{60-15}{15}=3 \\
\varepsilon_{0} & =\ln (1+\varepsilon)=\ln (1+3)=1.386
\end{aligned}
$$

Strain,
True strain,
sol 10.69 Option (D) is correct.
Let, \quad Bite angle $=\theta$
$\mathrm{D}=400 \mathrm{~mm}, \mathrm{t}_{\mathrm{i}}=16 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~mm}$
Bite angle,

$$
\begin{aligned}
\tan \theta & =\sqrt{\frac{\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{f}}}{\mathrm{R}}}=\sqrt{\frac{16-10}{200}}=\sqrt{0.03} \\
\theta & =\tan ^{-1}(0.173)=9.815^{\circ} \simeq 9.936^{\circ}
\end{aligned}
$$

sol 10.70 Option (D) is correct.

Processes

P. Blanking
Q. Stretch Forming
R. Coining
S. Deep Drawing

A ssociated state of stress

3. Shear
4. Tension
5. Compression
6. Tension and Compression

So, correct pairs are, P-3, Q-1, R-2, S-4

SOL 10.71 Option (A) is correct.
Blanking force F_{b} is directly proportional to the thickness of the sheet ' t ' and diameter of the blanked part ' d '.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}} \propto \mathrm{~d} \times \mathrm{t} \quad \mathrm{~F}_{\mathrm{b}}=\tau \times \mathrm{d} \times \mathrm{t} \tag{i}
\end{equation*}
$$

For case (I) : $\mathrm{F}_{\mathrm{b} 1}=5.0 \mathrm{kN}, \mathrm{d}_{1}=\mathrm{d}, \mathrm{t}_{1}=\mathrm{t}$
For case (II): $\mathrm{d}_{2}=1.5 \mathrm{~d}, \mathrm{t}_{2}=0.4 \mathrm{t}, \mathrm{F}_{\mathrm{b} 2}=$?
From equation (i)

$$
\frac{\mathrm{F}_{\mathrm{b} 2}}{\mathrm{~F}_{\mathrm{b} 1}}=\frac{\mathrm{d}_{2} \mathrm{t}_{2}}{\mathrm{~d}_{1}{ }_{1}}
$$

$$
\mathrm{F}_{\mathrm{b} 2}=5 \times \frac{1.5 \mathrm{~d} \times 0.4 \mathrm{t}}{\mathrm{~d} \times \mathrm{t}}=3 \mathrm{kN}
$$

sol 10.72 Option (C) is correct.
Let molten metal enters at section 1st and leaves the object at section 2nd

Given: $A_{1}=650 \mathrm{~mm}^{2}, \mathrm{Q}=6.5 \times 10^{5} \mathrm{~mm}^{3} / \mathrm{sec}, \mathrm{g}=10^{4} \mathrm{~mm} / \mathrm{sec}^{2}$ Now, for section 1st, flow rate

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{A}_{1} \mathrm{~V}_{1} \\
\mathrm{~V}_{1} & =\frac{\mathrm{Q}}{\mathrm{~A}_{1}}=\frac{6.5 \times 10^{5}}{650}=1000 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

A pplying Bernoulli's equation at section 1st and 2nd.

But

$$
\begin{aligned}
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1} & =\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2} \\
\mathrm{p}_{1}=\mathrm{p}_{2} & =\text { atmosphere pressure } \\
\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1} & =\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2} \\
\frac{(1000)^{2}}{2 \times 10^{4}}+200 & =\frac{\mathrm{V}_{2}^{2}}{2 \times 10^{4}}+0 \\
(50+200) \times 2 \times 10^{4} & =\mathrm{V}_{2}^{2} \\
\mathrm{~V}_{2}^{2} & =500 \times 10^{4}=5 \times 10^{6} \\
\mathrm{~V}_{2} & =2.236 \times 10^{3} \mathrm{~mm} / \mathrm{sec}=2236 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

So,

We know that, flow rate remains constant during the process (from continuity equation). So, for section $2 n d$

$$
\mathrm{Q}=\mathrm{A}_{2} \mathrm{~V}_{2}
$$

$$
A_{2}=\frac{Q}{V_{2}}=\frac{6.5 \times 10^{5}}{2236}=290.7 \mathrm{~mm}^{2}
$$

sol 10.73 Option (A) is correct.

Parts

P. Computer chip
Q. M etal forming dies and molds
R. Turbine blade
S. Glass

M anufacturing Process

4. Photochemical M achining
5. Electrodischarge M achining
6. Electrochemical Machining
7. Ultrasonic Machining

So, correct pairs are, P-4, Q-3, R-1, S-2
sol 10.74 Option (B) is correct.
Given : $\mathrm{T}_{1}=24 \mathrm{~min}, \mathrm{~T}_{2}=12 \mathrm{~min}, \mathrm{~V}_{1}=90 \mathrm{~m} / \mathrm{min}, \mathrm{V}_{2}=120 \mathrm{~m} / \mathrm{min}$ We have calculate velocity, when tool life is 20 minute.
First of all we the calculate the values of n, From the Taylor's tool life equation.

$$
\mathrm{VT}^{\mathrm{n}}=\mathrm{C}
$$

For case 1st and 2nd, we can write

$$
\begin{aligned}
& \mathrm{V}_{1} \mathrm{~T}_{1}{ }^{n}=\mathrm{V}_{2} \mathrm{~T}_{2}{ }^{n} \\
&\left(\frac{T_{1}}{T_{2}}\right)^{n}=\mathrm{V}_{2} \\
& \mathrm{~V}_{1} \\
&\left(\frac{24}{12}\right)^{n}=\frac{120}{90} \\
&(2)^{n}=1.33
\end{aligned}
$$

Taking log both the sides,

$$
\begin{aligned}
\mathrm{n} \log 2 & =\log 1.33 \\
\mathrm{n} \times 0.301 & =0.124 \\
\mathrm{n} & =0.412
\end{aligned}
$$

For V_{3}, we can write from tool life equation,

$$
\begin{aligned}
\mathrm{V}_{1} \mathrm{~T}_{1}^{n} & =\mathrm{V}_{3} \mathrm{~T}_{3}{ }^{n} \\
90 \times(24)^{0.412} & =\mathrm{V}_{3}(20)^{0.412} \\
333.34 & =\mathrm{V}_{3} \times 3.435 \\
\mathrm{~V}_{3} & =97 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

sol 10.75 Option (C) is correct.
Given : $D=147 \mathrm{~mm}, \mathrm{I}=630 \mathrm{~mm}, \mathrm{f}=0.2 \mathrm{~mm} / \mathrm{rev}$.
$\mathrm{d}=2 \mathrm{~mm}, \mathrm{~V}_{3}=97 \mathrm{~m} / \mathrm{min}$

$$
\text { M achining time } t=\frac{1}{f N}
$$

$$
\mathrm{V}=\pi \mathrm{DN} \mathrm{~m} / \mathrm{min}
$$

So,

$$
\begin{array}{ll}
\mathrm{t} & =\frac{\mathrm{I} \times \pi \times \mathrm{D}}{\mathrm{fV}} \\
\mathrm{t} & =\frac{0.63 \times 3.14 \times 0.147}{0.2 \times 10^{-3} \times 97} \\
\mathrm{t} & =15 \mathrm{~min}
\end{array} \quad \mathrm{~V}=\mathrm{V}_{3}
$$

sol 10.76 Option (D) is correct.
Investment casting uses an expandable pattern, which is made of wax or of a plastic by molding or rapid prototyping techniques. This pattern is made by injecting molten wax or plastic into a metal die in the shape of the pattern.
soL 10.77 Option (D) is correct.
Spheroidizing may be defined as any heat treatment process that produces a rounded or globular form of carbide. High carbon steels are spheroidized to improve machinability, especially in continuous cutting operations.
soL 10.78 Option (A) is correct.
NC contouring is a continuous path positioning system. Its function is to synchronize the axes of motion to generate a predetermined path, generally a line or a circular arc.
soL 10.79 Option (A) is correct.
Ring gauges are used for gauging the shaft and male components i.e. measure the outside diameter. It does not able to measure the roundness of the given shaft.
sol 10.80 Option (B) is correct.
Given: $\sigma_{u}=400 \mathrm{MPa}, \frac{\Delta \mathrm{L}}{\mathrm{L}}=35 \%=0.35=\varepsilon_{0}$
Let, true stress is σ and true strain is ε.
True strain,

$$
\varepsilon=\ln \left(1+\varepsilon_{0}\right)=\ln (1+0.35)=0.30
$$

True stress,

$$
\sigma=\sigma_{u}\left(1+\varepsilon_{0}\right)=400(1+0.35)=540 \mathrm{M} \mathrm{~Pa}
$$

We know, at Ultimate tensile strength,

$$
\mathrm{n}=\varepsilon=0.3
$$

Relation between true stress and true strain is given by,

$$
\begin{align*}
\sigma & =\mathrm{K} \varepsilon^{\mathrm{n}} \tag{i}\\
\mathrm{~K} & =\frac{\sigma}{\varepsilon^{n}}=\frac{540}{(0.30)^{0.30}}=774.92 \simeq 775
\end{align*}
$$

So, From equation (i) $\quad \sigma=775 \varepsilon^{0.3}$
sol 10.81 Option (B) is correct.
We know that, Time taken to fill the mould with top gate is given by,

$$
t_{A}=\frac{A_{m} H_{m}}{A_{g} \sqrt{2 g H_{g}}}
$$

W here

$$
\begin{aligned}
A_{m} & =A \text { rea of mould } \\
H_{m} & =\text { Height of mould } \\
A_{g} & =\text { A rea of gate } \\
H_{g} & =\text { Height of gate }
\end{aligned}
$$

Given that, total liquid head is maintained constant and it is equal to the mould height.
So,

$$
\begin{align*}
H_{m} & =H_{g} \\
t_{A} & =\frac{A_{m} \sqrt{H_{m}}}{A_{g} \sqrt{2 g}} \tag{i}
\end{align*}
$$

Time taken to fill with the bottom gate is given by,

$$
\begin{align*}
& t_{B}=\frac{2 A_{m}}{A_{g} \sqrt{2 g}} \times\left(\sqrt{H_{g}}-\sqrt{H_{g}-H_{m}}\right) \\
& t_{B}=\frac{2 A_{m}}{A_{g} \sqrt{2 g}} \times \sqrt{H_{m}} \quad H_{m}=H_{g} \ldots \tag{ii}
\end{align*}
$$

By Dividing equation (ii) by equation (i),

$$
\begin{aligned}
& \frac{t_{B}}{t_{A}}=2 \\
& t_{B}=2 t_{A}
\end{aligned}
$$

sol 10.82 Option (C) is correct.
Given : $\mathrm{t}_{\mathrm{i}}=4 \mathrm{~mm}, \mathrm{D}=300 \mathrm{~mm}, \quad \mu=0.1, \mathrm{t}_{\mathrm{f}}=$?
We know that,
For single pass without slipping, minimum possible thickness is given by the relation.

$$
\begin{aligned}
\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{f}}\right) & =\mu^{2} \mathrm{R} \\
\mathrm{t}_{\mathrm{f}} & =\mathrm{t}_{\mathrm{i}}-\mu^{2} \mathrm{R}=4-(0.1)^{2} \times 150=2.5 \mathrm{~mm}
\end{aligned}
$$

sol 10.83 Option (B) is correct.
Given, $\mathrm{d}_{\mathrm{i}}=10 \mathrm{~mm}, \mathrm{~d}_{\mathrm{f}}=8 \mathrm{~mm}, \sigma_{0}=400 \mathrm{MPa}$
The expression for the drawing force under frictionless condition is given by

$$
\mathrm{F}=\sigma_{\text {mean }} \mathrm{A}_{\mathrm{f}} \ln \left(\frac{\mathrm{~A}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{f}}}\right)=400 \times 10^{6} \times \frac{\pi}{4} \times(0.008)^{2} \ln \left[\frac{\frac{\pi}{4}(0.001)^{2}}{\frac{\pi}{4}(0.008)^{2}}\right]
$$

$$
=20096 \times \ln (1.5625)=8.968 \mathrm{kN} \simeq 8.97 \mathrm{kN}
$$

sol 10.84 Option (D) is correct.

Column I

P. Wrinkling
Q. Orange peel
R. Stretcher strains
S. Earing

Column II
4. Insufficient blank holding force
3. Large grain size

1. Y ield point elongation
2. A nisotropy

So correct pairs are, P-4, Q-3, R-1, S-2
sol 10.85 Option (B) is correct.
Given, $\mathrm{V}=25 \mathrm{~V}$ olt, $\mathrm{I}=300 \mathrm{~A}, \quad \eta=0.85, \mathrm{~V}=8 \mathrm{~mm} / \mathrm{sec}$
We know that the power input by the heat source is given by,

$$
\begin{aligned}
\text { Voltage } & =25 \mathrm{~V} \text { olt } \\
\mathrm{P} & =\text { V oltage } \times \mathrm{I}
\end{aligned}
$$

Heat input into the work piece $=\mathrm{P} \times$ efficiency of heat/transfer

$$
\mathrm{H}_{\mathrm{i}}=\mathrm{V} \text { oltage } \times \mathrm{I} \times \eta=25 \times 300 \times 0.85=6375 \mathrm{~J} / \mathrm{sec}
$$

Heat energy input $(\mathrm{J} / \mathrm{mm})=\frac{\mathrm{H}_{\mathrm{i}}}{\mathrm{V}}$

$$
\mathrm{H}_{\mathrm{i}}(\mathrm{~J} / \mathrm{mm})=\frac{6375}{8}=796.9 \simeq 797 \mathrm{~J} / \mathrm{mm}
$$

(D) Zero rake angle, high shear angle and high cutting speed
sol $\mathbf{1 0 . 8 6}$ Option (A) is correct.
In common grinding operation, the average rake angle of the grains is highly negative, such as -60° or even lower and smaller the shear angle. From this, grinding chips under go much larger deformation than they do in other cutting process. The cutting speeds are very high, typically $30 \mathrm{~m} / \mathrm{s}$
soL 10.87 Option (D) is correct.

	Process	Metal Removal Rate(MRR) (in $\left.\mathrm{mm}^{3} / \mathrm{sec}\right)$
1.	ECM	2700
2.	USM	14
3.	EBM	0.15
4.	LBM	0.10
5.	EDM	14.10

So the processes which has maximum MRR in increasing order is,

LBM, EBM, USM, EDM, ECM
sol 10.88 Option (D) is correct.

Column I

P. Charpy test
Q. K noop test
R. Spiral test
S. Cupping test

Column II

4. Toughness
5. Microhardness
6. Fluidity
7. Formability

So, correct pairs are, P-4, Q-2, R-1, S-3
sol 10.89 Option (D) is correct.
Given : $\mathrm{t}=0.5 \mathrm{~mm}, \mathrm{~V}=20 \mathrm{~m} / \mathrm{min}, \alpha=15^{\circ}, \mathrm{w}=5 \mathrm{~mm}, \mathrm{t}_{\mathrm{c}}=0.7 \mathrm{~mm}$,
$F_{t}=200 \mathrm{~N}, \mathrm{~F}_{\mathrm{c}}=1200 \mathrm{~N}$
We know, from the merchant's theory
Chip thickness ratio, $r=\frac{t}{t_{c}}=\frac{0.5}{0.7}=0.714$
For shear angle, $\quad \tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}$
Substitute the values, we get

Shear strain,

$$
\begin{aligned}
\tan \phi & =\frac{0.714 \cos 15^{\circ}}{1-0.714 \sin 15^{\circ}}=\frac{0.689}{0.815}=0.845 \\
\phi & =\tan ^{-1}(0.845)=40.2^{\circ} \\
\mathrm{S} & =\cot \phi+\tan (\phi-\alpha) \\
\mathrm{S} & =\cot \left(40.2^{\circ}\right)+\tan \left(40.2^{\circ}-15^{\circ}\right) \\
& =\cot 40.2^{\circ}+\tan 25.2=1.183+0.470=1.65
\end{aligned}
$$

soL 10.90 Option (B) is correct.
From merchants, theory

$$
\begin{aligned}
\mu & =\frac{\mathrm{F}}{N}=\frac{\mathrm{F}_{\mathrm{c}} \sin \alpha+\mathrm{F}_{\mathrm{t}} \cos \alpha}{\mathrm{~F}_{\mathrm{c}} \cos \alpha-\mathrm{F}_{\mathrm{t}} \sin \alpha}=\frac{\mathrm{F}_{\mathrm{c}} \tan \alpha+\mathrm{F}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{t}} \tan \alpha} \\
& =\frac{1200 \tan 15^{\circ}+200}{1200-200 \times \tan 15^{\circ}}=\frac{521.539}{1146.41}=0.455 \simeq 0.46
\end{aligned}
$$

SOL 10.91 Option (A) is correct.
We know, from merchant's theory, frictional force of the tool acting on the tool-chip interface is

$$
\begin{aligned}
\mathrm{F} & =\mathrm{F}_{\mathrm{c}} \sin \alpha+\mathrm{F}_{\mathrm{t}} \cos \alpha \\
& =1200 \sin 15^{\circ}+200 \cos 15^{\circ}=503.77 \mathrm{~N}
\end{aligned}
$$

Chip velocity, $\mathrm{V}_{\mathrm{c}}=\frac{\sin \phi}{\cos (\phi-\alpha)} \times \mathrm{V}$

$$
=\frac{\sin \left(40.2^{\circ}\right)}{\cos \left(40.2^{\circ}-15^{\circ}\right)} \times 20=14.27 \mathrm{~m} / \mathrm{min}
$$

Total energy required per unit time during metal cutting is given by,

$$
E=F_{c} \times V=1200 \times \frac{20}{60}=400 \mathrm{Nm} / \mathrm{sec}
$$

Energy consumption due to friction force F,

$$
\begin{aligned}
E_{f} & =F \times V_{c}=503.77 \times \frac{14.27}{60} \mathrm{Nm} / \mathrm{sec} \\
& =119.81 \mathrm{Nm} / \mathrm{sec}
\end{aligned}
$$

Percentage of total energy dissipated due to friction at tool-chip interface is

$$
E_{d}=\frac{E_{f}}{E} \times 100=\frac{119.81}{400} \times 100 \simeq 30 \%
$$

SOL 10.92 Option (D) is correct.

List-I (Equipment)

P. Hot Chamber Machine
Q. Muller
R. Dielectric Baker
S. Sand Blaster

List-II (Process)

3. Die casting
4. Sand mixing
5. Core making
6. Cleaning

So, correct pairs are, P-3, Q-5, R-2, S-1

SOL 10.93 Option (A) is correct.
W hen the temperature of a solid metal increases, its intramolecular bonds are brake and strength of solid metal decreases. Due to decrease its strength, the elongation of the metal increases, when we apply the load i.e. ductility increases.

SOL 10.94 Option (D) is correct.
We know that,
The strength of the brazed joint depend on (a) joint design and (b) the adhesion at the interfaces between the workpiece and the filler metal.
The strength of the brazed joint increases up to certain gap between the two joining surfaces beyond which it decreases.

SOL 10.95 Option (B) is correct.
In ECM, the principal of electrolysis is used to remove metal from the workpiece. The ECM method has also been developed for machining new hard and tough materials (for rocket and aircraft industry) and also hard refractory materials.
sol 10.96 Option (A) is correct.

The interference is the amount by which the actual size of a shaft is larger than the actual finished size of the mating hole in an assembly.
For interference fit, lower limit of shaft should be greater than the upper limit of the hole (from figure).
soL 10.97 Option (C) is correct.
According to 3-2-1 principle, only the minimum locating points should be used to secure location of the work piece in any one plane.
(A) The workpiece is resting on three pins A, B, C which are inserted in the base of fixed body.
The workpiece cannot rotate about the axis $X X$ and $Y Y$ and also it cannot move downward. In this case, the five degrees of freedom have been arrested.
(B) T wo more pins D and E are inserted in the fixed body, in a plane perpendicular to the plane containing, the pins A, B and C. Now the workpiece cannot rotate about the Z -axis and also it cannot move towards the left. Hence the addition of pins D and E restrict three more degrees of freedom.
(C) A nother pin F in the second vertical face of the fixed body, arrests degree of freedom 9.
sol 10.98 Option (A) is correct.
Arc welding, Laser cutting of sheet and milling operations are the continuous path operations.

SOL 10.99 Option (A) is correct.

We know,
Machining cost $=M$ achining time \times Direct labour cost.
If cutting speed increases then machining time decreases and machining cost also decreases and due to increase in cutting speed tool changing cost increases.
So, \quad Curve $1 \rightarrow$ M achining cost
Curve $2 \rightarrow$ Non-productive cost
Curve $3 \rightarrow$ Tool changing cost
soL 10.100 Option (B) is correct.
Given : $\mathrm{I}=20 \mathrm{~cm}=0.2 \mathrm{~m}, \mathrm{~A}=1 \mathrm{~cm}^{2}=10^{-4} \mathrm{~m}^{2}$
$V=1000 \mathrm{~cm}^{3}=1000 \times 10^{-6} \mathrm{~m}^{3}=10^{-3} \mathrm{~m}^{3}$
Velocity at the base of sprue is,

$$
V=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 9.8 \times 0.2}=1.98 \mathrm{~m} / \mathrm{sec}
$$

From the continuity equation flow rate to fill the mould cavity is,
Filling rate

$$
\begin{aligned}
& \dot{\mathrm{Q}}=\mathrm{A} \text { rea } \times \mathrm{V} \text { elocity }=\mathrm{AV} \\
& \frac{\mathrm{~V}}{\mathrm{t}}=\mathrm{AV} \\
& \mathrm{t}
\end{aligned}=\frac{\mathrm{V}}{\mathrm{AV}}=\frac{10^{-3}}{10^{-4} \times 1.98}=\frac{10}{1.98}=5.05 \mathrm{sec} . \quad . ~ V=\text { olume }
$$

soL 10.101 Option (C) is correct.
Given :
$\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{t}=0.1 \mathrm{sec} ., \mathrm{d}=5 \mathrm{~mm}, \quad \mathrm{w}=1.5 \mathrm{~mm}, \quad \mathrm{~L}_{\mathrm{f}}=1400 \mathrm{~kJ} / \mathrm{kg}$, $\mathrm{R}=200 \mu \Omega$
First of all calculate the mass,

$$
\begin{aligned}
\rho & =\frac{\mathrm{m}}{\mathrm{~V}} \\
\mathrm{~m} & =\rho \times \mathrm{V}=\rho \times \frac{\pi}{4} \mathrm{~d}^{2} \times \mathrm{t} \\
& =8000 \times \frac{\pi}{4} \times\left(5 \times 10^{-3}\right)^{2} \times 1.5 \times 10^{-3} \\
& =235.5 \times 10^{-6} \mathrm{~kg}=2.35 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

Total heat for fusion,

$$
\begin{array}{rlr}
\mathrm{Q} & =\mathrm{mL}_{\mathrm{f}} & \mathrm{~L}=\text { Latent heat } \\
& =2.35 \times 10^{-4} \times 1400 \times 10^{3}=329 \mathrm{~J} & \ldots(\mathrm{i}) \tag{i}
\end{array}
$$

We also know that, the amount of heat generated at the contacting area of the element to be welded is,

$$
\mathrm{Q}=\mathrm{I}^{2} \mathrm{Rt}
$$

$$
\begin{aligned}
329 & =I^{2} \times 200 \times 10^{-6} \times 0.1 \quad \text { From equation (i) } \\
1^{2} & =\frac{329}{200 \times 10^{-7}}=16.45 \times 10^{6} \\
I & =\sqrt{16.45 \times 10^{6}}=4056 \mathrm{~A} \simeq 4060 \mathrm{~A}
\end{aligned}
$$

SOL 10.102 Option (C) is correct.
Given : $\alpha=1$ radian $\times \frac{180}{\pi}=\left(\frac{180}{\pi}\right)^{\circ}, \mathrm{r}=100 \mathrm{~mm}, \mathrm{k}=0.5, \mathrm{t}=2 \mathrm{~mm}$
Here,

$$
r>2 \mathrm{t}
$$

So,
$\mathrm{k}=0.5 \mathrm{t}$
B end allowance

$$
\begin{aligned}
B & =\frac{\alpha}{360} \times 2 \pi(r+k) \\
& =\frac{180}{\pi} \times \frac{2 \pi}{360}(100+0.5 \times 2)=101 \mathrm{~mm}
\end{aligned}
$$

sol 10.103 Option (B) is correct.
Given : Side of the plate $=600 \mathrm{~mm}, \mathrm{~V}=8 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.3 \mathrm{~mm} / \mathrm{stroke}$

$$
\frac{\text { Return time }}{\text { Cutting time }}=\frac{1}{2}
$$

The tool over travel at each end of the plate is 20 mm . So length travelled by the tool in forward stroke,

$$
\mathrm{L}=600+20+20=640 \mathrm{~mm}
$$

Number of stroke required $=\frac{\text { Thickness of flat plate }}{\text { F eed rate/ stroke }}$

$$
=\frac{30}{0.3}=100 \text { strokes }
$$

Distance travelled in 100 strokes is,

$$
\begin{aligned}
\mathrm{d} & =640 \times 100 \\
& =64000 \mathrm{~mm}=64 \mathrm{~m}
\end{aligned}
$$

So, T ime required for forward stroke

$$
\mathrm{t}=\frac{\mathrm{d}}{\mathrm{~V}}=\frac{64}{8}=8 \mathrm{~min}
$$

$$
\text { Return time }=\frac{1}{2} \times 8=4 \mathrm{~min}
$$

M achining time, $\quad T_{M}=$ Cutting time + R eturn time

$$
=8+4=12 \mathrm{~min}
$$

sol 10.104 Option (A) is correct.

So,
N $010 \rightarrow$ represent start the operation
GO2 \rightarrow represent circular (clock wise) interpolation
X 10 Y $10 \rightarrow$ represent final coordinates
X 5Y $5 \rightarrow$ represent starting coordinate
R $5 \rightarrow$ represent radius of the arc
So, NC tool path command is, N 010 G 02×10 Y 10×5 Y 5 R 5
sol 10.105 Option (B) is correct.
Tool designation or tool signature under ASA, system is given in the order. Back rake, Side rake, End relief, Side relief, End cutting edge angle, Side cutting edge angle and nose radius that is

$$
\alpha_{b}-\alpha_{s}-\theta_{e}-\theta_{s}-C_{e}-C_{s}-R
$$

Given : For tool P, tool signature, $\quad 5^{\circ}-5^{\circ}-6^{\circ}-6^{\circ}-8^{\circ}-30^{\circ}-0$
For tool Q :

$$
5^{\circ}-5^{\circ}-7^{\circ}-7^{\circ}-8^{\circ}-15^{\circ}-0
$$

We know that,

$$
h=\frac{f e e d}{\tan (S C E A)+\cot (E C E A)}=\frac{f}{\tan \left(C_{s}\right)+\cot \left(C_{e}\right)}
$$

For tool P,

$$
h_{p}=\frac{f_{p}}{\tan 30^{\circ}+\cot 8^{\circ}}
$$

For tool Q

$$
\mathrm{h}_{\mathrm{Q}}=\frac{\mathrm{f}_{\mathrm{Q}}}{\tan 15^{\circ}+\cot 8^{\circ}}
$$

for same machining condition $f_{p}=f_{Q}$
Hence,

$$
\frac{h_{p}}{h_{Q}}=\frac{\tan 15^{\circ}+\cot 8^{\circ}}{\tan 30^{\circ}+\cot 8^{\circ}}
$$

soL 10.106 Option (C) is correct.
We know that maximum possible clearance occurs between minimum shaft size and maximum hole size.

$$
\begin{array}{ll}
\text { Maximum size of shaft } & =25+0.040=25.040 \mathrm{~mm} \\
\text { Minimum size of shaft } & =25-0.100=24.99 \mathrm{~mm} \\
\text { Maximum size of hole } & =25+0.020=25.020 \mathrm{~mm} \\
\text { Minimum size of hole } & =25-0.000=25.00 \mathrm{~mm} \\
25.020-24.99 & =0.03 \mathrm{~mm}=30 \text { microns }
\end{array}
$$

sol 10.107 Option (A) is correct.
Given:-NO20 GO2 X 45.0 Y 25.0 R 5.0
Here term X 45.0 Y 25.0 R 5.0 will produce circular motion because radius is consider in this term and GO 2 will produce clockwise motion of the tool.
soL 10.108 Option (A) is correct
In EDM, the thermal energy is employed to melt and vaporize tiny particles of work material by concentrating the heat energy on a small area of the work-piece.
soL 10.109 Option (D) is correct
Given : $\mathrm{I}=5000 \mathrm{~A}, \mathrm{R}=200 \mu \Omega=200 \times 10^{-6} \Omega, \Delta \mathrm{t}=0.2$ second
Heat generated,

$$
\begin{aligned}
H_{g} & =I^{2}(R \Delta t) \\
H_{g} & =(5000)^{2} \times 200 \times 10^{-6} \times 0.2 \\
& =25 \times 10^{6} \times 40 \times 10^{-6}=1000 \mathrm{~J} \text { oule }
\end{aligned}
$$

sol 10.110 Option (B) is correct
T wo streams of liquid metal which are not hot enough to fuse properly result into a casting defect, known as M isrun/ cold shut.
It occurs due to insufficient fluidity of the molten metal.
soL 10.111 Option (C) is correct.
Gray cast iron is the most widely used of all cast irons. In fact, it is common to speak of gray cast iron just as cast iron.
It contains 3 to 4\% C and 2.5 \% Si.
sol 10.112 Option (B) is correct.
For hole size $=20.000_{+0.010}^{+0.050} \mathrm{~mm}$
M aximum hole size $=20.000+0.050=20.050 \mathrm{~mm}$
M inimum hole size $=20.000+0.010=20.010$
So,

$$
\begin{aligned}
\text { Hole tolerance } & =\text { M aximum hole size }- \text { M inimum hole size } \\
& =20.050-20.010=0.040 \mathrm{~mm}
\end{aligned}
$$

Gauge tolerance can be 10% of the hole tolerance (Given).
So, \quad Gauge tolerance $=10 \%$ of 0.040

$$
=\frac{10}{100} \times 0.040=0.0040 \mathrm{~mm}
$$

Size of Go Gauge $=$ M inimum hole size + Gauge tolerance

$$
=20.010+0.0040=20.014 \mathrm{~mm}
$$

Size of NO-GO Gauge $=\mathrm{M}$ aximum holesize - Gauge tolerance

$$
=20.050-0.004=20.046 \mathrm{~mm}
$$

sol 10.113 Option (A) is correct.
Given : $\mathrm{d}=10 \mathrm{~mm}, \mathrm{t}=3 \mathrm{~mm}, \tau_{\mathrm{s}}=400 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{t}_{1}=2 \mathrm{~mm}, \mathrm{p}=40 \%=0.4$ We know that, when shear is applied on the punch, the blanking force is given by,

$$
\mathrm{F}_{\mathrm{B}}=\pi \mathrm{dt}\left(\frac{\mathrm{t} \times \mathrm{p}}{\mathrm{t}_{1}}\right) \times \tau_{\mathrm{s}} \mathrm{~W} \text { here } \mathrm{t} \times \mathrm{p}=\mathrm{P} \text { unch travel }
$$

Substitute the values, we get

$$
\begin{aligned}
\mathrm{F}_{\mathrm{B}} & =3.14 \times 10 \times 3\left(\frac{3 \times 0.4}{2}\right) \times 400 \\
& =94.2 \times 0.6 \times 400=22.6 \mathrm{kN}
\end{aligned}
$$

sol 10.114 Option (B) is correct
Given : $D=10 \mathrm{~mm}, \mathrm{t}=20 \mathrm{~mm}, \mathrm{~N}=300 \mathrm{rpm}, \mathrm{f}=0.2 \mathrm{~mm} / \mathrm{rev}$.
Point angle of drill, $\quad 2 \alpha_{p}=120^{\circ} \quad \Rightarrow \alpha_{p}=60^{\circ}$

$$
\text { Drill over-travel }=2 \mathrm{~mm}
$$

We know that, break through distance,

$$
\mathrm{A}=\frac{\mathrm{D}}{2 \tan \alpha_{p}}=\frac{10}{2 \tan 60^{\circ}}=2.89 \mathrm{~mm}
$$

Total length travelled by the tool,

$$
\begin{aligned}
\mathrm{L} & =\mathrm{t}+\mathrm{A}+2 \\
& =20+2.89+2=24.89 \mathrm{~mm}
\end{aligned}
$$

So, time for drilling,

$$
\begin{aligned}
\mathrm{t} & =\frac{\mathrm{L}}{\mathrm{f} \cdot \mathrm{~N}}=\frac{24.89}{0.2 \times 300}=0.415 \mathrm{~min} \\
& =0.415 \times 60 \mathrm{sec}=24.9 \simeq 25 \mathrm{sec}
\end{aligned}
$$

sol 10.115 Option (D) is correct.
Given : Dimension of block $=200 \times 100 \times 10 \mathrm{~mm}$
Shrinkage allowance, $\quad X=1 \%$
We know that, since metal shrinks on solidification and contracts further on cooling to room temperature, linear dimensions of patterns are increased in
respect of those of the finished casting to be obtained.
So,

$$
v_{c}=200 \times 100 \times 10=2 \times 10^{5} \mathrm{~mm}^{2}
$$

Shrinkage allowance along length,

$$
S_{L}=L X=200 \times 0.01=2 \mathrm{~mm}
$$

Shrinkage allowance along breadth,

$$
S_{B}=100 \times 0.01=1 \mathrm{~mm}
$$

or Shrinkage allowance along height,

$$
\mathrm{S}_{\mathrm{H}}=10 \times 0.01=0.1 \mathrm{~mm}
$$

Volume of pattern will be

$$
\begin{aligned}
V_{p} & =\left[\left(L+S_{L}\right)\left(B+S_{B}\right)\left(S+S_{H}\right)\right] \mathrm{mm}^{3} \\
& =202 \times 101 \times 10.01 \mathrm{~mm}^{3}=2.06 \times 10^{5} \mathrm{~mm}^{3}
\end{aligned}
$$

So, \quad V olume of P attern $\mathrm{V}_{\mathrm{p}}, \frac{2.06 \times 10^{5}}{2 \times 10^{5}}=1.03$
sol 10.116 Option (C) is correct

From the figure, the centre of circular arc with radius 5 is

$$
\begin{aligned}
& {[15,(10+5)]=[15,15]} \\
& {[(10+5), 15]=[15,15]}
\end{aligned}
$$

From point P_{1}
From point P_{2}
soL 10.117 Option (B) is correct.
Given: $\mathrm{V}=40 \mathrm{~m} / \mathrm{min}, \mathrm{d}=0.3 \mathrm{~mm}, \alpha=5^{\circ}, \mathrm{t}=1.5 \mathrm{~mm}, \mathrm{~F}_{\mathrm{c}}=900 \mathrm{~N}$,
$F_{t}=450 \mathrm{~N}$
We know from the merchant's analysis

$$
\mu=\frac{\mathrm{F}}{\mathrm{~N}}=\frac{\mathrm{F}_{\mathrm{c}} \sin \alpha+\mathrm{F}_{\mathrm{t}} \cos \alpha}{\mathrm{~F}_{\mathrm{c}} \cos \alpha-\mathrm{F}_{\mathrm{t}} \sin \alpha}
$$

W here $\mathrm{F}=$ Frictional resistance of the tool acting on the chip.
$\mathrm{N}=$ Force at the tool chip interface acting normal to the cutting face of the tool.

$$
\begin{aligned}
\mu & =\frac{900 \tan 5^{\circ}+450}{900-450 \tan 5^{\circ}} \\
& =\frac{528.74}{860.63}=0.614
\end{aligned}
$$

Now, Frictional angle, $\quad \beta=\tan ^{-1} \mu=\tan ^{-1}(0.614)=31.5^{\circ}$
soL 10.118 Option (B) is correct.

$$
\text { Given : } \mathrm{t}_{\mathrm{i}}=25 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~mm}, \mathrm{D}=600 \mathrm{~mm}, \mathrm{~N}=100 \mathrm{rpm}
$$

Let, A ngle substended by the deformation zone at the roll centre is θ in radian and it is given by the relation.

$$
\begin{aligned}
\theta(\text { radian }) & =\sqrt{\frac{t_{i}-t_{f}}{R}} \\
& =\sqrt{\frac{25-20}{300}}=\sqrt{0.0166}=0.129 \text { radian }
\end{aligned}
$$

Roll strip contact length is

$$
\begin{aligned}
& \mathrm{L}=\theta \times \mathrm{R} \quad \text { A ngle }=\frac{\operatorname{Arc}}{\mathrm{R}} \\
& \mathrm{~L}=0.129 \times 300=38.73 \mathrm{~mm} \simeq 39 \mathrm{~mm}
\end{aligned}
$$

SOL 10.119 Option (C) is correct.
Given: $\mathrm{VT}^{\mathrm{n}}=\mathrm{C}$
Let V and T are the initial cutting speed \& tool life respectively.
C ase (I): The relation between cutting speed and tool life is,

$$
\begin{equation*}
\mathrm{VT}^{\mathrm{n}}=\mathrm{C} \tag{i}
\end{equation*}
$$

Case (II): In this case doubling the cutting speed and tool life reduces to $1 / 8^{\text {th }}$ of original values.

So,

$$
\begin{equation*}
(2 \mathrm{~V}) \times\left(\frac{T}{8}\right)^{n}=C \tag{ii}
\end{equation*}
$$

On dividing equation (i) by equation (ii),

$$
\begin{aligned}
\frac{V T^{n}}{2 \mathrm{~V}\left(\frac{T}{8}\right)^{n}} & =1 \\
\mathrm{~T}^{\mathrm{n}} & =2\left(\frac{T}{8}\right)^{n} \\
\frac{1}{2} & =\left(\frac{1}{8}\right)^{n} \\
\left(\frac{1}{2}\right)^{1} & =\left(\frac{1}{2}\right)^{3 n}
\end{aligned}
$$

Compare powers both the sides,

$$
1=3 n \quad \Rightarrow n=\frac{1}{3}
$$

sol 10.120 Option (B) is correct.

Feature to be inspected

P. Pitch and A ngle errors of screw thread
Q. Flatness error of a surface
R. Alignment error of a machine slideway
S. Profile of a cam

So, correct pairs are, P-5, Q-2, R-1, S-6
soL 10.121 Option (B) is correct.

Product

P. M olded luggage
Q. Packaging containers for Liquid
R. Long structural shapes
S. Collapsible tubes

So, correct pairs are, P-4 Q-5 R-2 S-3
soL 10.122 Option (D) is correct.

Operation

P. Deburring (internal surface)
Q. Die sinking
R. Fine hole drilling in thin sheets
S. Tool sharpening

So, Correct pairs are, P-2, Q-3, R-5, S-6

Instrument

5. Sine bar
6. Optical Interferometer
7. Auto collimator
8. Tool maker's M icroscope

Process

4. Transfer molding
5. Blow molding
6. Hot rolling
7. Impact extrusion

Process

2. A brasive F low M achining
3. Electric Discharge Machining
4. Laser beam Machining
5. Electrochemical Grinding

Characteristics

4. Both hardness and brittleness are reduced
5. Austenite is converted into bainite
6. Austenite is converted into martensite

SOL 10.124 Option (D) is correct.
Steel can be cooled from the high temperature region at a rate so high that the austenite does not have sufficient time to decompose into sorbite or troostite. In this case the austenite is transformed into martensite. M artensite is ferromagnetic, very hard \& brittle.

So hardness is increasing in the order, Spherodite \rightarrow C oarse P earlite \rightarrow F ine Pearlite $\rightarrow \mathrm{M}$ artensite

SOL 10.125 Option (C) is correct.
Permeability or porosity of the moulding sand is the measure of its ability to permit air to flow through it.
So, hardness of green sand mould increases by restricted the air permitted in the sand i.e. decrease its permeability.
sol 10.126 Option (B) is correct.
In OAW, A cetylene ($\mathrm{C}_{2} \mathrm{H}_{2}$) produces higher temperature (in the range of $3200^{\circ} \mathrm{C}$) than other gases, (which produce a flame temperature in the range of $2500^{\circ} \mathrm{C}$) because it contains more available carbon and releases heat when its components $(\mathrm{C} \& \mathrm{H})$ dissociate to combine with O_{2} and burn.
sol 10.127 Option (C) is correct.
Cold forming or cold working can be defined as the plastic deforming of metals and alloys under conditions of temperature and strain rate.
Theoretically, the working temperature for cold working is below the recrystallization temperature of the metal/ alloy (which is about one-half the absolute melting temperature.)
sol 10.128 Option (D) is correct.

Quality screw threads are produced by only thread casting.
Quality screw threads are made by die-casting and permanent mould casting are very accurate and of high finish, if properly made.
soL 10.129 Option (D) is correct.
In EDM, the thermal energy is employed to melt and vaporize tiny particles of work-material by concentrating the heat energy on a small area of the work-piece.
A powerful spark, such as at the terminals of an automobile battery, will cause pitting or erosion of the metal at both anode \& cathode. No force occurs between tool \& work.
soL 10.130 Option (B) is correct.
Since 25 mm lies in the diameter step 18 \& 30 mm , therefore the geometric mean diameter,

$$
\mathrm{D}=\sqrt{18 \times 30}=23.24 \mathrm{~mm}
$$

We know that standard tolerance unit,

$$
\begin{aligned}
\mathrm{i} \text { (microns) } & =0.45 \sqrt[3]{\mathrm{D}}+0.001 \mathrm{D} \\
\mathrm{i} & =0.45 \sqrt[3]{23.24}+0.001 \times 23.24=1.31 \text { microns }
\end{aligned}
$$

Standard tolerance for hole ' h ' of grade 7(IT 7),

$$
\text { IT } 7=16 \mathrm{i}=16 \times 1.31=20.96 \text { microns }
$$

Hence, lower limit for shaft $=$ U pper limit of shaft - Tolerance

$$
=25-20.96 \times 10^{-3} \mathrm{~mm}=24.979 \mathrm{~mm}
$$

sol 10.131 Option (B) is correct.
Hardness is greatly depend on the carbon content present in the steel.
Cyaniding is case-hardening with powered potassium cyanide or potassium ferrocyanide mixed with potassium bichromate, substituted for carbon. Cyaniding produces a thin but very hard case in a very short time.
soL 10.132 Option (B) is correct.
Given : $\mathrm{q}=0.97 \times 10^{6} \mathrm{~s} / \mathrm{m}^{2}, \mathrm{D}=200 \mathrm{~mm}=0.2 \mathrm{~m}$
From the caine's relation solidification time, $\mathrm{T}=\mathrm{q}\left(\frac{\mathrm{V}}{\mathrm{A}}\right)^{2}$
Volume

$$
V=\frac{4}{3} \pi R^{3}
$$

Surface A rea $A=4 \pi R^{2}$

So,

$$
\mathrm{T}=0.97 \times 10^{6}\left(\frac{\frac{4}{3} \pi \mathrm{R}^{3}}{4 \pi \mathrm{R}^{2}}\right)^{2}=0.97 \times 10^{6}\left(\frac{\mathrm{R}}{3}\right)^{2}
$$

$$
=\frac{0.97}{9} \times 10^{6}\left(\frac{0.2}{2}\right)^{2}=1078 \mathrm{sec}
$$

SOL 10.133 Option (C) is correct.
Given : $\mathrm{d}=100 \mathrm{~mm}, \mathrm{~h}=100 \mathrm{~mm}, \mathrm{R}=0.4 \mathrm{~mm}$

Here we see that $d>20 r$
If $d \geq 20 r$, blank diameter in cup drawing is given by,

$$
D=\sqrt{d^{2}+4 d h}
$$

W here,

$$
\begin{aligned}
D & =\text { diameter of flat blank } \\
d & =\text { diameter of finished shell } \\
h & =\text { height of finished shell }
\end{aligned}
$$

Substitute the values, we get

$$
\begin{aligned}
D & =\sqrt{(100)^{2}+4 \times 100 \times 100}=\sqrt{50000} \\
& =223.61 \mathrm{~mm} \simeq 224 \mathrm{~mm}
\end{aligned}
$$

soL 10.134 Option (B) is correct.
Given : $d_{i}=100 \mathrm{~mm}, \mathrm{~d}_{\mathrm{f}}=50 \mathrm{~mm}, \mathrm{~T}=700^{\circ} \mathrm{C}, \mathrm{k}=250 \mathrm{M} \mathrm{Pa}$
Extrusion force is given by,

$$
\mathrm{F}_{\mathrm{e}}=k A_{i} \ln \left(\frac{\mathrm{~A}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{f}}}\right)=\mathrm{k} \frac{\pi}{4} \mathrm{~d}_{\mathrm{i}}^{2} \ln \left(\frac{\frac{\pi}{4} d_{i}^{2}}{\frac{\pi}{4} d_{f}^{2}}\right)=\mathrm{k} \frac{\pi}{4} \mathrm{~d}_{\mathrm{i}}^{2} \ln \left(\frac{\mathrm{~d}_{\mathrm{i}}}{\mathrm{~d}_{\mathrm{f}}}\right)^{2}
$$

Substitute the values, we get

$$
\begin{aligned}
\mathrm{F}_{\mathrm{e}} & =250 \times \frac{\pi}{4}(0.1)^{2} \ln \left(\frac{0.1}{0.05}\right)^{2} \\
& =1.96 \ln 4=2.717 \mathrm{M} \mathrm{~N} \simeq 2.72 \mathrm{M} \mathrm{~N}
\end{aligned}
$$

soL 10.135 Option (A) is correct.
Given : $\mathrm{D}=20 \mathrm{~mm}, \mathrm{t}=2 \mathrm{~mm}$, P unch or diameter clearance $=3 \%$
Required punch diameter will be,

$$
\mathrm{d}=\mathrm{D}-2 \times(3 \% \text { of thickness })
$$

$$
=20-2 \times \frac{3}{100} \times 2=19.88 \mathrm{~mm}
$$

SOL 10.136 Option (A) is correct.
Given : For case (I) :
$\mathrm{N}=50 \mathrm{rpm}, \mathrm{f}=0.25 \mathrm{~mm} / \mathrm{rev} ., \mathrm{d}=1 \mathrm{~mm}$
Number of cutting tools $=10$
Number of components produce $=500$
So, Velocity

$$
\mathrm{V}_{1}=\mathrm{N} \times \mathrm{f}=50 \times 0.25=12.5 \mathrm{~mm} / \mathrm{min} .
$$

For case (II) :
$\mathrm{N}=80 \mathrm{rpm}, \mathrm{f}=0.25 \mathrm{~mm} / \mathrm{rev} ., \mathrm{d}=1 \mathrm{~mm}$
Number of cutting tools, $=10$
Number of components produce $=122$
So, Velocity $\quad \mathrm{V}_{2}=\mathrm{N} \times \mathrm{f}=80 \times 0.25=20 \mathrm{~mm} / \mathrm{min}$
From the tool life equation between cutting speed \& tool life, $\mathrm{VT}^{\mathrm{n}}=\mathrm{C}$,

$$
\begin{equation*}
\mathrm{V}_{1} \mathrm{~T}_{1}^{n}=\mathrm{V}_{2} \mathrm{~T}_{2}^{n} \quad \text { where } \mathrm{C}=\mathrm{constant} \tag{i}
\end{equation*}
$$

Tool life $=$ Number of components produce \times Tool constant
For case (I), $\quad \mathrm{T}_{1}=500 \mathrm{k}=$ tool constant
For case (II), $\quad \mathrm{T}_{2}=122 \mathrm{k}$
From equation (i),

$$
\begin{aligned}
12.5 \times(500 k)^{n} & =20 \times(122 k)^{n} \\
\left(\frac{500 k}{122 k}\right)^{n} & =\frac{20}{12.5}=1.6
\end{aligned}
$$

Taking log both the sides,

$$
\begin{aligned}
n \ln \left(\frac{500}{122}\right) & =\ln (1.6) \\
\mathrm{n}(1.41) & =0.47 \\
\mathrm{n} & =0.333
\end{aligned}
$$

Let the no. of components produced be n_{1} by one cutting tool at 60 r.p.m.
So, tool life, $\quad T_{3}=n_{1} k$

$$
\text { Velocity, } \mathrm{V}_{3}=60 \times 0.25=15 \mathrm{~mm} / \mathrm{min} \quad \text { feed remains same }
$$

Now, tool life T_{1} if only 1 component is used,

$$
\mathrm{T}_{1}^{\prime}=\frac{500 \mathrm{k}}{10}
$$

So,

$$
\mathrm{V}_{1}\left(\mathrm{~T}_{1}^{\prime}\right)^{\mathrm{n}}=\mathrm{V}_{3}\left(\mathrm{~T}_{3}\right)^{\mathrm{n}}
$$

Substitute the values, we get

$$
\begin{aligned}
\mathrm{V}_{1}\left(\frac{500 \mathrm{k}}{10}\right)^{\mathrm{n}} & =15\left(\mathrm{n}_{1} \mathrm{k}\right)^{\mathrm{n}} \\
\left(\frac{50 \mathrm{k}}{\mathrm{n}_{1} \mathrm{k}}\right)^{\mathrm{n}} & =\frac{15}{12.5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{50}{\mathrm{n}_{1}}=(1.2)^{1 / 0.333}=1.73 \\
& \mathrm{n}_{1}=\frac{50}{1.73}=28.90 \simeq 29
\end{aligned}
$$

SOL 10.137 Option (B) is correct.
Given : $p=2 \mathrm{~mm}, d=14.701 \mathrm{~mm}$
We know that, in case of ISO metric type threads,

$$
2 \theta=60^{\circ} \quad \Rightarrow \quad \theta=30^{\circ}
$$

A nd in case of threads, always rollers are used.
For best size of rollers, $\quad d=\frac{p}{2} \sec \theta=\frac{2}{2} \sec 30^{\circ}=1.155 \mathrm{~mm}$
Hence, rollers of 1.155 mm diameter (1.155ϕ) is used.

SOL 10.138 Option (D) is correct.
The total number of straight fringes that can be observed on both slip gauges is 13.
soL 10.139 Option (A) is correct.
Given : $P=35.00 \pm 0.08 \mathrm{~mm}, \mathrm{Q}=12.00 \pm 0.02 \mathrm{~mm}$

$$
\mathrm{R}=13.00_{-0.02}^{+0.04} \mathrm{~mm}=13.01 \pm 0.03 \mathrm{~mm}
$$

From the given figure, we can say

$$
\begin{aligned}
\mathrm{P} & =\mathrm{Q}+\mathrm{W}+\mathrm{R} \\
\mathrm{~W} & =\mathrm{P}-(\mathrm{Q}+\mathrm{R}) \\
& =(35.00 \pm 0.08)-[(12.00 \pm 0.02)+(13.01 \pm 0.03)] \\
& =(35-12-13.01)_{-0.08+0.02+0.03}^{+0.08-0.02-0.03} \\
& =9.99_{-0.03}^{+0.03}=9.99 \pm 0.03 \mathrm{~mm}
\end{aligned}
$$

sol 10.140 Option (D) is correct.

Working material

P. Aluminium
Q. Die steel
R. Copper Wire
S. Titanium sheet

Type of Joining

5. Gas Tungsten Arc Welding
6. Atomic Hydrogen Welding
7. Soldering
8. Laser Beam Welding

So, correct pairs are, P-5, Q-4, R-2,S-6
soL 10.141 Option (A) is correct
Given : $\mathrm{N}=200 \mathrm{rpm}, \mathrm{f}=0.25 \mathrm{~mm} /$ revolution, $\mathrm{d}=0.4 \mathrm{~mm}, \alpha=10^{\circ}$, $\phi=27.75^{\circ}$
Uncut chip thickness, $\quad \mathrm{t}=\mathrm{f}($ feed, $\mathrm{mm} /$ rev. $)=0.25 \mathrm{~mm} / \mathrm{rev}$.
Chip thickness ratio is given by,

$$
\mathrm{r}=\frac{\mathrm{t}}{\mathrm{t}_{\mathrm{c}}}=\frac{\sin \phi}{\cos (\phi-\alpha)}
$$

W here,

$$
\mathrm{t}_{\mathrm{c}}=\text { thickness of the produced chip. }
$$

So,

$$
\begin{aligned}
\mathrm{t}_{\mathrm{c}} & =\frac{\mathrm{t} \times \cos (\phi-\alpha)}{\sin \phi} \\
& =\frac{0.25 \times \cos (27.75-10)}{\sin (27.75)}=0.511 \mathrm{~mm}
\end{aligned}
$$

Alternate :

We also find the value of t_{c} by the general relation,

$$
\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha} \quad \text { where } r=\frac{t}{t_{c}}
$$

SOL 10.142 Option (D) is correct.
We know that angle of friction,

$$
\begin{array}{ll}
& \beta=\tan ^{-1} \mu \\
\text { or, } & \mu=\tan \beta \tag{i}
\end{array}
$$

For merchant and earnest circle, the relation between rake angle (α), shear angle (ϕ) and friction angle (β) is given by,

$$
\begin{aligned}
2 \phi+\beta-\alpha & =90^{\circ} \\
\beta & =90^{\circ}+\alpha-2 \phi \\
& =90^{\circ}+10-2 \times 27.75=44.5^{\circ}
\end{aligned}
$$

Now, from equation (i),

$$
\mu=\tan \left(44.5^{\circ}\right)=0.98
$$

sol 10.143 Option (D) is correct.
A lead-screw with half nuts in a lathe, free to rotate in both directions had Acme threads. When it is used in conjunction with a split nut, as on the lead screw of a lathe, the tapered sides of the threads facilitate ready to engagement and disengagement of the halves of the nut when required.
soL 10.144 Option (C) is correct.
From the pouring basin, the molten metal is transported down into the mould cavity by means of the sprue or downgate. It is a vertical channel that connects the pouring basin with runners and gates.

SOL 10.145 Option (D) is correct.
Hot rolling of metal means working of metals when heated sufficiently (above the recrystallizing temperature) to make them plastic and easily worked.
sol 10.146 Option (B) is correct.
GTAW is also called as Tungsten Inert Gas welding (TIG). The electrode is non consumable since its melting point is about $3400^{\circ} \mathrm{C}$.
soL 10.147 Option (B) is correct.
In trepanning, the cutting tool produces a hole by removing a disk-shaped piece (core), usually from flat plates. A hole is produced without reducing all the material removed to chips, as is the case in drilling. Such drills are used in deep-hole drilling machines for making large hollow shafts, long machine tool spindles etc.
sol 10.148 Option (B) is correct.
Because each abrasive grain usually removes only a very small amount of material at a time, high rates of material removal can be achieved only if a large number of these grains act together. This is done by using bonded abrasives, typically in the form of a grinding wheel. The abrasive grains are held together by a bonding material which acts as supporting posts or brace between the grains and also increases the hardness of the grinding wheel.
sol 10.149 Option (D) is correct.
Centrifugal casting is the method of producing castings by pouring the molten metal into a rapidly rotating mould. Because of density differences, lighter elements such as dross, impurities and pieces of the refractory lining tend to collect at the centre of the casting. This results in better mould filling and a casting with a denser grain structure, which is virtually free of porosity.
sol 10.150 Option (B) is correct.
Work hardening is when a metal is strained beyond the yield. An increasing stress is required to produce additional plastic deformation and the metal apparently becomes stronger and more difficult to deform.
Work hardening reduces ductility, which increases the chances of brittle failure.
sol 10.151 Option (B) is correct.
A carburising flame is obtained when an excess of acetylene is supplied than
which is theoretically required. This excess amount of acetylene increases the temperature of the flame. So, the temperature of a carburising flame in gas welding is higher than that of a neutral or an oxidising flame.
sol 10.152 Option (C) is correct.

The punch size is obtained by subtracting the clearance from the die-opening size. Clearance is the gap between the punch and the die. (From the figure)
sol 10.153 Option (B) is correct.
W hen machining ductile materials, conditions of high local temperature and extreme pressure in the cutting zone and also high friction in the tool chip interface, may cause the work material to adhere or weld to the cutting edge of the tool forming the built-up edge. Low-cutting speed contributes to the formation of the built-up edge. Increasing the cutting speed, increasing the rake angle and using a cutting fluid contribute to the reduction or elimination of built-up edge.
soL 10.154 Option (B) is correct.
Given: $\quad \mathrm{t}=25 \mathrm{~mm}, \mathrm{~N}=300 \mathrm{rpm}, \mathrm{f}=0.25 \mathrm{~mm} / \mathrm{rev}$
We know, time taken to drill a hole,

$$
\mathrm{T}=\frac{\mathrm{t}}{\mathrm{fN}}=\frac{25}{0.25 \times \frac{300}{60}}=\frac{25}{0.25 \times 5}=20 \mathrm{sec}
$$

SOL 10.155 Option (C) is correct.
Since metal shrinks on solidification and contracts further on cooling to room temperature, linear dimensions of patterns are increased in respect of those of the finished casting to be obtained. This is called the "shrinkage allowance".
So, the temperature of solid phase drops from freezing to room temperature.

SOL 10.156 Option (B) is correct.
The blanking force is given by the relation,

$$
\mathrm{F}_{\mathrm{b}}=\tau \times \mathrm{d} \times \mathrm{t}
$$

Where, $\tau=$ shear strength of material.
soL 10.157 Option (D) is correct.
In ECM, the principal of electrolysis is used to remove metal from the workpiece. The material removal is due to ion displacement. The principal of electrolysis is based on Faraday's law of electrolysis.
sol 10.158 Option (C) is correct.
Electric arc welding is "a welding process wherein coalescence is produced by heating with an arc, with or without the use of filler metals.
No filler metal is used in butt weld. So, when the plate thickness changes, welding is achieved by changing the electrode size.

SOL 10.159 Option (A) is correct.
Allowance is an intentional difference between the maximum material limits of mating parts. For shaft, the maximum material limit will be its high limit and for hole, it will be its low limit. So, allowance refers to maximum clearance between shaft and hole.
sol 10.160 Option (A) is correct.
Given: $\mathrm{H}_{\mathrm{g}}=175 \mathrm{~mm}, \mathrm{~A}_{\mathrm{g}}=200 \mathrm{~mm}^{2}, \mathrm{v}_{\mathrm{m}}=10^{6} \mathrm{~mm}^{3}$,
$\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}=10^{4} \mathrm{~mm} / \mathrm{sec}^{2}$
Time required to fill the mould is given by,

$$
t=\frac{v_{m}}{A_{g} \sqrt{2 g H_{g}}}=\frac{10^{6}}{200 \times \sqrt{2 \times 10^{4} \times 175}}=2.67 \mathrm{sec}
$$

SOL 10.161 Option (B) is correct.
The maximum reduction taken per pass in wire drawing, is limited by the strength of the deformed product. The exit end of the drawn rod will fracture at the die exit, when

$$
\frac{\sigma_{\mathrm{d}}}{\sigma_{0}}=1, \text { if there is no strain hardening. }
$$

For zero back stress, the condition will be,

$$
\begin{equation*}
\frac{1+B}{B}\left[1-(1-R A)^{B}\right]=1 \tag{i}
\end{equation*}
$$

In wire drawing, co-efficient of friction of the order 0.1 are usually obtained.
Now,

$$
\begin{aligned}
& \mathrm{B}=\mu \cot \alpha \\
& \mu=0.1 \text { and } \alpha=6^{\circ}
\end{aligned}
$$

$$
\mathrm{B}=\mu \cot 6^{\circ}=0.9515
$$

From equation (i),

$$
\begin{aligned}
1-(1-R A)^{B} & =\frac{B}{1+B}=\frac{0.9515}{1+0.9515}=0.49 \\
(1-R A)^{B} & =0.51 \\
1-R A & =(0.51) \frac{1}{0.9515}=0.49 \\
R A & =1-0.49=0.51
\end{aligned}
$$

The approximate option is (B).
soL 10.162 Option (C) is correct.
Given

$$
\alpha=10^{\circ}, r=0.4
$$

Shear angle $\quad \tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}=\frac{0.4 \cos 10^{\circ}}{1-0.4 \sin 10^{\circ}}=0.4233$

$$
\begin{aligned}
\tan \phi & =0.4233 \\
\phi & =\tan ^{-1}(0.4233)=22.94^{\circ}
\end{aligned}
$$

soL 10.163 Option (A) is correct.
Given: $\quad I=15000 \mathrm{~A}, \mathrm{t}=0.25 \mathrm{sec}, \mathrm{R}=0.0001 \Omega$
The heat generated to form the weld is,

$$
\mathrm{Q}=I^{2} \mathrm{Rt}=(15000)^{2} \times 0.0001 \times 0.25=5625 \mathrm{~W}-\mathrm{sec}
$$

soL 10.164 Option (C) is correct.
According to 3-2-1 principle, only the minimum locating points should be used to secure location of the work piece in any one plane.
(A) The workpiece is resting on three pins A , B , C which are inserted in the base of fixed body.
The workpiece cannot rotate about the axis $X X$ and $Y Y$ and also it cannot move downward. In this case, the five degrees of freedom have been arrested.
(B) Two more pins D and E are inserted in the fixed body, in a plane perpendicular to the plane containing, the pins A, B and C. Now the workpiece cannot rotate about the Z -axis and also it cannot move towards the left. Hence the addition of pins D and E restrict three more degrees of freedom.
(C) A nother pin F in the second vertical face of the fixed body, arrests degree of freedom 9 .
sol 10.165 Option (B) is correct.
Given: Initial point (5, 4), Final point (7, 2), Centre (5, 4)

So, the G, N codes for this motion are N 010 GO 2 X 7.0 Y 2.015 .0 J 2.0
where, $\quad G O 2 \rightarrow$ Clockwise circular interpolation
X 7.0 Y $2.0 \rightarrow$ Final point
I5.0 J $2.0 \rightarrow$ Centre point

CHAPTER 11

INDUSTRIAL ENGINEERING

YEAR 2012
ONE MARK
MCQ 11.1 W hich one of the following is NOT a decision taken during the aggregate production planning stage?
(A) Scheduling of machines
(B) A mount of labour to be committed
(C) Rate at which production should happen
(D) Inventory to be carried forward

YEAR 2012
TWO MARKS

- Common Data For Q. 2 and Q. 3

For a particular project, eight activities are to be carried out. Their relationships with other activities and expected durations are mentioned in the table below.

Activity	Predecessors	Durations (days)
a	-	3
b	a	4
c	a	5
d	a	4
e	b	2
f	d	9
g	c,e	6
h	f, g	2

MCQ 11.2 The critical path for the project is
(A) $a-b-e-g-h$
(B) $a-c-g-h$
(C) $a-d-f-h$
(D) $a-b-c-f-h$

MCQ 11.3 If the duration of activity f alone is changed from 9 to 10 days, then the
(A) critical path remains the same and the total duration to complete the project changes to 19 days.
(B) critical path and the total duration to complete the project remains the same.
(C) critical path changes but the total duration to complete the project remains the same.
(D) critical path changes and the total duration to complete the project changes to 17 days.

YEAR 2011
ONE MARK
MCQ 11.4 Cars arrive at a service station according to Poisson's distribution with a mean rate of 5 per hour. The service time per car is exponential with a mean of 10 minutes. At steady state, the average waiting time in the queue is
(A) 10 minutes
(B) 20 minutes
(C) 25 minutes
(D) 50 minutes

MCQ 11.5 The word 'kanban' is most appropriately associated with
(A) economic order quantity
(B) just-in-time production
(C) capacity planning
(D) product design

YEAR 2011
TWO MARKS

- Common Data For Q. 6 and Q. 7

One unit of product P_{1} requires 3 kg of resources R_{1} and 1 kg of resources R_{2} . One unit of product P_{2} requires 2 kg of resources R_{1} and 2 kg of resources R_{2}. The profits per unit by selling product P_{1} and P_{2} are $R s .2000$ and Rs. 3000 respectively. The manufacturer has 90 kg of resources R_{1} and 100 kg of resources R_{2}.

MCQ 11.6 The unit worth of resources R_{2}, i.e., dual price of resources R_{2} in Rs. per kg is
(A) 0
(B) 1350
(C) 1500
(D) 2000

MCQ 11.7 The manufacturer can make a maximum profit of Rs .
(A) 60000
(B) 135000
(C) 150000
(D) 200000

YEAR 2010

ONE MARK
MCQ 11.8 The demand and forecast for February are 12000 and 10275, respectively. Using single exponential smoothening method (smoothening coefficient $=0.25$), forecast for the month of M arch is
(A) 431
(B) 9587
(C) 10706
(D) 11000

MCQ 11.9 Little's Iaw is a relationship between
(A) stock level and lead time in an inventory system
(B) waiting time and length of the queue in a queuing system
(C) number of machines and job due dates in a scheduling problem
(D) uncertainty in the activity time and project completion time

MCQ 11.10 Vehicle manufacturing assembly line is an example of
(A) product layout
(B) process layout
(C) manual layout
(D) fixed layout

MCQ 11.11 Simplex method of solving linear programming problem uses
(A) all the points in the feasible region
(B) only the corner points of the feasible region
(C) intermediate points within the infeasible region
(D) only the interior points in the feasible region

YEAR 2010
MCQ 11.12 A nnual demand for window frames is 10000. Each frame cost Rs. 200 and ordering cost is Rs. 300 per order. Inventory holding cost is Rs. 40 per frame per year. The supplier is willing of offer 2% discount if the order quantity is 1000 or more, and 4% if order quantity is 2000 or more. If the total cost is to be minimized, the retailer should
(A) order 200 frames every time
(B) accept 2% discount
(C) accept 4\% discount
(D) order Economic Order Quantity

MCQ 11.13 The project activities, precedence relationships and durations are described in the table. The critical path of the project is

Activity	Precedence	Duration (in days)
P	-	3
Q	-	4
R	P	5
S	Q	5
T	R,S	7
U	R,S	5
V	T	2
W	U	10

(A) P -R -T -V
(B) Q -S -T -V
(C) $\mathrm{P}-\mathrm{R}-\mathrm{U}-\mathrm{W}$
(D) Q -S -U -W

- Common Data For Q. 14 and Q. 15

Four jobs are to be processed on a machine as per data listed in the table.

J ob	Processing time (in days)	Due date
1	4	6
2	7	9
3	2	19
4	8	17

MCQ 11.14 If the Earliest Due Date(EDD) rule is used to sequence the jobs, the number of jobs delayed is
(A) 1
(B) 2
(C) 3
(D) 4

MCQ 11.15 Using the Shortest Processing Time (SPT) rule, total tardiness is
(A) 0
(B) 2
(C) 6
(D) 8

YEAR 2009
ONE MARK
MCQ 11.16 The expected time (t_{e}) of a PERT activity in terms of optimistic time t_{0}, pessimistic time (t_{p}) and most likely time (t_{l}) is given by
(A) $t_{e}=\frac{t_{0}+4 t_{1}+t_{p}}{6}$
(B) $t_{e}=\frac{t_{0}+4 t_{p}+t_{1}}{6}$
(C) $t_{e}=\frac{t_{0}+4 t_{1}+t_{p}}{3}$
(D) $t_{e}=\frac{t_{0}+4 t_{p}+t_{1}}{3}$

MCQ 11.17 W hich of the following forecasting methods takes a fraction of forecast error into account for the next period forecast ?
(A) simple average method
(B) moving average method
(C) weighted moving average method
(D) exponential smoothening method

YEAR 2009
TWO MARKS
MCQ 11.18 A company uses 2555 units of an item annually. Delivery lead time is 8 days. The reorder point (in number of units) to achieve optimum inventory is
(A) 7
(B) 8
(C) 56
(D) 60

MCQ 11.19 Consider the following Linear Programming Problem (LPP):
Maximize $\quad Z=3 x_{1}+2 x_{2}$
Subject to $\quad x_{1} \leq 4$

$$
x_{2} \leq 6
$$

$$
3 x_{1}+2 x_{2} \leq 18
$$

$$
x_{1} \geq 0, x_{2} \geq 0
$$

(A) The LPP has a unique optimal solution
(B) The LPP is infeasible.
(C) The LPP is unbounded.
(D) The LPP has multiple optimal solutions.

MCQ 11.20 Six jobs arrived in a sequence as given below:

J obs	Processing Time (days)
I	4
II	9
III	5
IV	10
V	6
VI	8

A verage flow time (in days) for the above jobs using Shortest Processing time rule is
(A) 20.83
(B) 23.16
(C) 125.00
(D) 139.00

- Common Data For Q. 21 and Q. 22

Consider the following PERT network:

The optimistic time, most likely time and pessimistic time of all the activities are given in the table below:

A ctivity	Optimistic time (days)	M ost likely time (days)	Pessimistic time (days)
$1-2$	1	2	3
$1-3$	5	6	7
$1-4$	3	5	7
$2-5$	5	7	9
$3-5$	2	4	6
$5-6$	4	5	6
$4-7$	4	6	8
$6-7$	2	3	4

MCQ 11.21 The critical path duration of the network (in days) is
(A) 11
(B) 14
(C) 17
(D) 18

MCQ 11.22 The standard deviation of the critical path is
(A) 0.33
(B) 0.55
(C) 0.77
(D) 1.66

YEAR 2008
MCQ 11.23 In an M/M/1 queuing system, the number of arrivals in an interval of length T is a Poisson random variable (i.e. the probability of there being arrivals
in an interval of length T is $\left.\frac{e^{-\lambda T}(\lambda T)^{n}}{n!}\right)$. The probability density function $f(t)$ of the inter-arrival time is
(A) $\lambda^{2}\left(\mathrm{e}^{-\lambda^{2} \mathrm{t}}\right)$
(B) $\frac{e^{-\lambda^{2} t}}{\lambda^{2}}$
(C) $\lambda \mathrm{e}^{-\lambda t}$
(D) $\frac{\mathrm{e}^{-\lambda t}}{\lambda}$

MCQ 11.24 A set of 5 jobs is to be processed on a single machine. The processing time (in days) is given in the table below. The holding cost for each job is Rs. K per day.

J ob	Processing time
P	5
Q	2
R	3
S	2
T	1

A schedule that minimizes the total inventory cost is
(A) T-S-Q-R-P
(B) P -R -S -Q -T
(C) T -R -S -Q -P
(D) P -Q -R -S -T

YEAR 2008
TWO MARKS
MCQ 11.25 For the standard transportation linear programme with m source and n destinations and total supply equaling total demand, an optimal solution (lowest cost) with the smallest number of non-zero $x_{i j}$ values (amounts from source i to destination j) is desired. The best upper bound for this number is
(A) mn
(B) $2(m+n)$
(C) $m+n$
(D) $m+n-1$

MCQ 11.26 A moving average system is used for forecasting weekly demand $F_{1}(t)$ and $F_{2}(t)$ are sequences of forecasts with parameters m_{1} and m_{2}, respectively, where m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ denote the numbers of weeks over which the moving averages are taken. The actual demand shows a step increase from d_{1} to d_{2} at a certain time. Subsequently,
(A) neither $F_{1}(t)$ nor $F_{2}(t)$ will catch up with the value d_{2}
(B) both sequences $F_{1}(t)$ and $F_{2}(t)$ will reach d_{2} in the same period
(C) $F_{1}(t)$ will attain the value d_{2} before $F_{2}(t)$
(D) $F_{2}(t)$ will attain the value d_{2} before $F_{1}(t)$

MCQ 11.27 For the network below, the objective is to find the length of the shortest path from node P to nodeG.
Let $d_{i j}$ be the length of directed arc from node i to node j.
Let S_{j} be the length of the shortest path from P to node j. Which of the following equations can be used to find S_{G} ?

(A) $S_{G}=M \operatorname{in}\left\{S_{Q}, S_{R}\right\}$
(B) $S_{G}=M \operatorname{in}\left\{S_{Q}-d_{Q G}, S_{R}-d_{R G}\right\}$
(C) $S_{G}=M$ in $\left\{S_{Q}+d_{Q G}, S_{R}+d_{R G}\right\}$
(D) $\mathrm{S}_{\mathrm{G}}=\mathrm{Min}\left\{\mathrm{d}_{\mathrm{QG}}, \mathrm{d}_{\mathrm{RG}}\right\}$

MCQ 11.28 The product structure of an assembly P is shown in the figure.

Estimated demand for end product P is as follows

Week	1	2	3	4	5	6
Demand	1000	1000	1000	1000	1200	1200

ignore lead times for assembly and sub-assembly. Production capacity (per week) for component R is the bottleneck operation. Starting with zero inventory, the smallest capacity that will ensure a feasible production plan up to week 6 is
(A) 1000
(B) 1200
(C) 2200
(D) 2400

- Common Data For Q. 29 and Q. 30

Consider the Linear Programme (LP)
Max $4 x+6 y$
Subject to $3 x+2 y \leq 6$

$$
2 x+3 y \leq 6
$$

$$
x, y \geq 0
$$

MCQ 11.29 A fter introducing slack variables s and t, the initial basic feasible solution is represented by the table below (basic variables are $s=6$ and $t=6$, and the objective function value is 0)

	-4	-6	0	0	0
s	3	2	1	0	6
t	2	3	0	1	6
	x	y	s	t	RHS

A fter some simplex iterations, the following table is obtained

	0	0	0	2	12
s	$5 / 3$	0	1	$-1 / 3$	2
y	$2 / 3$	1	0	$1 / 3$	2
	x	y	s	t	RHS

From this, one can conclude that
(A) the LP has a unique optimal solution
(B) the LP has an optimal solution that is not unique
(C) the LP is infeasible
(D) the LP is unbounded

MCQ 11.30 The dual for the LP in Q. 29 is
(A) M in $6 u+6 v$
subject to
$3 u+2 v \geq 4$
$2 u+3 v \geq 6$
$u, v \geq 0$
(C) $M a x 4 u+6 v$
subject to
$3 u+2 v \geq 6$
$2 u+3 v \geq 6$
$u, v \geq 0$
(B) $M a x 6 u+6 v$
subject to
$3 u+2 v \leq 4$
$2 u+3 v \leq 6$
$u, v \geq 0$
(D) M in $4 u+6 v$
subject to
$3 u+2 v \leq 6$
$2 u+3 v \leq 6$
$u, v \geq 0$

MCQ 11.31 Capacities of production of an item over 3 consecutive months in regular time are 100, 100 and 80 and in overtime are 20, 20 and 40. The demands over those 3 months are 90, 130 and 110. The cost of production in regular time and overtime are respectively Rs. 20 per item and Rs. 24 per item.

Inventory carrying cost is Rs. 2 per item per month. The levels of starting and final inventory are nil. Backorder is not permitted. For minimum cost of plan, the level of planned production in overtime in the third month is
(A) 40
(B) 30
(C) 20
(D) 0

MCQ 11.32 The maximum level of inventory of an item is 100 and it is achieved with infinite replenishment rate. The inventory becomes zero over one and half month due to consumption at a uniform rate. This cycle continues throughout the year. Ordering cost is Rs. 100 per order and inventory carrying cost is Rs. 10 per item per month. Annual cost (in Rs.) of the plan, neglecting material cost, is
(A) 800
(B) 2800
(C) 4800
(D) 6800

MCQ 11.33 In a machine shop, pins of 15 mm diameter are produced at a rate of 1000 per month and the same is consumed at a rate of 500 per month. The production and consumption continue simultaneously till the maximum inventory is reached. Then inventory is allowed to reduced to zero due to consumption. The lot size of production is 1000. If backlog is not allowed, the maximum inventory level is
(A) 400
(B) 500
(C) 600
(D) 700

MCQ 11.34 The net requirements of an item over 5 consecutive weeks are 50-0-15-20-20. The inventory carrying cost and ordering cost are Rs. 1 per item per week and Rs. 100 per order respectively. Starting inventory is zero. Use " Least Unit Cost Technique" for developing the plan. The cost of the plan (in Rs.) is
(A) 200
(B) 250
(C) 225
(D) 260

YEAR 2006 ONE MARK

MCQ 11.35 The number of customers arriving at a railway reservation counter is Poisson distributed with an arrival rate of eight customers per hour. The reservation clerk at this counter takes six minutes per customer on an average with an exponentially distributed service time. The average number of the customers in the queue will be
(A) 3
(B) 3.2
(C) 4
(D) 4.2

MCQ 11.36 In an M R P system, component demand is
(A) forecasted
(B) established by the master production schedule
(C) calculated by the M R P system from the master production schedule (D) ignored

YEAR 2006

TWO MARKS
MCQ 11.37 An manufacturing shop processes sheet metal jobs, wherein each job must pass through two machines (M 1 and M 2 , in that order). The processing time (in hours) for these jobs is

M achine	Jobs						
	P	Q	R	S	T	U	
M 1	15	32	8	27	11	16	
M 2	6	19	13	20	14	7	

The optimal make-span (in-hours) of the shop is
(A) 120
(B) 115
(C) 109
(D) 79

MCQ 11.38 Consider the following data for an item.
A nnual demand : 2500 units per year, Ordering cost : Rs. 100 per order, Inventory holding rate : 25% of unit price
Price quoted by a supplier

Order quantity (units)	U nit price (R s.)
<500	10
≥ 500	9

The optimum order quantity (in units) is
(A) 447
(B) 471
(C) 500
(D) ≥ 600

MCQ 11.39 A firm is required to procure three items (P, Q, and R). The prices quoted for these items (in Rs.) by suppliers S1, S2 and S 3 are given in table. The management policy requires that each item has to be supplied by only one supplier and one supplier supply only one item. The minimum total cost (in R s.) of procurement to the firm is

Item	Suppliers		
	S1	S 2	S 3
P	110	120	130
Q	115	140	140
R	125	145	165

(A) 350
(B) 360
(C) 385
(D) 395

MCQ 11.40 A stockist wishes to optimize the number of perishable items he needs to stock in any month in his store. The demand distribution for this perishable item is

Demand (in units)	2	3	4	5
Probability	0.10	0.35	0.35	0.20

The stockist pays Rs. 70 for each item and he sells each at Rs.90. If the stock is left unsold in any month, he can sell the item at Rs. 50 each. There is no penalty for unfulfilled demand. To maximize the expected profit, the optimal stock level is
(A) 5 units
(B) 4 units
(C) 3 units
(D) 2 units

MCQ 11.41 The table gives details of an assembly line.

Work station	I	II	III	IV	V	VI
Total task time at the workstation (in minutes)	7	9	7	10	9	6

W hat is the line efficiency of the assembly line ?
(A) 70%
(B) 75%
(C) 80%
(D) 85%

MCQ 11.42 The expected completion time of the project is
(A) 238 days
(B) 224 days
(C) 171 days
(D) 155 days

MCQ 11.43 The standard deviation of the critical path of the project is
(A) $\sqrt{151}$ days
(B) $\sqrt{155}$ days
(C) $\sqrt{200}$ days
(D) $\sqrt{238}$ days

MCQ 11.44 An assembly activity is represented on an Operation Process Chart by the symbol
(A)
(B) A
(C) D
(D) 0

MCQ 11.45 The sales of a product during the last four years were 860, 880, 870 and 890 units. The forecast for the fourth year was 876 units. If the forecast for the fifth year, using simple exponential smoothing, is equal to the forecast using a three period moving average, the value of the exponential smoothing constant α is
(A) $\frac{1}{7}$
(B) $\frac{1}{5}$
(C) $\frac{2}{7}$
(D) $\frac{2}{5}$

MCQ 11.46 Consider a single server queuing model with Poisson arrivals ($\lambda=4 /$ hour $)$ and exponential service ($\mu=4$ / hour). The number in the system is restricted to a maximum of 10 . The probability that a person who comes in leaves without joining the queue is
(A) $\frac{1}{11}$
(B) $\frac{1}{10}$
(C) $\frac{1}{9}$
(D) $\frac{1}{2}$

YEAR 2005
TWO MARKS
MCQ 11.47 A component can be produced by any of the four processes I, II, III and IV. Process I has a fixed cost of Rs. 20 and variable cost of Rs. 3 per piece. Process II has a fixed cost Rs. 50 and variable cost of Rs. 1 per piece. Process III has a fixed cost of Rs. 40 and variable cost of Rs. 2 per piece. Process IV has a fixed cost of Rs. 10 and variable cost of Rs. 4 per piece. If the company wishes to produce 100 pieces of the component, form economic point of view it should choose
(A) Process I
(B) Process II
(C) Process III
(D) Process IV

MCQ 11.48 A welding operation is time-studied during which an operator was pace-rated as 120%. The operator took, on an average, 8 minutes for producing the weldjoint. If a total of 10% allowances are allowed for this operation. The expected standard production rate of the weld-joint (in units per 8 hour day) is
(A) 45
(B) 50
(C) 55
(D) 60

MCQ 11.49 The distribution of lead time demand for an item is as follows:

Lead time demand	Probability
80	0.20
100	0.25
120	0.30
140	0.25

The reorder level is 1.25 times the expected value of the lead time demand. The service level is
(A) 25%
(B) 50%
(C) 75%
(D) 100%

MCQ 11.50 A project has six activities (A to F) with respective activity duration 7, 5, $6,6,8,4$ days. The network has three paths A-B, C-D and E-F. All the activities can be crashed with the same crash cost per day. The number of activities that need to be crashed to reduce the project duration by 1 day is
(A) 1
(B) 2
(C) 3
(D) 6

MCQ 11.51 A company has two factories S1, S2, and two warehouses D1, D2. The supplies from S1 and S2 are 50 and 40 units respectively. Warehouse D1 requires a minimum of 20 units and a maximum of 40 units. Warehouse D 2 requires a minimum of 20 units and, over and above, it can take as much as can be supplied. A balanced transportation problem is to be formulated for the above situation. The number of supply points, the number of demand points, and the total supply (or total demand) in the balanced transportation problem respectively are
(A) 2, 4, 90
(B) 2, 4, 110
(C) $3,4,90$
(D) 3, 4, 110

- Common Data For Q. 52 and Q. 53

Consider a linear programming problem with two variables and two constraints. The objective function is: M aximize $X_{1}+X_{2}$. The corner points of the feasible region are (0,0), (0,2), (2,0) and ($4 / 3,4 / 3$)

MCQ 11.52 If an additional constraint $X_{1}+X_{2} \leq 5$ is added, the optimal solution is
(A) $\left(\frac{5}{3}, \frac{5}{3}\right)$
(B) $\left(\frac{4}{3}, \frac{4}{3}\right)$
(C) $\left(\frac{5}{2}, \frac{5}{2}\right)$
(D) $(5,0)$

MCQ 11.53 Let Y_{1} and Y_{2} be the decision variables of the dual and v_{1} and v_{2} be the slack variables of the dual of the given linear programming problem. The optimum dual variables are
(A) Y_{1} and Y_{2}
(B) Y_{1} and v_{1}
(C) Y_{1} and V_{2}
(D) v_{1} and v_{2}

YEAR 2004

ONE MARK
MCQ 11.54 In PERT analysis a critical activity has
(A) maximum Float
(B) zero F loat
(C) maximum Cost
(D) minimum Cost

MCQ 11.55 For a product, the forecast and the actual sales for December 2002 were 25 and 20 respectively. If the exponential smoothing constant (α) is taken as 0.2, then forecast sales for J anuary 2003 would be
(A) 21
(B) 23
(C) 24
(D) 27

MCQ 11.56 There are two products P and Q with the following characteristics

Product	Demand (Units)	Order cost (R s/ order)	H olding Cost (R s./ unit/ year)
P	100	50	4
Q	400	50	1

The economic order quantity (EOQ) of products P and Q will be in the ratio
(A) $1: 1$
(B) $1: 2$
(C) $1: 4$
(D) $1: 8$

YEAR 2004 TWO MARKS

MCQ 11.57 A standard machine tool and an automatic machine tool are being compared for the production of a component. Following data refers to the two machines.

	Standard M achine Tool	A utomatic M achine Tool
Setup time	30 min	2 hours
M achining time per piece	22 min	5 min
M achine rate	R s. 200 per hour	R s. 800 per hour

The break even production batch size above which the automatic machine
tool will be economical to use, will be
(A) 4
(B) 5
(C) 24
(D) 225

MCQ 11.58 A soldering operation was work-sampled over two days (16 hours) during which an employee soldered 108 joints. A ctual working time was 90% of the total time and the performance rating was estimated to be 120 per cent. If the contract provides allowance of 20 percent of the time available, the standard time for the operation would be
(A) 8 min
(B) 8.9 min
(C) 10 min
(D) 12 min

MCQ 11.59 An electronic equipment manufacturer has decided to add a component subassembly operation that can produce 80 units during a regular 8 -hours shift. This operation consist of three activities as below

A ctivity	Standard time (min)
M. M echanical assembly	12
E. E lectric wiring	16
T. Test	3

For line balancing the number of work stations required for the activities M, E and T would respectively be
(A) $2,3,1$
(B) 3, 2, 1
(C) 2, 4, 2
(D) 2, 1, 3

MCQ 11.60 A maintenance service facility has Poisson arrival rates, negative exponential service time and operates on a 'first come first served' queue discipline. Breakdowns occur on an average of 3 per day with a range of zero to eight. The maintenance crew can service an average of 6 machines per day with a range of zero to seven. The mean waiting time for an item to be serviced would be
(A) $\frac{1}{6}$ day
(B) $\frac{1}{3}$ day
(C) 1 day
(D) 3 day

MCQ 11.61 A company has an annual demand of 1000 units, ordering cost of Rs. 100 / order and carrying cost of Rs.100/ unit/ year. If the stock-out cost are estimated to be nearly Rs. 400 each time the company runs out-of-stock, then safety stock justified by the carrying cost will be
(A) 4
(B) 20
(C) 40
(D) 100

MCQ 11.62 A company produces two types of toys: P and Q. Production time of Q is twice that of P and the company has a maximum of 2000 time units per day. The supply of raw material is just sufficient to produce 1500 toys (of any type) per day. Toy type Q requires an electric switch which is available @ 600 pieces per day only. The company makes a profit of Rs. 3 and Rs. 5 on type P and Q respectively. For maximization of profits, the daily production quantities of P and Q toys should respectively be
(A) 1000, 500
(B) 500, 1000
(C) 800, 600
(D) 1000, 1000

YEAR 2003
ONE MARK
MCQ 11.63 The symbol used for Transport in work study is
(A) \Rightarrow
(B) T
(C) \square
(D) ∇

YEAR 2003 TWO MARKS

MCQ 11.64 Two machines of the same production rate are available for use. On machine 1, the fixed cost is Rs. 100 and the variable cost is Rs. 2 per piece produced. The corresponding numbers for the machine 2 are Rs. 200 and Re. 1 respectively. For certain strategic reasons both the machines are to be used concurrently. The sales price of the first 800 units is Rs. 3.50 per unit and subsequently it is only Rs.3.00. The breakeven production rate for each machine is
(A) 75
(B) 100
(C) 150
(D) 600

MCQ 11.65 A residential school stipulates the study hours as 8.00 pm to 10.30 pm . Warden makes random checks on a certain student 11 occasions a day during the study hours over a period of 10 days and observes that he is studying on 71 occasions. Using 95\% confidence interval, the estimated minimum hours of his study during that 10 day period is
(A) 8.5 hours
(B) 13.9 hours
(C) 16.1 hours
(D) 18.4 hours

MCQ 11.66 The sale of cycles in a shop in four consecutive months are given as 70, 68, 82,95 . Exponentially smoothing average method with a smoothing factor of 0.4 is used in forecasting. The expected number of sales in the next month is
(A) 59
(B) 72
(C) 86
(D) 136

MCQ 11.67 M arket demand for springs is 8,00,000 per annum. A company purchases these springs in lots and sells them. The cost of making a purchase order is Rs.1200. The cost of storage of springs is Rs. 120 per stored piece per annum. The economic order quantity is
(A) 400
(B) 2,828
(C) 4,000
(D) 8,000

MCQ 11.68 A manufacturer produces two types of products, 1 and 2, at production levels of x_{1} and x_{2} respectively. The profit is given is $2 x_{1}+5 x_{2}$. The production constraints are

$$
\begin{aligned}
x_{1}+3 x_{2} & \leq 40 \\
3 x_{1}+x_{2} & \leq 24 \\
x_{1}+x_{2} & \leq 10 \\
x_{1}>0, x_{2} & >0
\end{aligned}
$$

The maximum profit which can meet the constraints is
(A) 29
(B) 38
(C) 44
(D) 75

MCQ 11.69 A project consists of activities A to M shown in the net in the following figure with the duration of the activities marked in days

The project can be completed
(A) between 18, 19 days
(B) between 20, 22 days
(C) between 24, 26 days
(D) between 60, 70 days

MCQ 11.70 The principles of motion economy are mostly used while conducting
(A) a method study on an operation
(B) a time study on an operation
(C) a financial appraisal of an operation
(D) a feasibility study of the proposed manufacturing plant

MCQ 11.71 The standard time of an operation while conducting a time study is
(A) mean observed time + allowances
(B) normal time + allowances
(C) mean observed time \times rating factor + allowances
(D) normal time \times rating factor + allowances

MCQ 11.72 In carrying out a work sampling study in a machine shop, it was found that a particular lathe was down for 20% of the time. W hat would be the 95% confidence interval of this estimate, if 100 observations were made?
(A) $(0.16,0.24)$
(B) $(0.12,0.28)$
(C) $(0.08,0.32)$
(D) None of these

MCQ 11.73 An item can be purchased for Rs. 100. The ordering cost is Rs. 200 and the inventory carrying cost is 10% of the item cost per annum. If the annual demand is 4000 unit, the economic order quantity (in unit) is
(A) 50
(B) 100
(C) 200
(D) 400

YEAR 2002
TWO MARKS
MCQ 11.74 A rrivals at a telephone booth are considered to be Poisson, with an average time of 10 minutes between successive arrivals. The length of a phone call is distributed exponentially with mean 3 minutes. The probability that an arrival does not have to wait before service is
(A) 0.3
(B) 0.5
(C) 0.7
(D) 0.9

MCQ 11.75 The supplies at three sources are 50, 40 and 60 unit respectively whilst the demands at the four destinations are 20, 30, 10 and 50 unit. In solving this transportation problem
(A) a dummy source of capacity 40 unit is needed
(B) a dummy destination of capacity 40 unit is needed
(C) no solution exists as the problem is infeasible
(D) no solution exists as the problem is degenerate

MCQ 11.76 A project consists of three parallel paths with mean durations and variances of $(10,4),(12,4)$ and $(12,9)$ respectively. A ccording to the standard PERT assumptions, the distribution of the project duration is
(A) beta with mean 10 and standard deviation 2
(B) beta with mean 12 and standard deviation 2
(C) normal with mean 10 and standard deviation 3
(D) normal with mean 12 and standard deviation 3

YEAR 2001
ONE MARK
MCQ 11.77 Production flow analysis (PFA) is a method of identifying part families that uses data from
(A) engineering drawings
(B) production schedule
(C) bill of materials
(D) route sheets

MCQ 11.78 W hen using a simple moving average to forecast demand, one would
(A) give equal weight to all demand data
(B) assign more weight to the recent demand data
(C) include new demand data in the average without discarding the earlier data
(D) include new demand data in the average after discarding some of the earlier demand data

YEAR 2001
TWO MARKS
MCQ 11.79 Fifty observations of a production operation revealed a mean cycle time of 10 min . The worker was evaluated to be performing at 90% efficiency. A ssuming the allowances to be 10% of the normal time, the standard time (in second) for the job is
(A) 0.198
(B) 7.3
(C) 9.0
(D) 9.9

SOLUTION

sol 11.1 Option (A) is correct.
Costs relevant to aggregate production planning is as given below.
(i) B asic production cost : M aterial costs, direct labour costs, and overhead cost.
(ii) Costs associated with changes in production rate : Costs involving in hiring, training and laying off personnel, as well as, overtime compensation.
(iii) Inventory related costs.

Hence, from above option (A) is not related to these costs. Therefore option (A) is not a decision taken during the APP.
sol 11.2 Option (C) is correct.

For path	Duration
$a-b-e-g-h$	$=3+4+2+6+2=17$ days
$a-c-g-h$	$=3+5+6+2=16$ days
$a-d-f-h$	$=3+4+9+2=18$ days

The critical path is one that takes longest path.
Hence, path $a-d-f-h=18$ days is critical path
sol 11.3 Option (A) is correct.
From previous question
For critical path
$a-d-f-h=18$ days, the duration of activity f alone is changed from 9 to 10 days, then

$$
a-d-f-h=3+4+10+2=19 \text { days }
$$

Hence critical path remains same and the total duration to complete the project changes to 19 days.

SOL 11.4 Option (D) is correct.
Given : $\lambda=5$ per hour, $\mu=\frac{1}{10} \times 60$ per hour $=6$ per hour
A verage waiting time of an arrival

$$
\begin{aligned}
\mathrm{W}_{\mathrm{q}} & =\frac{\lambda}{\mu(\mu-\lambda)}=\frac{5}{6(6-5)} \\
& =\frac{5}{6} \text { hours }=50 \mathrm{~min}
\end{aligned}
$$

SOL 11.5 Option (B) is correct.
K anban Literally, a "Visual record"; a method of controlling materials flow through a J ust-in-time manufacturing system by using cards to authorize a work station to transfer or produce materials.

SOL 11.6 Option (A) is correct.
Since, in Z_{j} R ow of final (second) obtimum table the value of slack variable S_{2} showns the unit worth or dual price of Resource R_{2} and the value of S_{2} in given below table is zero. Hence the dual Price of R esource R_{2} is zero.

$$
\mathrm{MaxZ}=2000 \mathrm{P}_{1}+3000 \mathrm{P}_{2}
$$

S.T.

$$
3 \mathrm{P}_{1}+2 \mathrm{P}_{2} \leq 90 \quad \rightarrow \mathrm{R}_{1}-\text { Resource }
$$

$$
\mathrm{P}_{1}+2 \mathrm{P}_{2} \leq 100 \quad \rightarrow \mathrm{R}_{2}-\text { Resource }
$$

$$
\mathrm{P}_{1}, \mathrm{P}_{2} \geq 0
$$

Solution:

$$
Z=2000 \mathrm{P}_{1}+3000 \mathrm{P}_{2}+0 . \mathrm{S}_{1}+0 . \mathrm{S}_{2}
$$

S.T .

$$
\begin{gathered}
3 P_{1}+2 P_{2}+S_{1}=90 \\
P_{1}+2 P_{2}+S_{2}=100 \\
P_{1} \geq 0, P_{2} \geq 0, S_{1} \geq 0, S_{2} \geq 0
\end{gathered}
$$

F irst table :-

		C_{j}	2000	3000	0	0
C_{B}	$\mathrm{~S}_{\mathrm{B}}$	P_{B}	P_{1}	P_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$
0	$\mathrm{~S}_{1}$	90	3	2	2	1
0						
0	$\mathrm{~S}_{2}$	100	1	2	0	1
	Z_{j}		0	0	0	0
	$\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$		-2000	-3000	0	0

Second Table :-

		C_{j}	2000	3000	0	0
C_{B}	$\mathrm{~S}_{\mathrm{B}}$	P_{B}	P_{1}	P_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$
3000	P_{2}	45	$3 / 2$	1	$1 / 2$	0

0	$\mathrm{~S}_{2}$	10	-2	0	-1	1
		Z_{j}	4500	3000	1500	$0 \rightarrow$ unit worth of R_{2}
		$\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$	2500	0	1500	0

sol 11.7 Option (B) is correct.
Since all $Z_{j}-C_{j} \geq 0$, an optimal basic feasible solution has been attained.
Thus, the optimum solution to the given LPP is

$$
\mathrm{MaxZ}=2000 \times 0+3000 \times 45=\text { Rs. } 135000 \text { with } \mathrm{P}_{1}=0 \text { and } \mathrm{P}_{2}=45
$$

soL 11.8 Option (C) is correct.
Given, forecast for February $\quad F_{t-1}=10275$
Demand for February $D_{t-1}=12000$
Smoothing coefficient

$$
\alpha=0.25
$$

Which is T he forecast for the next period is given by,

$$
\begin{aligned}
\mathbf{F}_{\mathrm{t}} & =\alpha\left(\mathrm{D}_{\mathrm{t}-1}\right)+(1-\alpha) \times \mathrm{F}_{\mathrm{t}-1} \\
& =0.25 \times(12000)+(1-0.25) \times(10275) \\
& =10706.25 \simeq 10706
\end{aligned}
$$

Hence, forecast for the month of march is 10706.
soL 11.9 Option (B) is correct.
Little's law is a relationship between average waiting time and average length of the queue in a queuing system.
The little law establish a relation between Queue length $\left(\mathrm{L}_{q}\right)$, Queue waiting time $\left(W_{q}\right)$ and the M ean arrival rate λ.
So,

$$
\mathrm{L}_{\mathrm{q}}=\lambda \mathrm{W}_{\mathrm{q}}
$$

sol 11.10 Option (A) is correct.
Vehicle manufacturing assembly line is an example of product layout.
A product-oriented layout is appropriate for producing one standardized product, usually in large volume. Each unit of output requires the same sequence of operations from beginning to end.
soL 11.11 Option (D) is correct.
Simplex method provides an algorithm which consists in moving from one point of the region of feasible solutions to another in such a manner that the value of the objective function at the succeeding point is less (or more, as the case may be) than at the preceding point. This procedure of jumping from one point to another is then repeated. Since the number of points is
finite, the method leads to an optimal point in a finite number of steps.
Therefore simplex method only uses the interior points in the feasible region.
soL 11.12 Option (C) is correct.
Given: $\quad D=10000$
Ordering cost
$C_{0}=$ Rs. 300 per order
Holding cost
$C_{h}=$ Rs. 40 per frame per year
Unit cost,

$$
C_{u}=R s .200
$$

$$
E O Q=\sqrt{\frac{2 C_{0} D}{C_{h}}}=\sqrt{\frac{2 \times 300 \times 10000}{40}} \simeq 387 \text { units }
$$

Total cost $=$ Purchase cost + holding cost + ordering cost
For $\quad E O Q=387$ units

$$
\text { Total cost }=\mathrm{D} \times \mathrm{C}_{\mathrm{u}}+\frac{\mathrm{Q}}{2} \times \mathrm{C}_{\mathrm{h}}+\frac{\mathrm{D}}{\mathrm{Q}} \times \mathrm{C}_{0}
$$

W here

$$
\mathrm{Q}=\mathrm{EOQ}=387 \text { units }
$$

$$
\text { Total cost }=10000 \times 200+\frac{387}{2} \times 40+\frac{10000}{387} \times 300
$$

$$
=2000000+7740+7752=\text { R s. } 2015492
$$

Now supplier offers 2% discount if the order quantity is 1000 or more.
For

$$
\mathrm{Q}=1000 \text { units }
$$

$$
\text { Total cost }=10000 \times(200 \times 0.98)+\frac{1000}{2} \times 40+\frac{10000}{1000} \times 300
$$

$$
=1960000+20000+3000=\text { R s. } 1983000
$$

Supplier also offers 4% discount if order quantity is 2000 or more.
For

$$
\mathrm{Q}=2000 \text { units }
$$

$$
\text { Total cost }=10000 \times(200 \times 0.96)+\frac{2000}{2} \times 40+\frac{10000}{2000} \times 300
$$

$$
=1920000+40000+1500=\text { R s. } 1961500
$$

It is clearly see that the total cost is to be minimized, the retailer should accept 4\% discount.
sol 11.13 Option (D) is correct.
We have to draw a arrow diagram from the given data.

Here Four possible ways to complete the work.

	Path	Total duration (days)
(i)	$\mathrm{P}-\mathrm{R}-\mathrm{T}-\mathrm{V}$	$\mathrm{T}=3+5+7+2=17$
(ii)	$\mathrm{Q}-\mathrm{S}-\mathrm{T}-\mathrm{V}$	$\mathrm{T}=4+5+7+2=18$
(iii)	$\mathrm{Q}-\mathrm{S}-\mathrm{U}-\mathrm{W}$	$\mathrm{T}=4+5+5+10=24$
(iv)	$\mathrm{P}-\mathrm{R}-\mathrm{U}-\mathrm{W}$	$\mathrm{T}=3+5+5+10=23$

The critical path is the chain of activities with the longest time durations.
So, \quad Critical path $=Q-S-U-W$
sol 11.14 Option (C) is correct.
In the E arliest due date (EDD) rule, the jobs will be in sequence according to their earliest due dates.
Table shown below :

J ob	Processing time (in days)	Due date	Operation start	Operation end
1	4	6	0	$0+4=4$
2	7	9	4	$4+7=11$
4	8	17	11	$11+8=19$
3	2	19	19	$19+2=21$

We see easily from the table that, job 2, 4, \& 3 are delayed.
Number of jobs delayed is 3.
sol 11.15 Option (D) is correct.
By using the shortest processing time (SPT) rule \& make the table

J ob	Processing time (in days)	Flow time		Due date	Tradiness
		End			
3	2	0	2	19	0
1	4	2	$2+4=6$	6	0
2	7	6	$6+7=13$	9	4
4	8	13	$13+8=21$	17	4

So, from the table
Total Tradiness $=4+4=8$
sol 11.16 Option (A) is correct.
Under the conditions of uncertainty, the estimated time for each activity for PERT network is represented by a probability distribution. This probability distribution of activity time is based upon three different time estimates made for each activity. These are as follows.
$\mathrm{t}_{0}=$ the optimistic time, is the shortest possible time to complete the activity if
all goes well.
$\mathrm{t}_{\mathrm{p}}=$ the pessimistic time, is the longest time that an activity could take if every

thing goes wrong

$\mathrm{t}_{1}=$ the most likely time, is the estimate of normal time an activity would take.

The expected time (t_{e}) of the activity duration can be approximated as the arithmetic mean of $\left(t_{0}+t_{p}\right) / 2$ and $2 t_{1}$. Thus

$$
\left(t_{e}\right)=\frac{1}{3}\left[2 t_{1}+\frac{\left(t_{0}+t_{p}\right)}{2}\right]=\frac{t_{0}+4 t_{1}+t_{p}}{6}
$$

sol 11.17 Option (D) is correct.
Exponential smoothing method of forecasting takes a fraction of forecast error into account for the next period forecast.
The exponential smoothed average u_{t}, which is the forecast for the next period ($t+1$) is given by.

$$
\begin{aligned}
\mathrm{u}_{\mathrm{t}} & =\alpha \mathrm{y}_{\mathrm{t}}+\alpha(1-\alpha) \mathrm{y}_{\mathrm{t}-1}+\ldots \alpha(1-\alpha)^{\mathrm{n}} \mathrm{y}_{\mathrm{t}-\mathrm{n}}+\ldots . . \infty \\
& =\alpha \mathrm{y}_{\mathrm{t}}+(1-\alpha)\left[\alpha \mathrm{y}_{\mathrm{t}-1}+\alpha(1-\alpha) \mathrm{y}_{\mathrm{t}-2}+\ldots+\alpha(1-\alpha)^{\mathrm{n}} \mathrm{y}_{\mathrm{t}-(\mathrm{n}-1)}+\ldots\right] \\
& =\mathrm{u}_{\mathrm{t}-1}+\alpha\left(\mathrm{y}_{\mathrm{t}}-\mathrm{u}_{\mathrm{t}-1}\right) \\
& =\mathrm{u}_{\mathrm{t}-1}+\alpha \mathrm{e}_{\mathrm{t}}
\end{aligned}
$$

where $e_{t}=\left(y_{t}-u_{t-1}\right)$ is called error and is the difference between the least observation, y_{t} and its forecast a period earlier, u_{t-1}.
The value of α lies between 0 to 1 .
soL 11.18 Option (C) is correct. In figure,

$$
\begin{aligned}
\text { ROP } & =\text { R eorder point } \\
\text { LT } & =\text { Lead T ime }=8 \text { days } \\
\mathrm{TT} & =\text { T otal } \mathrm{T} \text { ime }=365 \text { days } \\
\mathrm{q} & =\text { stock level }=2555 \text { units }
\end{aligned}
$$

Let the reorder quantity be x

Now from the similar triangles
$\triangle \mathrm{ABC} \& \Delta \mathrm{BDE}$

$$
\begin{aligned}
\frac{\mathrm{q}}{\mathrm{TT}} & =\frac{\mathrm{x}}{\mathrm{LT}} \\
\Rightarrow \quad \frac{2555}{365} & =\frac{x}{8} \\
x & =\frac{2555}{365} \times 8=56 \text { U nits }
\end{aligned}
$$

Alternate M ethod

Given,
Demand in a year $D=2555$ Units

$$
\text { Lead time } T=8 \text { days }
$$

Now, Number of orders to be placed in a year

$$
N=\frac{\text { Number. of days in a year }}{\text { Lead Time }}=\frac{365}{8} \text { orders }
$$

Now, quantity ordered each time or reorder point.

$$
Q=\frac{\text { Demand in a years }}{\text { Number of orders }}=\frac{2555}{\frac{365}{8}}=56 \mathrm{U} \text { nits }
$$

sol 11.19 Option (D) is correct.
Given objective function

$$
Z_{\max }=3 x_{1}+2 x_{2}
$$

and constraints are

$$
\begin{align*}
x_{1} & \leq 4 \tag{i}\\
x_{2} & \leq 6 \tag{ii}\\
3 x_{1}+2 x_{2} & \leq 18 \tag{iii}\\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{align*}
$$

Plot the graph from the given constraints and find the common area.

Now, we find the point of intersection E \& F .
For E,

$$
3 x_{1}+2 x_{2}=18
$$

(E is the intersection point of equation. (ii) \&
(iii))

$$
x_{2}=6
$$

So,

$$
3 x_{1}+12=18
$$

$$
x_{1}=2
$$

For F,

$$
3 x_{1}+2 x_{2}=18
$$

$$
x_{1}=4
$$

$$
3 \times 4+2 x_{2}=18
$$

$$
x_{2}=3
$$

Hence,

$$
E(2,6) \text { or } F(4,3)
$$

Now at point $\mathrm{E}(2,6)$

$$
\begin{aligned}
Z & =3 \times 2+2 \times 6 \\
& =18
\end{aligned}
$$

At point $\mathrm{F}(4,3)$

$$
\begin{aligned}
Z & =3 \times 4+2 \times 3 \\
& =18
\end{aligned}
$$

The objective function and the constraint (represent by equation (iii)) are equal.
Hence, the objective function will have the multiple solutions as at point $E \& F$, the value of objective function $\left(Z=3 x_{1}+2 x_{2}\right)$ is same.
soL 11.20 Option (A) is correct.
In shortest processing time rule, we have to arrange the jobs in the increasing order of their processing time and find total flow time.
So, job sequencing are I - III - V - VI - II - IV

Jobs	Processing Time (days)	Flow time (days)
I	4	4
III	5	$4+5=9$
V	6	$9+6=15$
VI	8	$15+8=23$
II	9	$23+9=32$
IV	10	$32+10=42$

Now Total flow timeT $=4+9+15+23+32+42$

$$
=125
$$

A verage flow time $=\frac{\text { T otal flow time }}{\text { Number of jobs }}$

$$
\mathrm{T}_{\text {average }}=\frac{125}{6}=20.83 \text { days }
$$

SOL 11.21 Option (D) is correct.
M ake the table and calculate the excepted time and variance for each activity

A ctivity	Optimistic time (days) to	M ost likely time (days) t_{m}	Pessimistic time (days) t_{p}	Expected Time (days) $\mathrm{t}_{\mathrm{e}}=\frac{\mathrm{t}_{0}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{p}}}{6}$	Variance $\sigma^{2}=\left(\frac{t_{p}-t_{0}}{6}\right)^{2}$
1-2	1	2	3	$\frac{1+8+3}{6}=2$	$\left(\frac{3-1}{6}\right)^{2}=\frac{1}{9}$
1-3	5	6	7	$\frac{5+24+7}{6}=6$	$\left(\frac{7-5}{6}\right)^{2}=\frac{1}{9}$
1-4	3	5	7	$\frac{3+20+7}{6}=5$	$\left(\frac{7-3}{6}\right)^{2}=\frac{4}{9}$
2-5	5	7	9	$\frac{5+28+9}{6}=7$	$\left(\frac{9-5}{6}\right)^{2}=\frac{4}{9}$
3-5	2	4	6	$\frac{2+16+6}{6}=4$	$\left(\frac{6-2}{6}\right)^{2}=\frac{4}{9}$
5-6	4	5	6	$\frac{4+20+6}{6}=5$	$\left(\frac{6-4}{6}\right)^{2}=\frac{1}{9}$
4-7	4	6	8	$\frac{4+24+8}{6}=6$	$\left(\frac{8-4}{6}\right)^{2}=\frac{4}{9}$
6-7	2	3	4	$\frac{2+12+4}{6}=3$	$\left(\frac{4-2}{6}\right)^{2}=\frac{1}{9}$

Now, the paths of the network \& their durations are given below in tables.

	Paths	Expected Time duration (in days)
\mathbf{i}	Path 1-3-5-6-7	$\mathrm{T}=6+4+5+3=18$
$\mathbf{i i}$	Path 1-2-5-6-7	$\mathrm{T}=2+7+5+3=17$
$\mathbf{i i i}$	Path 1-4-7	$\mathrm{T}=5+6=11$

Since path 1-3-5-6-7 has the longest duration, it is the critical path of the network and shown by dotted line.
Hence,
The expected duration of the critical path is 18 days.
sol 11.22 Option (C) is correct.
The critical path is 1-3-5-6-7
Variance along this critical path is,

$$
\begin{aligned}
\sigma^{2} & =\sigma_{1-3}^{2}+\sigma_{3-5}^{2}+\sigma_{5-6}^{2}+\sigma_{6-7}^{2} \\
& =\frac{1}{9}+\frac{4}{9}+\frac{1}{9}+\frac{1}{9}=\frac{7}{9}
\end{aligned}
$$

We know,
Standard deviation $=\sqrt{\text { V ariance }\left(\sigma^{2}\right)}$

$$
=\sqrt{\frac{7}{9}}=0.88
$$

The most appropriate answer is 0.77 .
sol 11.23 Option (C) is correct.
The most common distribution found in queuing problems is poisson distribution. This is used in single-channel queuing problems for random arrivals where the service time is exponentially distributed. Probability of n arrivals in time t

$$
P=\frac{(\lambda T)^{\mathrm{n}} \cdot \mathrm{e}^{-\lambda T}}{\mathrm{n}!}
$$

where $n=0,1,2 \ldots \ldots$.
So, Probability density function of inter arrival time (time interval between two consecutive arrivals)

$$
\mathrm{f}(\mathrm{t})=\lambda \cdot \mathrm{e}^{-\lambda t}
$$

sol 11.24 Option (A) is correct.
Total inventory cost will be minimum, when the holding cost is minimum. Now, from the J ohnson's algorithm, holding cost will be minimum, when we process the least time consuming job first. From this next job can be started as soon as possible.
Now, arrange the jobs in the manner of least processing time.
T-S-Q-R-P or T-Q-S-R-P (because job Q and S have same processing time).
sol 11.25 Option (D) is correct.
In a transportation problem with m origins and n destinations, if a basic feasible solution has less than $m+n-1$ allocations (occupied cells), the problem is said to be a degenerate transportation problem.
So, the basic condition for the solution to be optimal without degeneracy is.
Number of allocations $=\mathrm{m}+\mathrm{n}-1$

SOL 11.26 Option (D) is correct.
Here $\quad F_{1}(t) \& F_{2}(t)=$ Forecastings
$m_{1} \& m_{2}=$ Number of weeks
A higher value of m results in better smoothing. Since here $m_{1}>m_{2}$ the weightage of the latest demand would be more in $F_{2}(t)$.
Hence, $F_{2}(t)$ will attain the value of d_{2} before $F_{1}(t)$.
sol 11.27 Option (C) is correct.
There are two paths to reach from node P to nodeG .
(i) Path P-Q-G
(ii) Path P-R-G

For Path P-Q-G,
Length of the path $\quad S_{G}=S_{Q}+d_{Q G}$
For path P-R -G,
Length of the path $\quad S_{G}=S_{R}+d_{R G}$
So, shortest path $\quad S_{G}=\operatorname{Min}\left\{S_{Q}+d_{Q G}, S_{R}+d_{R G}\right\}$

soL 11.28 Option (C) is correct.
From the product structure we see that 2 piece of R is required in production of 1 piece P.
So, demand of R is double of P

Week	Demand (P)	Demand (R)	Inventory level I Production - Demand
1	1000	2000	$R-2000$
2	1000	2000	$2 R-4000$
3	1000	2000	$3 R-6000$
4	1000	2000	$4 R-8000$
5	1200	2400	$5 R-10400$
6	1200	2400	$6 R-12800$

We know that for a production system with bottleneck the inventory level should be more than zero.
So,

$$
6 R-12800 \geq 0
$$

For minimum inventory

$$
\begin{aligned}
6 \mathrm{R}-12800 & =0 \\
6 \mathrm{R} & =12800 \\
\mathrm{R} & =2133 \\
& \simeq 2200
\end{aligned}
$$

Hence, the smallest capacity that will ensure a feasible production plan up to week 6 is 2200.
soL 11.29 Option (B) is correct.
The LP has an optimal solution that is not unique, because zero has appeared in the non-basic variable (x and y) column, in optimal solution.

SOL 11.30 Option (A) is correct.
The general form of LP is

Subject to

$$
\mathrm{Max} Z=C X
$$

And dual of above LP is represented by

Subject to

$$
M \operatorname{in} Z=B^{\top} Y
$$

So, the dual is M in $6 \mathrm{u}+6 \mathrm{v}$
Subject to
$3 u+2 v \geq 4$

$$
\begin{aligned}
2 u+3 v & \geq 6 \\
u, v & \geq 0
\end{aligned}
$$

sol 11.31 Option (B) is correct.
We have to make a table from the given data.

M onth	Production (Pieces)		Demand	Excess or short form (pieces)	
	In regular time	In over time		Regular	Total
1	100	20	90	10	$10+20=30$
2	100	20	130	-30	$-30+20=-10$
3	80	40	110	-30	$-30+40=10$

From the table,
For 1st month there is no need to overtime, because demand is 90 units and regular time production is 100 units, therefore 10 units are excess in amount. For 2 nd month the demand is 130 unit and production capacity with overtime is $100+20=120$ units, therefore 10 units ($130-120=10$) are short in amount, which is fulfilled by 10 units excess of 1st month. So at the end of 2nd month there is no inventory.
Now for the 3rd month demand is 110 units and regular time production is 80 units. So remaining $110-80=30$ units are produced in overtime to fulfill the demand for minimum cost of plan.
sol 11.32 Option (D) is correct.
Total annual cost $=$ A nnual holding cost + A nnual ordering cost
M aximum level of inventory $\mathrm{N}=100$
So,
A verage inventory $=\frac{N}{2}=50$
Inventory carrying cost $\mathrm{C}_{\mathrm{h}}=\mathrm{Rs} .10$ per item per month
$=$ R s. 10×12 per item per year
$=$ Rs. 120 per item per year
So, A nnual holding cost $=\frac{N}{2} \times C_{h}$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{hA}} & =50 \times 120 \\
& =\mathrm{R} .6000 \text { item per year }
\end{aligned}
$$

And, \quad Ordering cost $C_{0}=100$ per order
Number of orders in a year $=\frac{12}{1.5}$ order

$$
=8 \text { order }
$$

So, A nnual ordering cost $C_{D A}=$ ordering cost per order \times no. of orders

$$
=100 \times 8
$$

$$
=\text { R s. } 800 \text { per order }
$$

Hence,

$$
\begin{aligned}
\text { Total Annual cost } & =6000+800 \\
& =\text { Rs. } 6800
\end{aligned}
$$

soL 11.33 Option (B) is correct.
Given :
Number of items produced per moth

$$
\mathrm{K}=1000 \text { per month }
$$

Number of items required per month

$$
R=500 \text { per month }
$$

Lot size $\mathrm{q}_{0}=1000$
When backlog is not allowed, the maximum inventory level is given by,

$$
I_{m}=\frac{K-R}{K} \times q_{0}=\frac{1000-500}{1000} \times 1000=500
$$

sol 11.34 Option (B) is correct.
Given :

$$
\begin{aligned}
C_{h} & =\text { Rs. } 1 \text { per item per week } \\
C_{0} & =\text { Rs. } 100 \text { per order } \\
\text { Requirements } & =50-0-15-20-20
\end{aligned}
$$

Total cost is the cost of carrying inventory and cost of placing order.
C ase (I) Only one order of 105 units is placed at starting.

Weeks	Quantity			C ost		
	Inventory	Used	C arried forward	Order	Carrying	Total
1.	105 (ordered)	50	55	100	55	155
2.	55	0	55	0	55	55
3.	55	15	40	0	40	40
4.	40	20	20	0	20	20
5.	20	20	0	0	0	0

Total cost of plan $=155+55+40+20=270$ Rs.
C ase (II) Now order is placed two times, 50 units at starting and 55 units after $2^{\text {nd }}$ week.

Weeks	Quantity			C ost		
	Inventory	U sed	C arried forward	Ordering R s.	Carrying R s.	Total R s.
1.	50 (ordered)	50	0	100	0	100
2.	0	0	0	0	0	0
3.	55 (ordered)	15	40	100	40	140
4.	40	20	20	0	20	20
5.	20	20	0	0	0	0

Total cost of plan $=100+140+20=260$ R s.
Case (III) The order is placed two times, 65 units at starting and 40 units after $3^{\text {rd }}$ week.

Weeks	Quantity			C ost		
	Inventory	U sed	Carried forward	Ordering R s.	C arrying R s.	Total R s.
1.	65 (ordered)	50	15	100	15	115
2.	15	0	15	0	15	15
3.	15	15	0	0	0	0
4.	40 (ordered)	20	20	100	20	120
5.	20	20	0	0	0	0

Total cost of plan $=115+15+120=250$ R s.
Case (IV) Now again order is placed two times, 85 units at starting and 20 units after $4^{\text {th }}$ week.

Weeks	Quantity			Cost		
	Inventory	U sed	C arried forward	Order	C arrying	Total
1.	85 (ordered)	50	35	100	35	135
2.	35	0	35	0	35	35
3.	35	15	20	0	20	20
4.	20	20	0	0	0	0
5.	20 (ordered)	20	0	100	0	100

Total cost of plan $=135+35+20+100=290$ Rs. So, The cost of plan is least in case (III) \& it is 250 Rs.
sol 11.35 Option (B) is correct.
Given :

$$
\begin{aligned}
\lambda & =8 \text { per hour } \\
\mu & =6 \text { min per customer } \\
& =\frac{60}{6} \text { customer/ hours }=10 \text { customer/ hour }
\end{aligned}
$$

We know, for exponentially distributed service time.
A verage number of customers in the queue.

$$
\mathrm{L}_{\mathrm{q}}=\frac{\lambda}{\mu} \times \frac{\lambda}{(\mu-\lambda)}=\frac{8}{10} \times \frac{8}{(10-8)}=3.2
$$

sol 11.36 Option (C) is correct.
MRP (M aterial Requirement Planning) :
MRP function is a computational technique with the help of which the master schedule for end products is converted into a detailed schedule for raw materials and components used in the end product.
Input to MRP
(i) Master production schedule.
(ii) The bill of material
(iii) Inventory records relating to raw materials.

SOL 11.37 Option (B) is correct.
First finding the sequence of jobs, which are entering in the machine. The solution procedure is described below :
By examining the rows, the smallest machining time of 6 hours on machine M 2. Then scheduled J ob P last for machine M 2

After entering this value, the next smallest time of 7 hours for job U on machine M 2. Thus we schedule job U second last for machine M 2 as shown below

After entering this value, the next smallest time of 8 hours for job R on machine M1. Thus we schedule job R first as shown below.

After entering this value the next smallest time of 11 hours for job T on machine M1. Thus we schedule job T after the job R.

R	T			U	P

A fter this the next smallest time of 19 hours for job Q on machine M 2. Thus schedule job Q left to the U and remaining job in the blank block.
Now the optimal sequence as :

R	T	S	Q	U	P

Then calculating the elapsed time corresponding to the optimal sequence, using the individual processing time given in the problem.
The detailed are shown in table.

J obs	M 1		M 2	
	In	Out	In	Out
R	0	8	8	$8+13=21$
T	8	$8+11=19$	21	$21+14=35$
S	19	$19+27=46$	46	$46+20=66$
Q	46	$46+32=78$	78	$78+19=97$
U	78	$78+16=94$	97	$97+7=104$
P	94	$94+15=109$	109	$109+6=115$

We can see from the table that all the operations (on machine 1st and machine 2nd) complete in 115 hours. So the optimal make-span of the shop is 115 hours.
sol 11.38 Option (C) is correct.
Given :
$D=2500$ units per year
$C_{0}=$ Rs. 100 per order
$C_{h}=25 \%$ of unit price
Case (I): W hen order quantity is less than 500 units.
Then, Unit price $=10 \mathrm{Rs}$.
and
$C_{h}=25 \%$ of $10=2.5 R \mathrm{~s}$.
$E O Q=\sqrt{\frac{2 C_{0} D}{C_{h}}}=\sqrt{\frac{2 \times 100 \times 2500}{2.5}}$
$Q=447.21 \simeq 447$ units

$$
\begin{aligned}
\text { Total cost } & =\mathrm{D} \times \text { unit cost }+\frac{\mathrm{Q}}{2} \times \mathrm{c}_{\mathrm{h}}+\frac{\mathrm{D}}{\mathrm{Q}} \times \mathrm{c}_{0} \\
& =2500 \times 10+\frac{447}{2} \times 2.5+\frac{2500}{447} \times 100 \\
& =25000+558.75+559.75=26118 \mathrm{Rs}
\end{aligned}
$$

Case (II) : when order Quantity is 500 units. Then unit prize $=9$ R .

$$
\begin{aligned}
\text { and } c_{h} & =25 \% \text { of } 9=2.25 \text { Rs. } \\
Q & =500 \text { units } \\
& =2500 \times 9+\frac{500}{2} \times 2.25+\frac{2500}{500} \times 100 \\
& =22500+562.5+500=23562.5 \mathrm{Rs} .
\end{aligned}
$$

Total cost

So, we may conclude from both cases that the optimum order quantity must be equal to 500 units.
sol 11.39 Option (C) is correct.
Given, In figure

	$S 1$		$S 2$
$S 3$			
	110	120	130
	110	115	140
	140		
	125	145	165

Step (I) : Reduce the matrix :
In the effectiveness matrix, subtract the minimum element of each row from all the element of that row. The resulting matrix will have at least one zero element in each row.

	S1	S2	S3
P	0	10	20
Q	0	25	25
R	0	20	40

Step (II) : Mark the column that do not have zero element. Now substract the minimum element of each such column for all the elements of that column.

	$S 1$		$S 2$		$S 3$
	0	0	0		
	0				
	0	15	5		
		10	20		

Step (III) : Check whether an optimal assignment can be made in the reduced matrix or not.
For this, Examine rows successively until a row with exactly one unmarked zero is obtained. Making square (\square) around it, cross $(\times$) all other zeros in the same column as they will not be considered for making any more assignment in that column. Proceed in this way until all rows have been examined.

	S1	S2	S3
P	0	\%	\%
Q	\%	15	5
R	\%	10	20

In this there is not one assignment in each row and in each column.
Step (IV) : Find the minimum number of lines crossing all zeros. This consists of following substep
(A) Right marked () the rows that do not have assignment.
(B) Right marked () the column that have zeros in marked column (not already marked).
(C) Draw straight lines through all unmarked rows and marked columns.

Step (V) : N ow take smallest element \& add, where two lines intersect. No change, where single line \& subtract this where no lines in the block.

	S1	S2	S3
P	5	0	\%
Q	\%	10	0
R	0	5	15

So, minimum cost is $\quad=120+140+125=385$
sol 11.40 Option (A) is correct. Profit per unit sold $=90-70=20 \mathrm{Rs}$.
Loss per unit unsold item $=70-50=20 \mathrm{Rs}$.

Now consider all the options:

Cases	Units in stock	Unit sold (Demand)	Profit	Probability	Total profit
Option (D)	2	2	$2 \times 20=40$	0.1	4
Option (C)	3	2	$2 \times 20-1 \times 20=20$	0.1	2
	3	3	$3 \times 20=60$	0.35	21
					23
Option (B)	4	2	$2 \times 20-2 \times 20=0$	0	0
	4	3	$3 \times 20-1 \times 20=40$	0.35	14
	4	4	$4 \times 20=80$	0.35	28
			2		42
Option	5	2	2	$\times 20-3 \times 20=-20$	0.10
(A)			-2		
	5	3	$3 \times 20-2 \times 20=20$	0.35	7
	5	4	$4 \times 20-1 \times 20=60$	0.35	21
	5	5	$5 \times 20=100$	0.20	20
					46

Thus, For stock level of 5 units, profit is maximum.
sol 11.41 Option (C) is correct.
Total time used $=7+9+7+10+9+6$

$$
=48 \mathrm{~min}
$$

Number of work stations $=6$
Maximum time per work station (cycle time) $=10 \mathrm{~min}$ We know,

Line efficiency $\eta_{L}=\frac{\text { Total time used }}{\text { Number of work stations } \times \text { cycletime }}$

$$
\eta_{\mathrm{L}}=\frac{48}{6 \times 10}=0.8=80 \%
$$

sol 11.42 Option (D) is correct.
We have to make a network diagram from the given data.

For simple projects, the critical path can be determined quite quickly by enumerating all paths and evaluating the time required to complete each.
There are three paths between a and f. The total time along each path is
(i) For path $a-b-d-f$

$$
\mathrm{T}_{\text {abdf }}=30+40+25+20=115 \text { days }
$$

(ii) For path a-c-e-f

$$
\mathrm{T}_{\text {acef }}=30+60+45+20=155 \text { days }
$$

(iii) For path a-b-e-f

$$
\mathrm{T}_{\text {abef }}=30+40+45+20=135 \text { days }
$$

Now, path a-c-e-f bethecritical path time or maximum excepted completion time $T=155$ days
sol 11.43 Option (A) is correct.
The critical path of the network is a-c-e-f.
Now, for variance.

Task	Variance (days ${ }^{2}$)
a	25
c	81
e	36
f	9

Total variance for the critical path

$$
\begin{aligned}
\mathrm{V}_{\text {critical }} & =25+81+36+9 \\
& =151 \text { days }^{2}
\end{aligned}
$$

We know the standard deviation of critical path is

$$
\sigma=\sqrt{V_{\text {critical }}}=\sqrt{151} \text { days }
$$

sol 11.44 Option (D) is correct.
In operation process chart an assembly activity is represented by the symbol 0
sol 11.45 Option (C) is correct.
Gives:
Sales of product during four years were 860, 880, 870 and 890 units.
Forecast for the fourth year $u_{4}=876$
Forecast for the fifth year, using simple exponential smoothing, is equal to the forecast using a three period moving average.

So,

$$
\begin{aligned}
& u_{5}=\frac{1}{3}(880+870+890) \\
& u_{5}=880 \text { unit }
\end{aligned}
$$

By the exponential smoothing method.

$$
\begin{aligned}
\mathrm{u}_{5} & =\mathrm{u}_{4}+\alpha\left(\mathrm{x}_{4}-\mathrm{u}_{4}\right) \\
880 & =876+\alpha(890-876) \\
4 & =\alpha(14) \\
\alpha & =\frac{4}{14}=\frac{2}{7}
\end{aligned}
$$

SOL 11.46 Option (A) is correct.
Given: $\quad \lambda=4 /$ hour, $\mu=4 /$ hour

$$
\begin{array}{rl}
\text { The sum of probability } \sum_{n=0}^{n=10} P_{n}=1 & n=10 \\
\qquad P_{0}+P_{1}+P_{2} \ldots .+P_{10}=1 &
\end{array}
$$

In the term of traffic intensity $\quad \rho=\frac{\lambda}{\mu} \quad \Rightarrow \rho=\frac{4}{4}=1$
So,

$$
\begin{array}{rlr}
\mathrm{P}_{0}+\rho \mathrm{P}_{0}+\rho^{2} \mathrm{P}_{0}+\rho^{3} \mathrm{P}_{0}+\ldots . . . \rho^{10} \mathrm{P}_{0} & =1 \quad \mathrm{P}_{1}=\rho \mathrm{P}_{0}, \mathrm{P}_{2}=\rho^{2} \mathrm{P}_{0} \text { and so on } \\
\mathrm{P}_{0}(1+1+1+\ldots \ldots . .) & =1 & \\
\mathrm{P}_{0} \times 11 & =1 \\
\mathrm{P}_{0} & =\frac{1}{11} &
\end{array}
$$

Hence, the probability that a person who comes in leaves without joining the queue is,

$$
\begin{aligned}
\mathrm{P}_{11} & =\rho^{11} \cdot \mathrm{P}_{0} \\
\mathrm{P}_{1} & =1^{11} \times \frac{1}{11}=\frac{1}{11}
\end{aligned}
$$

soL 11.47 Option (B) is correct.
For economic point of view, we should calculate the total cost for all the four processes.

Total cost $=\mathrm{F}$ ixed cost +V ariable cost \times N umber of piece
For process (I) :

$$
\begin{aligned}
\text { Fixed cost } & =20 \mathrm{Rs} . \\
\text { Variable cost } & =3 \mathrm{Rs} . \text { per piece } \\
\text { Number of pieces } & =100 \\
\text { Total cost } & =20+3 \times 100=320 \mathrm{Rs} .
\end{aligned}
$$

For process (II) :

$$
\text { Total cost }=50+1 \times 100=150 \mathrm{Rs}
$$

For process (III) :

$$
\text { Total cost }=40+2 \times 100=240 \text { Rs. }
$$

For process (IV) :

$$
\text { Total cost }=10+4 \times 100=410 \mathrm{Rs}
$$

Now, we can see that total cost is minimum for process (II). So process (II) should choose for economic point of view.
sol 11.48 Option (A) is correct.
Given : \quad Rating factor $=120 \%$

$$
\text { Actual time } T_{\text {actual }}=8 \mathrm{~min}
$$

$$
\text { Normal time } \mathrm{T}_{\text {normal }}=\text { actual time } \times \text { Rating factor }
$$

$$
\mathrm{T}_{\text {normal }}=8 \times \frac{120}{100}=9.6 \mathrm{~min}
$$

10% allowance is allowed for this operation.
So, standard time,

$$
\mathrm{T}_{\text {standard }}=\frac{\mathrm{T}_{\text {normal }}}{1-\frac{10}{100}}=\frac{9.6}{0.9}=10.67 \mathrm{~min}
$$

Hence, standard production rate of 1 Phe weld joint

$$
=\frac{8 \times 60}{10.67}=45 \text { units }
$$

sol 11.49 Option (D) is correct.
The expected value of the lead time demand

$$
\begin{aligned}
& =80 \times 0.20+100 \times 0.25+120 \times 0.30+140 \times 0.25 \\
& =112
\end{aligned}
$$

Reorder level is 1.25 time the lead time demand.
So, reorder value $=1.25 \times 112=140$
Here both the maximum demand or the reorder value are equal.
Hence, service level $=100 \%$

SOL 11.50 Option (C) is correct.
The 3 activity need to be crashed to reduce the project duration by 1 day.

SOL 11.51 Option (C) is correct.
First we have to make a transportation model from the given details.

We know,
Basic condition for transportation model is balanced, if it contains no more than $m+n-1$ non-negative allocations, where m is the number of rows and n is the number of columns of the transportation problem.
So, Number of supply point (allocations) $=\mathrm{m}+\mathrm{n}-1$

$$
=2+2-1=3
$$

Number of demand points $=4$ (No. of blank blocks)
Total supply or demand $=50+40=90$
sol 11.52 Option (B) is correct.
Given: Objective function $Z=X_{1}+X_{2}$
From the given corners we have to make a graph for X_{1} and X_{2}

From the graph, the constraint $X_{1}+X_{2} \leq 5$ has no effect on optimal region. Now, checking for optimal solution

	Point	$Z=X_{1}+X_{2}$
(i)	$\mathrm{O}(0,0)$	$Z=0$
(ii)	$\mathrm{A}(2,0)$	$Z=2+0=2$
(iii)	$\mathrm{B}(0,2)$	$Z=0+2=2$
(iv)	$\mathrm{C}(4 / 3,4 / 3)$	$Z=4 / 3+4 / 3=8 / 3$

The optimal solution occurs at point $C(4 / 3,4 / 3)$
sol 11.53 Option (D) is correct.
We know,
The inequality constraints are changed to equality constraints by adding or subtracting a non-negative variable from the left-hand sides of such constraints. These variable is called slack variables or simply slacks.
They are added if the constraints are (\leq) and subtracted if the constraints are (\geq). These variables can remain positive throughout the process of solution and their values in the optimal solution given useful information about the problem.
Hence, O ptimum dual variables are v_{1} and v_{2}.
sol 11.54 Option (B) is correct.
PERT (Programme Evaluation and Review Technique) uses even oriented network in which successive events are joined by arrows.
Float is the difference between the maximum time available to perform the activity and the activity duration. In PERT analysis a critical activity has zero float.
sol 11.55 Option (C) is correct.
Given :
Forecast sales for December $u_{t}=25$
A ctual sales for December $X_{t}=20$
Exponential smoothing constant $\alpha=0.2$
We know that, Forecast sales for J anuary is given by

$$
\begin{aligned}
\mathrm{u}_{\mathrm{t}+1} & =\mathrm{u}_{\mathrm{t}}+\alpha\left[\mathrm{X}_{\mathrm{t}}-\mathrm{u}_{\mathrm{t}}\right] \\
& =25+0.2(20-25) \\
& =25+0.2 \times(-5)=25-1=24
\end{aligned}
$$

Hence, Forecast sales for J anuary 2003 would be 24.
sol 11.56 Option (C) is correct.
For product $P: \quad D=100$ units, $C_{0}=50$ Rs./ order,$C_{h}=4 R$ s./ unit/ year Economic order quantity (EOQ) for product P,

$$
\begin{align*}
& (E O Q)_{p}=\sqrt{\frac{2 C_{0} D}{C_{h}}} \\
& (E O Q)_{p}=\sqrt{\frac{2 \times 50 \times 100}{4}}=\sqrt{2500}=50 \tag{i}
\end{align*}
$$

For product Q :

$$
D=400 \text { U nits } C_{0}=50 \text { R s. order, } C_{h}=1 \text { R s. Unit/ year }
$$

EOQ For Product Q,

$$
\begin{align*}
(E O Q)_{Q} & =\sqrt{\frac{2 C_{0} D}{C_{h}}} \\
& =\sqrt{\frac{2 \times 50 \times 400}{1}}=\sqrt{40000}=200 \tag{ii}
\end{align*}
$$

From equation (i) \& (ii),

$$
\begin{aligned}
\frac{(\mathrm{EOQ})_{P}}{(\mathrm{EOQ})_{Q}} & =\frac{50}{200}=\frac{1}{4} \\
(\mathrm{EOQ})_{P}:(\mathrm{EOQ})_{Q} & =1: 4
\end{aligned}
$$

SOL 11.57 Option (D) is correct.
Let, The standard machine tool produce x_{1} number of components.
For standard machine tool,
T otal cost $=\mathrm{F}$ ixed cost +V ariable cost \times Number. of components

$$
\begin{align*}
(\mathrm{TC})_{\text {SMT }} & =\left[\frac{30}{60}+\frac{22}{60} \times \mathrm{x}_{1}\right] \times 200 \\
& =\frac{30}{60} \times 200+\frac{22}{60} \times \mathrm{x}_{1} \times 200=100+\frac{220}{3} \mathrm{x}_{1} \tag{i}
\end{align*}
$$

If automatic machine tool produce x_{2} Number of components, then the total cost for automatic machine tool is

$$
\begin{align*}
(\mathrm{TC})_{\text {AMT }} & =\left(2+\frac{5}{60} \mathrm{x}_{2}\right) 800 \\
& =1600+\frac{200}{3} \mathrm{x}_{2} \tag{ii}
\end{align*}
$$

Let, at the breakeven production batch size is x and at breakeven point.

$$
\begin{aligned}
(\mathrm{TC})_{S M T} & =(\mathrm{TC})_{\mathrm{AMT}} \\
100+\frac{220 \mathrm{x}}{3} & =1600+\frac{200 \mathrm{x}}{3} \\
\frac{220 \mathrm{x}}{3}-\frac{200 \mathrm{x}}{3} & =1600-100 \\
\frac{20 \mathrm{x}}{3} & =1500 \\
\mathrm{x} & =\frac{1500 \times 3}{20}=225
\end{aligned}
$$

So, breakeven production batch size is 225 .
sol 11.58 Option (D) is correct.
Given :
Total time $\mathrm{T}=16$ hours $=16 \times 60=960 \mathrm{~min}$
Actual working time was 90% of total time
So, A ctual time, $\mathrm{T}_{\text {actual }}=90 \%$ of 960

$$
=\frac{90}{100} \times 960, T_{\text {actual }}=864 \mathrm{~min}
$$

Performance rating was 120 percent.
So, \quad Normal time, $\mathrm{T}_{\text {normal }}=120 \%$ of 864

$$
=\frac{120}{100} \times 864=1036.8 \mathrm{~min}
$$

Allowance is 20% of the total available time.
So total standard time $\mathrm{T}_{\text {standard }}=\frac{\mathrm{T}_{\text {normal }}}{\left(1-\frac{20}{100}\right)}=\frac{1036.8}{1-0.2}=\frac{1036.8}{0.8}$

$$
=1296 \mathrm{~min}
$$

Number of joints soldered, $\mathrm{N}=108$
Hence,

$$
\text { Standard time for operation }=\frac{1296}{108}=12 \mathrm{~min}
$$

SOL 11.59
Option (A) is correct.
Given :
Number of units produced in a day $=80$ units
W orking hours in a day $=8$ hours
Now, Time taken to produce one unit is,

$$
\mathrm{T}=\frac{8}{80} \times 60=6 \mathrm{~min}
$$

A ctivity	Standard time (min)	No. of work stations $($ S.T $/ \mathrm{T})$
M. M echanical assembly	12	$12 / 6=2$
E. E lectric wiring	16	$16 / 6=2.666=3$
T. Test	3	$3 / 6=0.5=1$

Number of work stations are the whole numbers, not the fractions.
So, number of work stations required for the activities M, E and T would be 2, 3 and 1, respectively.
sol 11.60 Option (A) is correct.
Given :
Mean arrival rate $\lambda=3$ per day
M ean service rate $\mu=6$ per day
We know that, for first come first serve queue.
M ean waiting time of an arrival,

$$
\mathrm{t}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{3}{6(6-3)}=\frac{1}{6} \text { day }
$$

sol 11.61 Option (C) is correct.
Given: $\quad D=1000$ units, $C_{0}=100 /$ order, $C_{h}=100$ unit/year
$C_{s}=400 \mathrm{Rs}$.
We know that, optimum level of stock out will be,

$$
\begin{aligned}
\mathrm{S.O} & =\sqrt{\frac{2 D C_{0}}{\mathrm{C}_{h}}} \times \sqrt{\frac{C_{s}}{\mathrm{C}_{\mathrm{h}}+C_{s}}} \\
\mathrm{S.O} & =\sqrt{\frac{2 \times 1000 \times 100}{100}} \times \sqrt{100+400} \\
& =44.72 \times 0.895=40
\end{aligned}
$$

SOL 11.62 Option (A) is correct.
Solve this problem, by the linear programming model. We have to make the constraints from the given conditions.
For production conditions

$$
\begin{equation*}
P+2 Q \leq 2000 \tag{i}
\end{equation*}
$$

For raw material

$$
\begin{equation*}
P+Q \leq 1500 \tag{ii}
\end{equation*}
$$

For electric switch

$$
\begin{equation*}
\mathrm{Q} \leq 600 \tag{iii}
\end{equation*}
$$

For maximization of profit, objective function

$$
\begin{equation*}
Z=3 P+5 Q \tag{iv}
\end{equation*}
$$

From the equations (i), (ii) \& (iii), draw a graph for toy P and Q

Line(i) and line (ii) intersects at point A, we have to calculate the intersection point.

$$
\begin{array}{r}
P+2 Q=2000 \\
P+Q=1500
\end{array}
$$

A fter solving there equations, we get $A(1000,500)$
For point B ,

$$
\begin{aligned}
P+2 Q & =2000 \\
Q & =600 \\
P & =2000-1200=800
\end{aligned}
$$

So, B $(800,600)$
Here shaded area shows the area bounded by the three line equations (common area)
This shaded area have five vertices.

	Vertices	Profit $Z=3 P+5 Q$
(i)	$0(0,0)$	$Z=0$
(ii)	$A(1000,500)$	$Z=3000+2500=5500$
(iii)	$B(800,600)$	$Z=2400+3000=5400$
(iv)	$C(0,600)$	$Z=3000$
(v)	$D(1500,0)$	$Z=4500$

So, for maximization of profit

$$
\begin{array}{ll}
P=1000 & \text { from point(ii) } \\
Q=500 &
\end{array}
$$

SOL 11.63 Option (A) is correct.
The symbol used for transport in work study is given by, \Rightarrow

SOL 11.64 Option (A) is correct.
Given: For machine M 1 :
Fixed cost $=100$ Rs.
Variable cost $=2$ Rs. per piece
For machine M 2 :
Fixed cost $=200$ Rs.
Variable cost $=1$ R s. per piece
Let, n number of units are produced per machine, when both the machines are to be used concurrently.
We know that,
Total cost $=$ Fixed cost $+V$ ariable cost \times N umber of units
For M 1, Total cost of production

$$
\begin{aligned}
& =100+2 \times n \\
& =200+n
\end{aligned}
$$

For M 2, Total cost of production
Hence,

Total cost of production on machine M 1\& M 2 is

$$
=100+2 n+200+n=300+3 n
$$

We know, Breakeven point is the point, where total cost of production is equal to the total sales price.
A ssuming that Number of units produced are less than 800 units and selling price is Rs. 3.50 per unit.
So at breakeven point,

$$
\begin{aligned}
300+3 \mathrm{n} & =3.50(\mathrm{n}+\mathrm{n}) \\
300+3 \mathrm{n} & =3.50 \times 2 \mathrm{n} \\
300 & =4 \mathrm{n} \\
\mathrm{n} & =\frac{300}{4}=75 \text { units }
\end{aligned}
$$

sol 11.65 Option (C) is correct.
Warden checks the student 11 occasions a day during the study hours over a period of 10 days.
So, Total number of observations in 10 days.

$$
=11 \times 10=110 \text { observations }
$$

Study hours as 8.00 pm to 10.30 pm .
So, total study hours in 10 days

$$
=2.5 \times 10=25 \text { hours }
$$

Number of occasions when student studying $=71$
So, Probability of studying

$$
P=\frac{\text { No. of observations when student studying }}{\text { T otal observations }}=\frac{71}{110}=0.645
$$

Hence,
M inimum hours of his study during 10 day period is
$\mathrm{T}=\mathrm{P} \times \mathrm{T}$ otal study hours in 10 days $=0.645 \times 25=16.1$ hours

SOL 11.66 Option (B) is correct.
We know, from the exponential and smoothing average method, the exponential smoothed average $\mathrm{u}_{(\mathrm{t}+1)}$ which is the forecast for the next period $(t+1)$ is given by

$$
\mathbf{u}_{(\mathrm{t}+1)}=\alpha \mathbf{u}_{\mathrm{t}}+\alpha(1-\alpha) \mathbf{u}_{\mathrm{t}-1}+\ldots \ldots . \alpha(1-\alpha)^{\mathrm{n}} \mathrm{u}_{\mathrm{t}-\mathrm{n}}+\ldots \ldots . . \infty
$$

Now, for sales of the fifth month put $t=4$ in the above equation, So, $\quad u_{5}=\alpha \mathbf{u}_{4}+\alpha(1-\alpha) \mathbf{u}_{3}+\alpha(1-\alpha)^{2} \mathbf{u}_{2}+\alpha(1-\alpha)^{3} \mathbf{u}_{1}$ where u_{1}, u_{2}, u_{3} and u_{4} are $70,68,82$, and 95 respectively and $\alpha=0.4$
Hence $\quad u_{5}=0.4 \times 95+0.4(1-0.4) 82+0.4(1-0.4)^{2} \times 68$

$$
+0.4(1-0.4)^{3} \times 70
$$

$$
u_{5}=38+19.68+9.792+6.048=73.52
$$

sol 11.67 Option (C) is correct.
Given :

$$
\begin{aligned}
D & =800000 \text { per annum } \\
C_{0} & =1200 R s . \\
C_{h} & =120 \text { per piece per annum }
\end{aligned}
$$

We know that,
E conomic order quantity $(E O Q)=N=\sqrt{\frac{2 C_{0} D}{C_{h}}}$

$$
\begin{array}{r}
N=\sqrt{\frac{2 \times 1200 \times 800000}{120}}=\sqrt{16 \times 10^{6}} \\
=4 \times 10^{3}=4000
\end{array}
$$

SOL 11.68 Option (A) is correct.
Given: Objective function, $Z=2 x_{1}+5 x_{2}$
and

$$
\begin{aligned}
\mathrm{x}_{1}+3 \mathrm{x}_{2} & \leq 40 \\
3 \mathrm{x}_{1}+\mathrm{x}_{2} & \leq 24 \\
\mathrm{x}_{1}+\mathrm{x}_{2} & \leq 10 \\
\mathrm{x}_{1} & >0 \\
\mathrm{x}_{2} & >0
\end{aligned}
$$

First we have to make a graph from the given constraints. For draw the graph, substitute alternatively $x_{1} \& x_{2}$ equal to zero in each constraints to find the point on the $x_{1} \& x_{2}$ axis.
Now shaded area shows the common area. Note that the constraint $x_{1}+3 x_{2} \leq 40$ does not affect the solution space and it is the redundant constraint. Finding the coordinates of point G by the equations.

$$
x_{1}+x_{2}=10
$$

Subtract these equations,

$$
\begin{aligned}
\left(3 x_{1}-x_{1}\right)+0 & =24-10 \\
2 x_{1} & =14 \Rightarrow x_{1}=7 \\
x_{2} & =10-x_{1}=10-7=3
\end{aligned}
$$

So, point $G(7,3)$
So, maximum profit which can meet the constraints at $G(7,3)$ is

$$
Z_{\max }=2 \times 7+5 \times 3=14+15=29
$$

SOL 11.69 Option (C) is correct.
The various path and their duration are :-

Path	Duration (days)
A-D -L	$2+10+3=15$
A-E -G -L	$2+5+6+3=16$
A-E -H	$2+5+10=17$
B-H	$8+10=18$
C -F -K -M	$4+9+3+8=24$
C -F -H	$4+9+10=23$
A-E -K -M	$2+5+3+8=18$
B -G -L	$8+6+3=17$
B -K -M	$8+3+8=19$
C -F -G -L	$4+9+6+3=22$

Here maximum time along the path $\mathrm{C}-\mathrm{F}-\mathrm{K}-\mathrm{M}$. So, it is a critical path and project can be completed in 24 days.

SOL 11.70 Option (A) is correct.
The principal of motion economy are used while conduction a method study on an operation.
M ethod study consist of the sequence of operation, which are performing on a machine. From the sequencing, the idle time of the machine reduced to a certain amount and the operation becomes faster and smooth. Also the productivity of the plant increases by the principle of motion economy.
sol 11.71 Option (B) is correct.
Standard Time $=$ N ormal time + Allowance
soL 11.72 Option (B) is correct.

Percentage E rror

$$
\begin{aligned}
& E=20 \% \text { or } 0.20 \\
& S=\sqrt{\frac{E \times(1-E)}{n}} \\
& S=\sqrt{\frac{0.20(1-0.20)}{100}}=0.04
\end{aligned}
$$

For 95% confidence level, $\sigma= \pm 2$
So, upper control limit UCL $=\mathrm{E}+\sigma \times \mathrm{S}$

$$
=0.20+2 \times 0.04=0.28
$$

Lower control Limit LCL $=\mathrm{E}-\sigma \times \mathrm{S}$

$$
=0.20-2 \times 0.04=0.12
$$

Hence 95% confidence interval of this estimate is $(0.12,0.28)$
sol 11.73 Option (D) is correct.
Given :

$$
\begin{aligned}
C_{0} & =200 \text { Rs } \\
D & =4000 \text { units per annum } \\
C_{h} & =10 \% \text { of } 100=10 \text { Rs per annum }
\end{aligned}
$$

The Economic order quantity is,

$$
E O Q=\sqrt{\frac{2 C_{0} D}{C_{h}}}=\sqrt{\frac{2 \times 200 \times 4000}{10}}=400 \text { unit }
$$

sol 11.74 Option (C) is correct.
Given :
A verage time between arrivals $=10 \mathrm{~min}$
M ean arrival rate (Number of arrivals per unit time) $\lambda=6$ per hour
A verage time between call $=3 \mathrm{~min}$
M ean service rate

$$
\mu=\frac{60}{3}=20 \text { per hour }
$$

So, the probability that an arrival does not have to wait before service is,

$$
\mathrm{P}_{0}=1-\frac{\lambda}{\mu}=1-\frac{6}{20}=1-0.3=0.7
$$

sol 11.75 Option (B) is correct.
Total supply $=50+40+60=150$ units
Total demand $=20+30+10+50=110$ units
In this question, the total availability (supply) may not be equal to the total demand, i.e.,

$$
\sum_{i=1}^{m} a_{i} \neq \sum_{j=1}^{n} b_{j}
$$

Such problems are called unbalanced transportation problems.
Here total availability is more than the demand. So we add a dummy
destination to take up the excess capacity and the costs of shipping to this destination are set equal to zero.
So, a dummy destination of capacity 40 unit is needed.

SOL 11.76 Option (B) is correct.
In PERT analysis, a Beta distribution is assumed because it is unimodal, has non-negative end points, and is approximately symmetric.
Here three parallel paths are given. But the critical path is one with the longest time durations.
T wo paths have same time duration of 12 .
So, \quad mean $=12$
The PERT analysis has a beta (β) distribution and Standard deviation $=\sqrt{\text { variance }}=\sqrt{4}=2$.
sol 11.77 Option (D) is correct.
Production flow analysis (PFA) is a comprehensive method for material analysis, Part family formation, design of manufacturing cells and facility layout design. These informations are taken from the route sheet.

SOL 11.78 Option (D) is correct.
The simple moving average method can be used if the underlying demand pattern is stationary. This method include new demand data in the average after discarding some of the earlier demand data.
Let

$$
\begin{aligned}
\mathrm{m}_{\mathrm{t}} & =\text { moving average at time } \mathrm{t} \\
\mathrm{y}_{\mathrm{t}} & =\text { demand in time } \mathrm{t} \text { and } \\
\mathrm{n} & =\text { moving average period } \\
\mathrm{m}_{\mathrm{t}+1} & =\frac{\mathrm{y}_{\mathrm{t}+1}-\mathrm{y}_{\mathrm{t}-\mathrm{n}+1}}{\mathrm{n}}
\end{aligned}
$$

SOL 11.79 Option (D) is correct.
Given : M ean cycle time $=10 \mathrm{~min}$
The workers performing at 90% efficiency.
So, \quad Normal time $=10 \times \frac{90}{100}=9 \mathrm{~min}$
Allowance $=10 \%$

$$
\text { Standard time }=\text { Normal time }+ \text { Allowance }
$$

$$
=9+9 \times \frac{10}{100}=9+0.9=9.9 \mathrm{~min}
$$

CHAPTER 12

GENERAL APTITUDE

YEAR 2012
ONE MARK
mCQ 12.1 Choose the most appropriate alternative from the options given below to complete the following sentence :
Suresh's dog is the one
was hurt in the stampede.
(A) that
(B) which
(C) who
(D) whom

MCQ 12.2 The cost function for a product in a firm is given by $5 q^{2}$, where q is the amount of production. The firm can sell the product at a market price of Rs. 50 per unit. The number of units to be produced by the firm such that the profit maximized is
(A) 5
(B) 10
(C) 15
(D) 25

MCQ 12.3 Choose the most appropriate alternative from the options given below to complete the following sentence.
Despite several \qquad .the mission succeeded in its attempt to resolve the conflict.
(A) attempts
(B) setbacks
(C) meetings
(D) delegations

MCQ 12.4 Which one of the following options is the closest in meaning to the word given below ?

Mitigate

(A) Diminish
(B) Divulge
(C) Dedicate
(D) Denote

MCQ 12.5 Choose the grammatically INCORRECT sentence:
(A) They gave us the money back less the service charges of T hree Hundred Rupees.
(B) This country's expenditure is not less than that of Bangladesh.
(C) The committee initially asked for a funding of Fifty Lakh rupees, but later settled for a lesser sum.
(D) T his country's expenditure on educational reforms is very less.

YEAR 2012
TWO MARKS

MCQ 12.6 Given the sequence of terms, AD CGFK JP, the next term is
(A) OV
(B) OW
(C) PV
(D) PW

MCQ 12.7 Wanted Temporary, Part-time persons for the post of Field Interviewer to conduct personal interviews to collect and collate economic data. Requirements : High School-pass, must be available for Day, Evening and Saturday work. Transportation paid, expenses reimbursed.
Which one of the following is the best inference from the above advertisement?
(A) Gender-discriminatory
(B) Xenophobic
(C) Not designed to make the post attractive
(D) Not gender-discriminatory

MCQ 12.8 A political party order an arch for the entrance to the ground in which the annual convention is being held. The profile of the arch follows the equations $y=2 x-0.1 x^{2}$ where y is the height of the arch in meters. The maximum possible height of the arch is
(A) 8 meters
(B) 10 meters
(C) 12 meters
(D) 14 meters

MCQ 12.9 An automobile plant contracted to buy shock absorbers from two suppliers X and Y. X supplies 60% and Y supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the quality test are considered reliable. Of X 's shock absorbers, 96% are reliable. OfY 's shock absorbers, 72% are reliable.
The probability that a randomly chosen shock absorber, which is found to be reliable, is made by Y is
(A) 0.288
(B) 0.334
(C) 0.667
(D) 0.720

MCQ 12.10 W hich of the following assertions are CORRECT ?

P : Adding 7 to each entry in a list adds 7 to the mean of the list
Q : Adding 7 to each entry in a list adds 7 to the standard deviation of the list
R : Doubling each entry in a list doubles the mean of the list
S : Doubling each entry in a list leaves the standard deviation of the list unchanged
(A) P, Q
(B) Q, R
(C) P, R
(D) R, S

YEAR 2011 ONE MARK

MCQ 12.11 Choose the word from the options given below that is most nearly opposite in meaning to the given word :
A malgamate
(A) merge
(B) split
(C) collect
(D) separate

MCQ 12.12 W hich of the following options is the closest in the meaning to the word below :
I nexplicable
(A) Incomprehensible
(B) Indelible
(C) Inextricable
(D) Infallible

MCQ 12.13 If $\log (P)=(1 / 2) \log (Q)=(1 / 3) \log (R)$, then which of the following options is TRUE ?
(A) $P^{2}=Q^{3} R^{2}$
(B) $Q^{2}=P R$
(C) $Q^{2}=R^{3} P$
(D) $R=P^{2} Q^{2}$

MCQ 12.14 Choose the most appropriate word from the options given below to complete the following sentence.
In contemplated. \qquad Singapore for my vacation but decided against it.
(A) to visit
(B) having to visit
(C) visiting
(D) for a visit

MCQ 12.15 Choose the most appropriate word from the options given below to complete the following sentence.
If you are trying to make a strong impression on your audience, you cannot do so by being understated, tentative or
(A) hyperbolic
(B) restrained
(C) argumentative
(D) indifferent

MCQ 12.16 A container originally contains 10 litres of pure spirit. From this container 1 litre of spirit is replaced with 1 litre of water. Subsequently, 1 litre of the mixture is again replaced with 1 litre of water and this processes is repeated one more time. How much spirit is now left in the container?
(A) 7.58 litres
(B) 7.84 litres
(C) 7 litres
(D) 7.29 litres

MCQ 12.17 Few school curricula include a unit on how to deal with bereavement and grief, and yet all students at some point in their lives suffer from losses through death and parting.
Based on the above passage which topic would not be included in a unit on bereavement?
(A) how to write a letter of condolence
(B) what emotional stages are passed through in the healing process
(C) what the leading causes of death are
(D) how to give support to a grieving friend

MCQ 12.18 The variable cost (V) of manufacturing a product varies according to the equation $V=4 q$, where q is the quantity produced. The fixed cost (F) of production of same product reduces with q according to the equation $\mathrm{F}=100 / \mathrm{q}$. How many units should be produced to minimize the total cost $(\mathrm{N}+\mathrm{F})$?
(A) 5
(B) 4
(C) 7
(D) 6

MCQ 12.19 P, Q, R and S are four types of dangerous microbes recently found in a human habitat. The area of each circle with its diameter printed in brackets represents the growth of a single microbe surviving human immunity system within 24 hours of entering the body. The danger to human beings varies proportionately with the toxicity, potency and growth attributed to a microbe shown in the figure below :

A pharmaceutical company is contemplating the development of a vaccine against the most dangerous microbe. Which microbe should the company target in its first attempt?
(A) P
(B) Q
(C) R
(D) S

MCQ 12.20 A transporter receives the same number of orders each day. Currently, he has some pending orders (backlog) to be shipped. If he uses 7 trucks, then at the end of the 4th day he can clear all the orders. Alternatively, if he uses only 3 trucks, then all the orders are cleared at the end of the 10th day. What is the minimum number of trucks required so that there will be no pending order at the end of the 5th day ?
(A) 4
(B) 5
(C) 6
(D) 7

2010 ONE MARK

MCQ 12.21 W hich of the following options is the closest in meaning to the word below ? Circuitous
(A) Cyclic
(B) Indirect
(C) Confusing
(D) Crooked

MCQ 12.22 The question below consist of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair. Unemployed: Worker
(A) Fallow: Land
(B) Unaware: Sleeper
(C) Wit : J ester
(D) Renovated: House

MCQ 12.23 Choose the most appropriate word from the options given below to complete the following sentence:
If we manage to \qquad our natural resources, we would leave a better planet for our children.
(A) unhold
(B) restrain
(C) cherish
(D) conserve

MCQ 12.24 Choose the most appropriate word from the options given below to complete the following sentence:
His rather casual remarks on politics. \qquad his lack of seriousness about the subject.
(A) masked
(B) belied
(C) betrayed
(D) suppressed

MCQ $\mathbf{1 2 . 2 5} 25$ persons are in a room 15 of them play hockey, 17 of them play football and 10 of them play hockey and football. Then the number of persons playing neither hockey nor football is
(A) 2
(B) 17
(C) 13
(D) 3

2010
TWO MARKS
MCQ 12.26 M odern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare ; and regretfully, their exist people in military establishments who think that chemical agents are useful fools for their cause.
Which of the following statements best sums up the meaning of the above passage ?
(A) M odern warfare has resulted in civil strife.
(B) Chemical agents are useful in modern warfare.
(C) Use of chemical agents in ware fare would be undesirable.
(D) People in military establishments like to use chemical agents in war.

MCQ $\mathbf{1 2 . 2 7}$ If $137+276=435$ how much is $731+672$?
(A) 534
(B) 1403
(C) 1623
(D) 1531

MCQ 12.285 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall ?
(A) 20 days
(B) 18 days
(C) 16 days
(D) 15 days

MCQ 12.29 Given digits $2,2,3,3,3,4,4,4,4$ how much distinct 4 digit numbers greater than 3000 can be formed?
(A) 50
(B) 51
(C) 52
(D) 54

MCQ 12.30 Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters.) All were born on $1^{\text {st }} \mathrm{J}$ anuary. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts :

1. Hari's age + Gita's age > Irfan's age + Saira's age.
2. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest.
3. There are no twins.

In what order were they born (oldest first) ?
(A) HSIG
(B) SGHI
(C) IGSH
(D) IHSG

SOLUTION

YEAR 2012
ONE MARK
sol 12.1 Option (A) is correct.
"W hich" is used in a sentence when the person is unknown. But here the person means Suresh's dog is known and "that" is used in a sentence, when the person is known.
So, that will be used in this sentence.
sol 12.2 Option (A) is correct.
Profit is given by,

$$
\begin{aligned}
P & =\text { Selling price }-T \text { otal cost of production } \\
& =50 q-5 q^{2}
\end{aligned}
$$

Using the principle of maxima - minima,

$$
\begin{aligned}
\frac{d P}{d q} & =50-10 q=0 \\
q & =\frac{50}{10}=5
\end{aligned}
$$

and $\frac{d^{2} P}{d q^{2}}=-10$ (maxima)
So, for 5 units the profit is maximum.
sol 12.3 Option (B) is correct.
Despite several setbacks the mission succeeded in its attempt to resolve the conflict.

SOL 12.4 Option (A) is correct.
From the following options Diminish is the closest meaning to the Mitigate.
sol 12.5 Option (A) is correct.
The grammatically incorrect sentence is :
(A) They gave us the money back less the service charges of three hundred rupees.
soL 12.6 Option (A) is correct.

So, the next term is OV .

SOL 12.7 Option (D) is correct.
Not gender-discriminatory
Discriminatory involves the actual behaviors towards groups such as excluding or restricting members of one group from opportunities that are available to another group.
This given advertisement is not exclude or restrict M ale or Female members from one another. Hence this is Not-gender discriminatory.
sol 12.8 Option (B) is correct.
We have $\quad y=2 x-0.1 x^{2}$
U sing the principle of maxima - minima,

$$
\begin{gathered}
\frac{d y}{d x}=2-0.2 x=0 \\
x=\frac{2}{0.2}=10
\end{gathered}
$$

A nd

$$
\frac{d^{2} y}{d x^{2}}=-0.2(\text { maxima })
$$

So, for maximum possible height, substitute $x=10$ in equation (i),

$$
\begin{aligned}
y & =2 \times 10-0.1 \times(10)^{2} \\
& =20-10=10 \text { meter }
\end{aligned}
$$

SOL 12.9 Option (B) is correct.
Supplier X supplies 60% of shock absorbers, out of which 96% are reliable. So overall reliable fraction of shock absorbers from supplier X,

$$
\begin{aligned}
& =0.6 \times 0.96 \\
& =0.576
\end{aligned}
$$

A nd for supplier Y, suppliers 40% of shock absorbers, out of which 72% are reliable. So fraction of reliability $=0.4 \times 0.72=0.288$.
Total fraction of reliability $=0.576+0.288=0.864$
Hence the probability that is found to be reliable, is made by Y is,

$$
=\frac{0.288}{0.288+0.576}=0.334
$$

sol 12.10 Option (C) is correct.
For statement P, take three variables a, b, c
M ean $(m)=\frac{a+b+c}{3}$
Adding 7 to each entry,

$$
\begin{aligned}
& m_{1}=\frac{(a+7)+(b+7)(c+7)}{3} \\
& m_{1}=\frac{a+b+c}{3}+\frac{21}{3}=m+7
\end{aligned}
$$

So, it is correct.
(Q) Standard deviation

$$
\sigma=\sqrt{\frac{(\mathrm{a}-\mathrm{m})^{2}+(\mathrm{b}-\mathrm{m})^{2}+(\mathrm{c}-\mathrm{m})^{2}}{3}}
$$

Adding 7 to each entry,

$$
\sigma_{1}=\sqrt{(a-m+7)^{2}+(b-m+7)^{2}+(c-m+7)^{2}} \neq(\sigma+7)
$$

It is wrong.
(R) By doubling each entry.

$$
\left.m_{1}=\frac{2 a+2 b+2 c}{3}=2 m \text { (it is correct }\right)
$$

(S) doubling each entry

$$
\sigma_{1}=\sqrt{\frac{(m-2 a)^{2}+(m-2 b)^{2}+(m-2 c)^{2}}{3}} \neq(2 \sigma)
$$

Hence it is wrong.
sol 12.11 Option (B) is correct.
A malgamate means combine into a unified or integrated whole unit. The word split is nearly opposite in meaning to the A malgamate.

SOL 12.12 Option (A) is correct.
Inexplicable means incapable of being explained or accounted. So, the best synonym here is incomprehensible.
sol 12.13 Option (B) is correct.
We have

$$
\log (P)=\frac{1}{2} \log (Q)=\frac{1}{3} \log (R)
$$

or

$$
\log (P)=\log (Q)^{1 / 2}=\log (R)^{1 / 3}=\log C
$$

W here $\log C$ is a constant.
or $\quad \mathrm{P}=\mathrm{C}, \quad \mathrm{Q}=\mathrm{C}^{2}, \quad \mathrm{R}=\mathrm{C}^{3}$
Now From option (ii),

$$
\begin{aligned}
\mathrm{Q}^{2} & =\mathrm{PR} \\
\left(\mathrm{C}^{2}\right)^{2} & =\mathrm{C} \times \mathrm{C}^{3}
\end{aligned}
$$

$$
C^{4}=C^{4}
$$

Equation (ii) satisfies.
sol 12.14 Option (C) is correct.
The correct usage of contemplate is verb + ing form. It is a transitive verb.
The most appropriate work is visiting.
sol 12.15 Option (B) is correct.
The mean of the sentence indicates a word that is similar to understand is needed for the blank place.
Therefore, the best option is restrained which means controlled or reserved.
sol 12.16 Option (D) is correct.
We know
Quantity of spirit left after $n^{\text {th }}$ operation $=a \times\left(\frac{a-b}{a}\right)^{n}$
Where $\quad a=$ initial quantity of pure spirit
and $\quad b=$ quantity taken out and replaced every time
Now after three ($\mathrm{n}=3$) operations,
Left quantity of spirit after $3^{\text {rd }}$ operation

$$
=10\left(\frac{10-1}{10}\right)^{3}=10\left(\frac{9}{10}\right)^{3}=7.29 \text { litre }
$$

sol 12.17 Option (C) is correct.
This passage deals with how to deal with bereavement and grief. So, after the tragedy occurs and it is not about precautions. Thus option (C), what the leading causes of death are, not be included in a unit of bereavement. Rest all are important in dealing with grief.

SOL 12.18 Option (A) is correct.
Total cost $=$ Variable cost + Fixed Cost

$$
\begin{aligned}
\mathrm{T} . C . & =\mathrm{V}+\mathrm{F} \\
& =4 \mathrm{q}+\frac{100}{\mathrm{q}}
\end{aligned}
$$

Not for minimize the total cost, using the options.
(A) For $q=5, T . C .=4 \times 5+\frac{100}{5}=40$
(B) For $\mathrm{q}=4, \mathrm{~T} . \mathrm{C} .=4 \times 4+\frac{100}{4}=41$
(C) For $\mathrm{q}=7, \mathrm{~T} . \mathrm{C} .=4 \times 7+\frac{100}{7}=42.28$
(D) For $q=6, T . C .=4 \times 6+\frac{100}{6}=40.66$

Hence, option (A) gives the minimum cost.

SOL 12.19 Option (D) is correct.
The danger of a microbe to human being will be directly proportional to potency and growth and inversely proportional to the toxicity.
So, level of dangerous $\propto \frac{\text { Potency } \times \text { growth }}{\text { T oxicity }}$

$$
\mathrm{D}=\mathrm{C} \frac{\mathrm{PG}}{\mathrm{~T}} \quad \mathrm{~W} \text { here } \mathrm{C}=\text { constant of proportionality }
$$

For $\mathrm{P}, \quad \mathrm{D}_{\mathrm{P}}=\frac{0.4 \times \pi \times(25)^{2}}{800}=0.98$
For $\mathrm{Q}, \quad \mathrm{D}_{\mathrm{Q}}=\frac{0.5 \times \pi \times(20)^{2}}{600}=1.047$
For R,

$$
\mathrm{D}_{\mathrm{R}}=\frac{0.4 \times \pi \times(15)^{2}}{300}=0.94
$$

For S,

$$
\mathrm{D}_{\mathrm{S}}=\frac{0.8 \times \pi \times(10)^{2}}{200}=1.25
$$

Thus D_{s} is maximum and it is most dangerous among them and it is targeted in first attempt.
sol 12.20 Option (C) is correct.
Let ' x ' be the number of orders each day and y be the backlogs.
So, From the given conditions

$$
\begin{aligned}
4 x+y & =4 \times 7=28 \\
10 x+y & =3 \times 10=30
\end{aligned}
$$

and
A fter solving these two equations, we get

$$
x=\frac{1}{3}, \quad y=\frac{80}{3}
$$

Now determine the number of trucks, so that no pending order will be left end of the 5th day.

$$
5 x+y=5 n
$$

W here

$$
\mathrm{n}=\mathrm{N} \text { umber of trucks }
$$

$$
\mathrm{n}=\frac{5 \times \frac{1}{3}+\frac{80}{3}}{5}=\frac{\frac{85}{3}}{5}=5.56
$$

Hence number of trucks have to be natural number,

$$
\mathrm{n}=6
$$

soL 12.21 Option (B) is correct.

Circuitous means round about or not direct. Indirect is closest in meaning to this circuitous
(A) Cyclic
: Recurring in nature
(B) Indirect
: N ot direct
(C) Confusing
: Iacking clarity of meaning
(D) Crooked
: set at an angle; not straight
sol 12.22 Option (B) is correct.
A worker may by unemployed. Like in same relation a sleeper may be unaware.

SOL 12.23 Option (D) is correct.
Here conserve is most appropriate word.
sol 12.24 Option (C) is correct.
B etrayed means reveal unintentionally that is most appropriate.

SOL 12.25 Option (D) is correct.
Number of people who play hockey
$\mathrm{n}(\mathrm{A})=15$
Number of people who play football

$$
n(B)=17
$$

Persons who play both hockey and football $\quad n(A \cap B)=10$
Persons who play either hockey or football or both:

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)=15+17-10=22
$$

Thus people who play neither hockey nor football $=25-22=3$

SOL 12.26 Option (D) is correct.
sol 12.27 Option (C) is correct.
Since $7+6=13$ but unit digit is 5 so base may be 8 as 5 is the remainder when 13 is divided by 8 . Let us check.

137_{8}		731_{8}
$\frac{276_{8}}{435}$	Thus here base is 8. Now	$\frac{672_{8}}{1623}$

sol 12.28 Option (D) is correct.
Let W be the total work.

Per day work of 5 skilled workers

$$
=\frac{W}{20}
$$

Per day work of one skill worker

$$
=\frac{W}{5 \times 20}=\frac{W}{100}
$$

Similarly per day work of 1 semi-skilled workers $=\frac{\mathrm{W}}{8 \times 25}=\frac{\mathrm{W}}{200}$
Similarly per day work of one semi-skill worker $=\frac{\mathrm{W}}{10 \times 30}=\frac{\mathrm{W}}{300}$
Thus total per day work of 2 skilled, 6 semi-skilled and 5 unskilled workers is $=\frac{2 W}{100}+\frac{6 W}{200}+\frac{5 W}{300}=\frac{12 W+18 W}{600}+10 W ~=\frac{W}{15}$
Therefore time to complete the work is 15 days.
soL 12.29 Option (B) is correct.
As the number must be greater than 3000, it must be start with 3 or 4 . Thus we have two case:
C ase (1) If left most digit is 3 an other three digits are any of 2, 2, 3, 3, 4, 4, 4, 4.
(1) Using 2, 2, 3 we have $3223,3232,3322$ i.e. $\frac{3!}{2!}=3$ no.
(2) Using $2,2,4$ we have $3224,3242,3422$ i.e. $\frac{3!}{2!}=3$ no.
(3) Using $2,3,3$ we have $3233,3323,3332$ i.e. $\frac{3!}{2!}=3$ no.
(4) Using $2,3,4$ we have $3!=6$ no.
(5) Using $2,4,4$ we have $3244,3424,3442$ i.e. $\frac{3!}{2!}=3$ no.
(6) Using 3, 3,4 we have $3334,3343,3433$ i.e. $\frac{3!}{2!}=3$ no.
(7) Using $3,4,4$ we have $3344,3434,3443$ i.e. $\frac{3!}{2!}=3$ no.
(8) U sing $4,4,4$ we have 3444 i.e. $\frac{3!}{3!}=1$ no.

Total 4 digit numbers in this case is
$1+3+3+3+6+3+3+3+1=25$
C ase 2 : If left most is 4 and other three digits are any of $2,2,3,3,3,4,4,4$.
(1) Using $2,2,3$ we have $4223,4232,4322$ i.e. $\frac{3!}{2!}=3$ no
(2) Using 2, 2, 4 we have $4224,4242,4422$ i.e. $\frac{3!}{2!}=3$ no
(3) $U \operatorname{sing} 2,3,3$ we have $4233,4323,4332$ i.e. $\frac{3!}{2!}=3$ no
(4) Using $2,3,4$ we have i.e. . $3!=6$ no
(5) Using $2,4,4$ we have $4244,4424,4442$ i.e. $\cdot \frac{3!}{2!}=3$ no
(6) Using $3,3,3$ we have 4333 i.e $\frac{3!}{3!}=1$. no.
(7) Using $3,3,4$ we have 4334,4343 , 4433 i.e. $\frac{3!}{2!}=3$ no
(8) Using $3,4,4$ we have $4344,4434,4443$ i.e. $\cdot \frac{3!}{2!}=3$ no
(9) Using $4,4,4$ we have 4444 i.e. $\frac{3!}{3!}=1$. no

Total 4 digit numbers in 2nd case $=3+3+3+6+3+3+1+3+1=26$
Thus total 4 digit numbers using case (1) and case (2) is $=25+26=51$
soL 12.30 Option (B) is correct.
Let H, G, S and I be ages of Hari, Gita, Saira and Irfan respectively.
Now from statement (1) we have $\mathrm{H}+\mathrm{G}>\mathrm{I}+\mathrm{S}$
Form statement (2) we get that $\mathrm{G}-\mathrm{S}=1$ or $\mathrm{S}-\mathrm{G}=1$
As G can't be oldest and S can't be youngest thus either $G S$ or $S G$ possible. From statement (3) we get that there are no twins
(A) HSIG: There is I between S and G which is not possible
(B) SGHI: SG order is also here and $\mathrm{S}>\mathrm{G}>\mathrm{H}>\mathrm{I}$ and $\mathrm{C}+\mathrm{H}>\mathrm{S}+\mathrm{I}$ which is possible.
(C) IGSH: This gives I $>\mathrm{G}$ and $\mathrm{S}>\mathrm{H}$ and adding these both inequalities we have $\mathrm{I}+\mathrm{S}>\mathrm{H}+\mathrm{G}$ which is not possible.
(D) IHSG: This gives I $>\mathrm{H}$ and $\mathrm{S}>\mathrm{G}$ and adding these both inequalities we have $\mathrm{I}+\mathrm{S}>\mathrm{H}+\mathrm{G}$ which is not possible.

